|
| 1 | +from typing import Dict, Any |
| 2 | +from datetime import datetime, timezone |
| 3 | + |
| 4 | +import pandas as pd |
| 5 | +from pyindicators import ema, rsi, crossover, crossunder |
| 6 | + |
| 7 | +from investing_algorithm_framework import TradingStrategy, DataSource, \ |
| 8 | + TimeUnit, DataType, PositionSize, create_app, RESOURCE_DIRECTORY, \ |
| 9 | + BacktestDateRange, BacktestReport |
| 10 | + |
| 11 | + |
| 12 | +class RSIEMACrossoverStrategy(TradingStrategy): |
| 13 | + time_unit = TimeUnit.HOUR |
| 14 | + interval = 2 |
| 15 | + symbols = ["BTC"] |
| 16 | + position_sizes = [ |
| 17 | + PositionSize( |
| 18 | + symbol="BTC", percentage_of_portfolio=20.0 |
| 19 | + ), |
| 20 | + PositionSize( |
| 21 | + symbol="ETH", percentage_of_portfolio=20.0 |
| 22 | + ) |
| 23 | + ] |
| 24 | + |
| 25 | + def __init__( |
| 26 | + self, |
| 27 | + time_unit: TimeUnit, |
| 28 | + interval: int, |
| 29 | + market: str, |
| 30 | + rsi_time_frame: str, |
| 31 | + rsi_period: int, |
| 32 | + rsi_overbought_threshold, |
| 33 | + rsi_oversold_threshold, |
| 34 | + ema_time_frame, |
| 35 | + ema_short_period, |
| 36 | + ema_long_period, |
| 37 | + ema_cross_lookback_window: int = 10 |
| 38 | + ): |
| 39 | + self.rsi_time_frame = rsi_time_frame |
| 40 | + self.rsi_period = rsi_period |
| 41 | + self.rsi_result_column = f"rsi_{self.rsi_period}" |
| 42 | + self.rsi_overbought_threshold = rsi_overbought_threshold |
| 43 | + self.rsi_oversold_threshold = rsi_oversold_threshold |
| 44 | + self.ema_time_frame = ema_time_frame |
| 45 | + self.ema_short_result_column = f"ema_{ema_short_period}" |
| 46 | + self.ema_long_result_column = f"ema_{ema_long_period}" |
| 47 | + self.ema_crossunder_result_column = "ema_crossunder" |
| 48 | + self.ema_crossover_result_column = "ema_crossover" |
| 49 | + self.ema_short_period = ema_short_period |
| 50 | + self.ema_long_period = ema_long_period |
| 51 | + self.ema_cross_lookback_window = ema_cross_lookback_window |
| 52 | + data_sources = [] |
| 53 | + |
| 54 | + for symbol in self.symbols: |
| 55 | + full_symbol = f"{symbol}/EUR" |
| 56 | + data_sources.append( |
| 57 | + DataSource( |
| 58 | + identifier=f"{symbol}_rsi_data", |
| 59 | + data_type=DataType.OHLCV, |
| 60 | + time_frame=self.rsi_time_frame, |
| 61 | + market=market, |
| 62 | + symbol=full_symbol, |
| 63 | + pandas=True, |
| 64 | + window_size=800 |
| 65 | + ) |
| 66 | + ) |
| 67 | + data_sources.append( |
| 68 | + DataSource( |
| 69 | + identifier=f"{symbol}_ema_data", |
| 70 | + data_type=DataType.OHLCV, |
| 71 | + time_frame=self.ema_time_frame, |
| 72 | + market=market, |
| 73 | + symbol=full_symbol, |
| 74 | + pandas=True, |
| 75 | + window_size=800 |
| 76 | + ) |
| 77 | + ) |
| 78 | + |
| 79 | + super().__init__( |
| 80 | + data_sources=data_sources, time_unit=time_unit, interval=interval |
| 81 | + ) |
| 82 | + |
| 83 | + self.buy_signal_dates = {} |
| 84 | + self.sell_signal_dates = {} |
| 85 | + |
| 86 | + for symbol in self.symbols: |
| 87 | + self.buy_signal_dates[symbol] = [] |
| 88 | + self.sell_signal_dates[symbol] = [] |
| 89 | + |
| 90 | + def _prepare_indicators( |
