|
| 1 | +import logging |
| 2 | +import pdb |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import torch |
| 6 | +from torch.nn import functional as F |
| 7 | + |
| 8 | +from inclearn.lib import factory, loops, losses, network, utils |
| 9 | +from inclearn.models import IncrementalLearner |
| 10 | + |
| 11 | +EPSILON = 1e-8 |
| 12 | + |
| 13 | +logger = logging.getLogger(__name__) |
| 14 | + |
| 15 | + |
| 16 | +class LwM(IncrementalLearner): |
| 17 | + |
| 18 | + def __init__(self, args): |
| 19 | + self._device = args["device"][0] |
| 20 | + self._multiple_devices = args["device"] |
| 21 | + |
| 22 | + self._opt_name = args["optimizer"] |
| 23 | + self._lr = args["lr"] |
| 24 | + self._lr_decay = args["lr_decay"] |
| 25 | + self._weight_decay = args["weight_decay"] |
| 26 | + self._n_epochs = args["epochs"] |
| 27 | + self._scheduling = args["scheduling"] |
| 28 | + |
| 29 | + self._distillation_config = args["distillation_config"] |
| 30 | + self._attention_config = args.get("attention_config", {}) |
| 31 | + |
| 32 | + logger.info("Initializing LwM") |
| 33 | + |
| 34 | + self._network = network.BasicNet( |
| 35 | + args["convnet"], |
| 36 | + convnet_kwargs=args.get("convnet_config", {}), |
| 37 | + classifier_kwargs=args.get("classifier_config", { |
| 38 | + "type": "fc", |
| 39 | + "use_bias": True |
| 40 | + }), |
| 41 | + device=self._device, |
| 42 | + gradcam_hook=True |
| 43 | + ) |
| 44 | + |
| 45 | + self._n_classes = 0 |
| 46 | + self._old_model = None |
| 47 | + |
| 48 | + @property |
| 49 | + def network(self): |
| 50 | + return self._network |
| 51 | + |
| 52 | + @network.setter |
| 53 | + def network(self, network_path): |
| 54 | + if self._network is not None: |
| 55 | + del self._network |
| 56 | + |
| 57 | + def eval(self): |
| 58 | + self._network.eval() |
| 59 | + |
| 60 | + def train(self): |
| 61 | + self._network.train() |
| 62 | + |
| 63 | + def _before_task(self, data_loader, val_loader): |
| 64 | + self._n_classes += self._task_size |
| 65 | + self._network.add_classes(self._task_size) |
| 66 | + |
| 67 | + self._optimizer = factory.get_optimizer( |
| 68 | + self._network.parameters(), self._opt_name, self._lr, self._weight_decay |
| 69 | + ) |
| 70 | + if self._scheduling is None: |
| 71 | + self._scheduler = None |
| 72 | + else: |
| 73 | + self._scheduler = torch.optim.lr_scheduler.MultiStepLR( |
| 74 | + self._optimizer, self._scheduling, gamma=self._lr_decay |
| 75 | + ) |
| 76 | + |
| 77 | + def _train_task(self, train_loader, val_loader): |
| 78 | + loops.single_loop( |
| 79 | + train_loader, |
| 80 | + val_loader, |
| 81 | + self._multiple_devices, |
| 82 | + self._network, |
| 83 | + self._n_epochs, |
| 84 | + self._optimizer, |
| 85 | + scheduler=self._scheduler, |
| 86 | + train_function=self._forward_loss, |
| 87 | + eval_function=self._accuracy, |
| 88 | + task=self._task, |
| 89 | + n_tasks=self._n_tasks |
| 90 | + ) |
| 91 | + |
| 92 | + def _after_task(self, inc_dataset): |
| 93 | + self._network.zero_grad() |
| 94 | + self._network.unset_gradcam_hook() |
| 95 | + self._old_model = self._network.copy().eval().to(self._device) |
| 96 | + self._network.on_task_end() |
| 97 | + |
| 98 | + self._network.set_gradcam_hook() |
| 99 | + self._old_model.set_gradcam_hook() |
| 100 | + |
| 101 | + def _eval_task(self, loader): |
| 102 | + ypred, ytrue = [], [] |
| 103 | + |
| 104 | + for input_dict in loader: |
| 105 | + with torch.no_grad(): |
