# Technical Specifications Detailed technical documentation for Cortex Linux system architecture, performance, and specifications. --- ## Table of Contents 1. [System Architecture](#system-architecture) 2. [Performance Benchmarks](#performance-benchmarks) 3. [Hardware Requirements](#hardware-requirements) 4. [Software Stack](#software-stack) 5. [Kernel Enhancements](#kernel-enhancements) 6. [AI Engine Specifications](#ai-engine-specifications) 7. [Performance Tuning](#performance-tuning) 8. [Scalability](#scalability) --- ## System Architecture ### High-Level Architecture ``` ┌─────────────────────────────────────────────────────────┐ │ Application Layer │ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │ │ CLI Tools │ │ HTTP API │ │ Libraries │ │ │ └──────────────┘ └──────────────┘ └──────────────┘ │ └─────────────────────────────────────────────────────────┘ │ ┌─────────────────────────────────────────────────────────┐ │ Service Layer │ │ ┌──────────────────────────────────────────────────┐ │ │ │ systemd Services │ │ │ │ - cortex-ai.service (HTTP API server) │ │ │ │ - cortex-scheduler.service (AI task queue) │ │ │ │ - cortex-monitor.service (system monitoring) │ │ │ └──────────────────────────────────────────────────┘ │ └─────────────────────────────────────────────────────────┘ │ ┌─────────────────────────────────────────────────────────┐ │ AI Layer │ │ ┌──────────────────────────────────────────────────┐ │ │ │ Sapiens 0.27B Engine │ │ │ │ - Model: 270M parameters │ │ │ │ - Runtime: Custom C++ inference engine │ │ │ │ - Memory: ~200MB │ │ │ │ - API: C API for system integration │ │ │ └──────────────────────────────────────────────────┘ │ └─────────────────────────────────────────────────────────┘ │ ┌─────────────────────────────────────────────────────────┐ │ Kernel Layer │ │ ┌──────────────────────────────────────────────────┐ │ │ │ Linux Kernel 6.1+ (Cortex-enhanced) │ │ │ │ - AI-aware process scheduler │ │ │ │ - Enhanced memory management │ │ │ │ - Real-time capabilities │ │ │ │ - Resource isolation │ │ │ └──────────────────────────────────────────────────┘ │ └─────────────────────────────────────────────────────────┘ ``` ### Component Details #### Kernel Layer **Base**: Linux kernel 6.1.0+ **Enhancements**: - **AI-Aware Scheduler**: Optimizes CPU allocation for AI workloads - **Memory Management**: Efficient handling of large model memory requirements - **I/O Optimization**: Reduced latency for model loading and inference - **Resource Isolation**: CPU and memory isolation for AI processes **Kernel Modules**: - `cortex_scheduler.ko`: AI workload scheduling - `cortex_memory.ko`: Enhanced memory management - `cortex_monitor.ko`: System metrics collection **Configuration**: ```bash # Kernel configuration options CONFIG_CORTEX_AI_SCHEDULER=y CONFIG_CORTEX_MEMORY_MANAGEMENT=y CONFIG_CORTEX_MONITOR=y CONFIG_CORTEX_RT_CAPABILITIES=y ``` #### AI Layer **Engine**: Sapiens 0.27B Reasoning Engine **Specifications**: - **Model Size**: 270 million parameters - **Model Format**: Quantized INT8 (optimized for inference) - **Memory Usage**: ~200MB RAM - **Disk Size**: ~350MB (compressed model) - **Inference Engine**: Custom C++ implementation - **Supported Operations**: Reasoning, planning, debugging, optimization **Model Architecture**: - **Type**: Transformer-based language model - **Layers**: 24 transformer layers - **Attention Heads**: 16 - **Hidden Size**: 1024 - **Vocabulary Size**: 50,000 tokens - **Context Length**: 2048 tokens **Performance Characteristics**: - **Inference Latency**: 50-200ms (typical) - **Throughput**: 5-10 queries/second (single-threaded) - **Concurrent Requests**: Up to 50 (with queuing) - **Memory Efficiency**: Optimized for low-memory environments #### Service Layer **HTTP API Server**: - **Framework**: Go-based HTTP server - **Port**: 8080 (configurable) - **Protocol**: HTTP/1.1, HTTP/2 - **Endpoints**: `/reason`, `/plan`, `/debug`, `/optimize`, `/health`, `/status` - **Authentication**: Optional API key - **Rate Limiting**: Configurable per-endpoint **CLI Tool**: - **Language**: Rust - **Binary**: `/usr/bin/cortex-ai` - **Commands**: `reason`, `plan`, `debug`, `optimize`, `status`, `version` - **Output Formats**: Text, JSON, Markdown **Systemd Services**: - `cortex-ai.service`: Main AI service - `cortex-scheduler.service`: Task scheduling - `cortex-monitor.service`: System monitoring #### Application Layer **Base System**: Debian/Ubuntu-compatible userland **Package Management**: APT (Advanced Package Tool) **Development Tools**: - GCC 11+, Clang 14+ - Python 3.10+ - Rust 1.70+ - Go 1.20+ **Standard Libraries**: - glibc 2.35+ - OpenSSL 3.0+ - zlib, bzip2, xz --- ## Performance Benchmarks ### Inference Performance #### Latency Benchmarks Test environment: 4-core Intel i7-8700K, 16GB RAM, SSD | Query Complexity | P50 Latency | P95 Latency | P99 Latency | |------------------|-------------|-------------|-------------| | **Simple** (1-50 tokens) | 67ms | 120ms | 180ms | | **Medium** (51-200 tokens) | 145ms | 280ms | 420ms | | **Complex** (201-500 tokens) | 234ms | 450ms | 680ms | | **Very Complex** (501-1000 tokens) | 380ms | 720ms | 1100ms | #### Throughput Benchmarks | Configuration | Queries/Second | Concurrent Requests | |---------------|----------------|---------------------| | **Single-threaded** | 6.2 | 1 | | **4 threads** | 18.5 | 4 | | **8 threads** | 28.3 | 8 | | **With batching** (batch=10) | 45.2 | 50 | ### Accuracy Benchmarks #### Task Performance | Task | Accuracy | Notes | |------|----------|-------| | **Sudoku Solving** | 55% | On-device, no API calls | | **Code Debugging** | 72% | Python, JavaScript, Bash | | **Architecture Planning** | 68% | System design tasks | | **Documentation Generation** | 75% | API docs, README files | | **Configuration Optimization** | 78% | Nginx, PostgreSQL, etc. | | **Error Analysis** | 81% | Log analysis, stack traces | *Note: Accuracy is lower than larger cloud models (GPT-3.5, GPT-4) but acceptable for on-device use with zero API costs.* ### Resource Usage #### Memory Usage | Component | Base Memory | Per-Request Overhead | |-----------|-------------|---------------------| | **AI Engine** | 200MB | 10MB | | **HTTP Server** | 25MB | 2MB | | **CLI Tool** | 15MB | N/A | | **Kernel Modules** | 5MB | 1MB | | **Total (idle)** | 245MB | - | | **Total (active)** | 245MB | +13MB per request | #### CPU Usage | Operation | CPU Usage (single core) | CPU Usage (4 cores) | |-----------|-------------------------|---------------------| | **Idle** | 2% | 0.5% per core | | **Simple Query** | 45% | 12% per core | | **Complex Query** | 85% | 22% per core | | **Batch Processing** | 95% | 25% per core | #### Disk I/O - **Model Loading**: 350MB read (one-time, on startup) - **Per-Request**: <1MB (minimal, mostly memory-based) - **Logging**: ~10KB per request (if enabled) ### Scalability #### Vertical Scaling | CPU Cores | Throughput (req/sec) | Improvement | |-----------|---------------------|-------------| | **1** | 6.2 | Baseline | | **2** | 11.8 | 1.9x | | **4** | 18.5 | 3.0x | | **8** | 28.3 | 4.6x | | **16** | 35.1 | 5.7x | *Note: Diminishing returns due to memory bandwidth limitations.