| 91 | + self, |
| 92 | + rsi_data, |
| 93 | + ema_data |
| 94 | + ): |
| 95 | + ema_data = ema( |
| 96 | + ema_data, |
| 97 | + period=self.ema_short_period, |
| 98 | + source_column="Close", |
| 99 | + result_column=self.ema_short_result_column |
| 100 | + ) |
| 101 | + ema_data = ema( |
| 102 | + ema_data, |
| 103 | + period=self.ema_long_period, |
| 104 | + source_column="Close", |
| 105 | + result_column=self.ema_long_result_column |
| 106 | + ) |
| 107 | + # Detect crossover (short EMA crosses above long EMA) |
| 108 | + ema_data = crossover( |
| 109 | + ema_data, |
| 110 | + first_column=self.ema_short_result_column, |
| 111 | + second_column=self.ema_long_result_column, |
| 112 | + result_column=self.ema_crossover_result_column |
| 113 | + ) |
| 114 | + # Detect crossunder (short EMA crosses below long EMA) |
| 115 | + ema_data = crossunder( |
| 116 | + ema_data, |
| 117 | + first_column=self.ema_short_result_column, |
| 118 | + second_column=self.ema_long_result_column, |
| 119 | + result_column=self.ema_crossunder_result_column |
| 120 | + ) |
| 121 | + rsi_data = rsi( |
| 122 | + rsi_data, |
| 123 | + period=self.rsi_period, |
| 124 | + source_column="Close", |
| 125 | + result_column=self.rsi_result_column |
| 126 | + ) |
| 127 | + |
| 128 | + return ema_data, rsi_data |
| 129 | + |
| 130 | + def generate_buy_signals(self, data: Dict[str, Any]) -> Dict[str, pd.Series]: |
| 131 | + """ |
| 132 | + Generate buy signals based on the moving average crossover. |
| 133 | +
|
| 134 | + data (Dict[str, Any]): Dictionary containing all the data for |
| 135 | + the strategy data sources. |
| 136 | +
|
| 137 | + Returns: |
| 138 | + Dict[str, pd.Series]: A dictionary where keys are symbols and values |
| 139 | + are pandas Series indicating buy signals (True/False). |
| 140 | + """ |
| 141 | + |
| 142 | + signals = {} |
| 143 | + |
| 144 | + for symbol in self.symbols: |
| 145 | + ema_data_identifier = f"{symbol}_ema_data" |
| 146 | + rsi_data_identifier = f"{symbol}_rsi_data" |
| 147 | + ema_data, rsi_data = self._prepare_indicators( |
| 148 | + data[ema_data_identifier].copy(), |
| 149 | + data[rsi_data_identifier].copy() |
| 150 | + ) |
| 151 | + |
| 152 | + # crossover confirmed |
| 153 | + ema_crossover_lookback = ema_data[ |
| 154 | + self.ema_crossover_result_column].rolling( |
| 155 | + window=self.ema_cross_lookback_window |
| 156 | + ).max().astype(bool) |
| 157 | + |
| 158 | + # use only RSI column |
| 159 | + rsi_oversold = rsi_data[self.rsi_result_column] \ |
| 160 | + < self.rsi_oversold_threshold |
| 161 | + |
| 162 | + buy_signal = rsi_oversold & ema_crossover_lookback |
| 163 | + buy_signals = buy_signal.fillna(False).astype(bool) |
| 164 | + signals[symbol] = buy_signals |
| 165 | + |
| 166 | + # Get all dates where there is a sell signal |
| 167 | + buy_signal_dates = buy_signals[buy_signals].index.tolist() |
| 168 | + |
| 169 | + if buy_signal_dates: |
| 170 | + self.buy_signal_dates[symbol] += buy_signal_dates |
| 171 | + |
| 172 | + return signals |
| 173 | + |
| 174 | + def generate_sell_signals(self, data: Dict[str, Any]) -> Dict[str, pd.Series]: |