| 106 | + logits = self._network(input_dict["inputs"].to(self._device))["logits"] |
| 107 | + |
| 108 | + ytrue.append(input_dict["targets"].numpy()) |
| 109 | + ypred.append(torch.softmax(logits, dim=1).cpu().numpy()) |
| 110 | + |
| 111 | + ytrue = np.concatenate(ytrue) |
| 112 | + ypred = np.concatenate(ypred) |
| 113 | + |
| 114 | + return ypred, ytrue |
| 115 | + |
| 116 | + def _accuracy(self, loader): |
| 117 | + ypred, ytrue = self._eval_task(loader) |
| 118 | + ypred = ypred.argmax(dim=1) |
| 119 | + |
| 120 | + return 100 * round(np.mean(ypred == ytrue), 3) |
| 121 | + |
| 122 | + def _forward_loss(self, training_network, inputs, targets, memory_flags, metrics): |
| 123 | + inputs, targets = inputs.to(self._device), targets.to(self._device) |
| 124 | + onehot_targets = utils.to_onehot(targets, self._n_classes).to(self._device) |
| 125 | + |
| 126 | + outputs = training_network(inputs) |
| 127 | + |
| 128 | + loss = self._compute_loss(inputs, outputs, targets, onehot_targets, memory_flags, metrics) |
| 129 | + |
| 130 | + if not utils.check_loss(loss): |
| 131 | + raise ValueError("Loss became invalid ({}).".format(loss)) |
| 132 | + |
| 133 | + metrics["loss"] += loss.item() |
| 134 | + |
| 135 | + return loss |
| 136 | + |
| 137 | + def _compute_loss(self, inputs, outputs, targets, onehot_targets, memory_flags, metrics): |
| 138 | + logits = outputs["logits"] |
| 139 | + |
| 140 | + if self._old_model is None: |
| 141 | + # Classification loss |
| 142 | + loss = F.cross_entropy(logits, targets) |
| 143 | + metrics["clf"] += loss.item() |
| 144 | + else: |
| 145 | + self._old_model.zero_grad() |
| 146 | + old_outputs = self._old_model(inputs) |
| 147 | + old_logits = old_outputs["logits"] |
| 148 | + |
| 149 | + # Classification loss |
| 150 | + loss = F.cross_entropy( |
| 151 | + logits[..., -self._task_size:], (targets - self._n_classes + self._task_size) |
| 152 | + ) |
| 153 | + metrics["clf"] += loss.item() |
| 154 | + |
| 155 | + # Distillation on probabilities |
| 156 | + distill_loss = self._distillation_config["factor"] * F.binary_cross_entropy_with_logits( |
| 157 | + logits[..., :-self._task_size], torch.sigmoid(old_logits.detach()) |
| 158 | + ) |
| 159 | + metrics["dis"] += distill_loss.item() |
| 160 | + loss += distill_loss |
| 161 | + |
| 162 | + # Distillation on gradcam-generated attentions |
| 163 | + if self._attention_config: |
| 164 | + top_logits_indexes = logits[..., :-self._task_size].argmax(dim=1) |
| 165 | + onehot_top_logits = utils.to_onehot( |
| 166 | + top_logits_indexes, self._n_classes - self._task_size |
| 167 | + ).to(self._device) |
| 168 | + |
| 169 | + logits[..., :-self._task_size].backward( |
| 170 | + gradient=onehot_top_logits, retain_graph=True, create_graph=True |
| 171 | + ) |
| 172 | + old_logits.backward( |
| 173 | + gradient=onehot_top_logits, retain_graph=True, create_graph=True |
| 174 | + ) |
| 175 | + |
| 176 | + attention_loss = losses.gradcam_distillation( |
| 177 | + outputs["gradcam_gradients"][0], old_outputs["gradcam_gradients"][0].detach(), |
| 178 | + outputs["gradcam_activations"][0], |
| 179 | + old_outputs["gradcam_activations"][0].detach(), **self._attention_config |
| 180 | + ) |
| 181 | + metrics["ad"] += attention_loss.item() |
| 182 | + loss += attention_loss |
| 183 | + |
| 184 | + self._old_model.zero_grad() |
| 185 | + self._network.zero_grad() |
| 186 | + |
| 187 | + return loss |
0 commit comments