* #### Horizontal Scaling Multiple Cortex Linux instances can be load-balanced: ```nginx # Nginx load balancer configuration upstream cortex_ai { least_conn; server cortex1:8080; server cortex2:8080; server cortex3:8080; } server { listen 80; location / { proxy_pass http://cortex_ai; } } ``` **Scaling Characteristics**: - **Linear scaling** up to ~10 instances - **Network overhead**: Minimal (local network) - **Coordination**: Stateless (no shared state) --- ## Hardware Requirements ### Minimum Requirements | Component | Specification | |-----------|---------------| | **CPU** | x86_64 or ARM64, 2 cores, 2.0 GHz | | **RAM** | 2GB (4GB recommended) | | **Storage** | 10GB free space (20GB recommended) | | **Network** | Optional (for updates only) | ### Recommended Requirements | Component | Specification | |-----------|---------------| | **CPU** | 4+ cores, 3.0+ GHz, modern architecture | | **RAM** | 8GB+ | | **Storage** | 50GB+ SSD | | **Network** | Broadband (for updates) | ### Production Requirements | Component | Specification | |-----------|---------------| | **CPU** | 8+ cores, 3.5+ GHz, latest generation | | **RAM** | 16GB+ | | **Storage** | 100GB+ NVMe SSD | | **Network** | Gigabit Ethernet | | **Redundancy** | Multiple instances for HA | ### Cloud Instance Recommendations #### AWS EC2 - **Minimum**: t3.medium (2 vCPU, 4GB RAM) - **Recommended**: t3.large (2 vCPU, 8GB RAM) - **Production**: t3.xlarge (4 vCPU, 16GB RAM) or larger #### DigitalOcean - **Minimum**: s-2vcpu-4gb ($24/month) - **Recommended**: s-4vcpu-8gb ($48/month) - **Production**: s-8vcpu-16gb ($96/month) #### Google Cloud - **Minimum**: n1-standard-2 (2 vCPU, 7.5GB RAM) - **Recommended**: n1-standard-4 (4 vCPU, 15GB RAM) - **Production**: n1-standard-8 (8 vCPU, 30GB RAM) --- ## Software Stack ### Operating System - **Base**: Debian 12 (Bookworm) / Ubuntu 22.04 LTS - **Kernel**: Linux 6.1.0+ (Cortex-enhanced) - **Init System**: systemd 251+ ### Core Libraries | Library | Version | Purpose | |---------|---------|----------| | **glibc** | 2.35+ | C standard library | | **OpenSSL** | 3.0+ | Cryptography | | **zlib** | 1.2.13+ | Compression | | **libcurl** | 7.85+ | HTTP client (optional) | | **libyaml** | 0.2.5+ | Configuration parsing | ### AI Engine Dependencies | Dependency | Version | Purpose | |------------|---------|---------| | **Eigen** | 3.4+ | Linear algebra | | **ONNX Runtime** | 1.15+ | Model inference (optional) | | **BLAS** | OpenBLAS 0.3.20+ | Matrix operations | ### Development Tools | Tool | Version | Purpose | |------|---------|---------| | **GCC** | 11+ | C/C++ compiler | | **Clang** | 14+ | Alternative C/C++ compiler | | **Rust** | 1.70+ | CLI tool development | | **Go** | 1.20+ | HTTP API server | | **Python** | 3.10+ | SDK and tooling | | **CMake** | 3.20+ | Build system | ### Runtime Dependencies | Package | Version | Purpose | |---------|---------|---------| | **systemd** | 251+ | Service management | | **dbus** | 1.14+ | Inter-process communication | | **libsystemd** | 251+ | systemd integration | --- ## Kernel Enhancements ### AI-Aware Process Scheduler **Module**: `cortex_scheduler.ko` **Features**: - Priority boost for AI inference tasks - CPU affinity optimization - Real-time scheduling support - Workload-aware CPU allocation **Configuration**: ```bash # Enable AI-aware scheduling echo 1 > /sys/kernel/cortex/scheduler/enabled # Set AI process priority echo 10 > /sys/kernel/cortex/scheduler/ai_priority # Configure CPU affinity echo "0-3" > /sys/kernel/cortex/scheduler/ai_cpus ``` ### Enhanced Memory Management **Module**: `cortex_memory.ko` **Features**: - Large page support for model memory - Memory compaction for AI workloads - NUMA awareness - Memory pressure handling **Configuration**: ```bash # Enable large pages echo 1 > /sys/kernel/cortex/memory/large_pages # Set memory limits echo 512 > /sys/kernel/cortex/memory/max_mb ``` ### System Monitoring **Module**: `cortex_monitor.ko` **Features**: - Real-time performance metrics - Resource usage tracking - Event logging - Performance counters **Metrics Exposed**: - `/proc/cortex/performance`: Performance counters - `/proc/cortex/memory`: Memory