| 175 | + """ |
| 176 | + Generate sell signals based on the moving average crossover. |
| 177 | +
|
| 178 | + Args: |
| 179 | + data (Dict[str, Any]): Dictionary containing all the data for |
| 180 | + the strategy data sources. |
| 181 | +
|
| 182 | + Returns: |
| 183 | + Dict[str, pd.Series]: A dictionary where keys are symbols and values |
| 184 | + are pandas Series indicating sell signals (True/False). |
| 185 | + """ |
| 186 | + |
| 187 | + signals = {} |
| 188 | + for symbol in self.symbols: |
| 189 | + ema_data_identifier = f"{symbol}_ema_data" |
| 190 | + rsi_data_identifier = f"{symbol}_rsi_data" |
| 191 | + ema_data, rsi_data = self._prepare_indicators( |
| 192 | + data[ema_data_identifier].copy(), |
| 193 | + data[rsi_data_identifier].copy() |
| 194 | + ) |
| 195 | + |
| 196 | + # Confirmed by crossover between short-term EMA and long-term EMA |
| 197 | + # within a given lookback window |
| 198 | + ema_crossunder_lookback = ema_data[ |
| 199 | + self.ema_crossunder_result_column].rolling( |
| 200 | + window=self.ema_cross_lookback_window |
| 201 | + ).max().astype(bool) |
| 202 | + |
| 203 | + # use only RSI column |
| 204 | + rsi_overbought = rsi_data[self.rsi_result_column] \ |
| 205 | + >= self.rsi_overbought_threshold |
| 206 | + |
| 207 | + # Combine both conditions |
| 208 | + sell_signal = rsi_overbought & ema_crossunder_lookback |
| 209 | + sell_signal = sell_signal.fillna(False).astype(bool) |
| 210 | + signals[symbol] = sell_signal |
| 211 | + |
| 212 | + # Get all dates where there is a sell signal |
| 213 | + sell_signal_dates = sell_signal[sell_signal].index.tolist() |
| 214 | + |
| 215 | + if sell_signal_dates: |
| 216 | + self.sell_signal_dates[symbol] += sell_signal_dates |
| 217 | + |
| 218 | + return signals |
| 219 | + |
| 220 | + |
| 221 | +if __name__ == "__main__": |
| 222 | + app = create_app() |
| 223 | + app.add_strategy( |
| 224 | + RSIEMACrossoverStrategy( |
| 225 | + time_unit=TimeUnit.HOUR, |
| 226 | + interval=2, |
| 227 | + market="bitvavo", |
| 228 | + rsi_time_frame="2h", |
| 229 | + rsi_period=14, |
| 230 | + rsi_overbought_threshold=70, |
| 231 | + rsi_oversold_threshold=30, |
| 232 | + ema_time_frame="2h", |
| 233 | + ema_short_period=12, |
| 234 | + ema_long_period=26, |
| 235 | + ema_cross_lookback_window=10 |
| 236 | + ) |
| 237 | + ) |
| 238 | + |
| 239 | + # Market credentials for coinbase for both the portfolio connection and data sources will |
| 240 | + # be read from .env file, when not registering a market credential object in the app. |
| 241 | + app.add_market( |
| 242 | + market="bitvavo", |
| 243 | + trading_symbol="EUR", |
| 244 | + ) |
| 245 | + backtest_range = BacktestDateRange( |
| 246 | + start_date=datetime(2023, 1, 1, tzinfo=timezone.utc), |
| 247 | + end_date=datetime(2024, 6, 1, tzinfo=timezone.utc) |
| 248 | + ) |
| 249 | + backtest = app.run_backtest( |
| 250 | + backtest_date_range=backtest_range, initial_amount=1000 |
| 251 | + ) |
| 252 | + report = BacktestReport(backtest) |
| 253 | + report.show(backtest_date_range=backtest_range, browser=True) |
0 commit comments