You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.
34
30
35
-
With the SDK, you can train and deploy models using popular deep learning frameworks **Apache MXNet** and **TensorFlow**.
31
+
With the SDK, you can train and deploy models using popular deep learning frameworks **Apache MXNet** and **PyTorch**.
36
32
You can also train and deploy models with **Amazon algorithms**,
37
33
which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training.
38
34
If you have **your own algorithms** built into SageMaker compatible Docker containers, you can train and host models using these as well.
@@ -49,34 +45,155 @@ Version 3.0.0 represents a significant milestone in our product's evolution. Thi
49
45
**Important: Please review these breaking changes before upgrading.**
50
46
51
47
* Older interfaces such as Estimator, Model, Predictor and all their subclasses will not be supported in V3.
52
-
* Please review documentation of interfaces for parameters support (especially ModelBuilder) in our V3 examples folder.
48
+
* Please see our `V3 examples folder <https://github.com/aws/sagemaker-python-sdk/tree/master/v3-examples>`__ for example notebooks and usage patterns.
53
49
54
-
SageMaker V2 Examples
50
+
51
+
Migrating to V3
52
+
----------------
53
+
54
+
**Upgrading to 3.x**
55
+
56
+
To upgrade to the latest version of SageMaker Python SDK 3.x:
57
+
58
+
::
59
+
60
+
pip install --upgrade sagemaker
61
+
62
+
If you prefer to downgrade to the 2.x version:
63
+
64
+
::
65
+
66
+
pip install sagemaker==2.*
67
+
68
+
See `SageMaker V2 Examples <#sagemaker-v2-examples>`__ for V2 documentation and examples.
69
+
70
+
**Key Benefits of 3.x**
71
+
72
+
* **Modular Architecture**: Separate PyPI packages for core, training, and serving capabilities
* **Unified Training & Inference**: Single classes (ModelTrainer, ModelBuilder) replace multiple framework-specific classes
80
+
* **Object-Oriented API**: Structured interface with auto-generated configs aligned with AWS APIs
81
+
* **Simplified Workflows**: Reduced boilerplate and more intuitive interfaces
82
+
83
+
**Training Experience**
84
+
85
+
V3 introduces the unified ModelTrainer class to reduce complexity of initial setup and deployment for model training. This replaces the V2 Estimator class and framework-specific classes (PyTorchEstimator, SKLearnEstimator, etc.).
86
+
87
+
This example shows how to train a model using a custom training container with training data from S3.
**See more examples:** `SageMaker V3 Examples <#sagemaker-v3-examples>`__
123
+
124
+
**Inference Experience**
125
+
126
+
V3 introduces the unified ModelBuilder class for model deployment and inference. This replaces the V2 Model class and framework-specific classes (PyTorchModel, TensorFlowModel, SKLearnModel, XGBoostModel, etc.).
127
+
128
+
This example shows how to deploy a trained model for real-time inference.
#. `Custom Distributed Training Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/training-examples/custom-distributed-training-example.ipynb>`__
167
+
#. `Distributed Local Training Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/training-examples/distributed-local-training-example.ipynb>`__
168
+
#. `Hyperparameter Training Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/training-examples/hyperparameter-training-example.ipynb>`__
169
+
#. `JumpStart Training Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/training-examples/jumpstart-training-example.ipynb>`__
170
+
#. `Local Training Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/training-examples/local-training-example.ipynb>`__
171
+
172
+
**Inference Examples**
173
+
174
+
#. `HuggingFace Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/inference-examples/huggingface-example.ipynb>`__
175
+
#. `In-Process Mode Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/inference-examples/in-process-mode-example.ipynb>`__
176
+
#. `Inference Spec Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/inference-examples/inference-spec-example.ipynb>`__
177
+
#. `JumpStart E2E Training Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/inference-examples/jumpstart-e2e-training-example.ipynb>`__
178
+
#. `JumpStart Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/inference-examples/jumpstart-example.ipynb>`__
179
+
#. `Local Mode Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/inference-examples/local-mode-example.ipynb>`__
180
+
#. `Optimize Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/inference-examples/optimize-example.ipynb>`__
181
+
#. `Train Inference E2E Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/inference-examples/train-inference-e2e-example.ipynb>`__
182
+
183
+
**ML Ops Examples**
184
+
185
+
#. `V3 Hyperparameter Tuning Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/ml-ops-examples/v3-hyperparameter-tuning-example/v3-hyperparameter-tuning-example.ipynb>`__
#. `V3 Model Registry Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/ml-ops-examples/v3-model-registry-example/v3-model-registry-example.ipynb>`__
188
+
#. `V3 PyTorch Processing Example <https://github.com/aws/sagemaker-python-sdk/blob/master/v3-examples/ml-ops-examples/v3-processing-job-pytorch/v3-pytorch-processing-example.ipynb>`__
0 commit comments