usage - `/proc/cortex/cpu`: CPU usage - `/proc/cortex/requests`: Request statistics --- ## AI Engine Specifications ### Model Details **Name**: Sapiens 0.27B **Architecture**: - **Type**: Decoder-only transformer - **Parameters**: 270,000,000 - **Layers**: 24 - **Attention Heads**: 16 - **Hidden Dimension**: 1024 - **Intermediate Dimension**: 4096 - **Vocabulary Size**: 50,257 - **Context Length**: 2048 tokens - **Position Encoding**: Rotary Position Embedding (RoPE) **Quantization**: - **Format**: INT8 quantization - **Calibration**: Per-channel quantization - **Accuracy Loss**: <2% compared to FP16 **Optimizations**: - **Operator Fusion**: Fused attention and MLP operations - **Kernel Optimization**: SIMD-optimized kernels - **Memory Layout**: Optimized for cache locality - **Batch Processing**: Efficient batching support ### Inference Engine **Language**: C++17 **Key Components**: - **Tokenizer**: Fast BPE tokenization - **Embedding Layer**: Efficient embedding lookup - **Transformer Blocks**: Optimized attention and MLP - **Output Layer**: Language modeling head **Performance Optimizations**: - **SIMD**: AVX2/AVX-512 vectorization - **Multi-threading**: OpenMP parallelization - **Memory Pool**: Pre-allocated memory pools - **Caching**: KV cache for repeated queries ### API Interface **C API**: See [Developer Documentation - C API](Developer-Documentation.md#c-api-ai-engine) **Python API**: See [AI Integration - Python Integration](AI-Integration.md#python-integration) --- ## Performance Tuning ### CPU Tuning ```bash # Set CPU governor to performance echo performance | sudo tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor # Disable CPU frequency scaling sudo cpupower frequency-set -g performance # Set CPU affinity taskset -cp 0-3 $(pgrep cortex-ai) ``` ### Memory Tuning ```yaml # /etc/cortex-ai/config.yaml ai: # Increase memory allocation max_memory_mb: 1024 # Enable memory pooling enable_memory_pool: true memory_pool_size_mb: 512 ``` ### I/O Tuning ```bash # Set I/O scheduler echo none > /sys/block/nvme0n1/queue/scheduler # Increase read-ahead sudo blockdev --setra 8192 /dev/nvme0n1 ``` ### Network Tuning (for HTTP API) ```bash # Increase TCP buffer sizes echo 'net.core.rmem_max = 16777216' | sudo tee -a /etc/sysctl.conf echo 'net.core.wmem_max = 16777216' | sudo tee -a /etc/sysctl.conf sudo sysctl -p ``` ### Model-Specific Tuning ```yaml # /etc/cortex-ai/config.yaml ai: # Thread configuration num_threads: 4 # Match CPU cores # Batch processing batch_size: 10 # Increase for throughput # Generation parameters temperature: 0.7 top_p: 0.9 top_k: 40 max_tokens: 512 ``` --- ## Scalability ### Vertical Scaling Increase resources on a single instance: - **CPU**: Add more cores (linear scaling up to ~8 cores) - **RAM**: Increase memory (allows larger batches) - **Storage**: Use faster storage (NVMe SSD) ### Horizontal Scaling Deploy multiple instances behind a load balancer: ```yaml # Load balancer configuration services: cortex1: image: cortex-linux:latest ports: - "8081:8080" cortex2: image: cortex-linux:latest ports: - "8082:8080" cortex3: image: cortex-linux:latest ports: - "8083:8080" nginx: image: nginx:latest volumes: - ./nginx.conf:/etc/nginx/nginx.conf ports: - "8080:80" ``` ### Caching Strategy ```yaml # Enable caching caching: enabled: true backend: redis # or memory ttl_seconds: 3600 max_size_mb: 1000 ``` ### Monitoring and Metrics ```bash # Enable Prometheus metrics # /etc/cortex-ai/config.yaml monitoring: prometheus: enabled: true port: 9090 path: /metrics ``` --- ## Next Steps - **Installation**: [Installation Guide](Installation-Guide.md) - **Integration**: [AI Integration Guide](AI-Integration.md) - **Development**: [Developer Documentation](Developer-Documentation.md) --- *Last updated: 2024*