|
| 1 | +# Load libraries |
| 2 | +from stochtree import BCFModel |
| 3 | +import numpy as np |
| 4 | +from sklearn.model_selection import train_test_split |
| 5 | +from scipy.stats import norm |
| 6 | + |
| 7 | +# Simulation parameters |
| 8 | +n = 250 |
| 9 | +p = 50 |
| 10 | +n_sim = 100 |
| 11 | +test_set_pct = 0.2 |
| 12 | +rng = np.random.default_rng() |
| 13 | + |
| 14 | +# Simulation containers |
| 15 | +rmses_cached = np.empty(n_sim) |
| 16 | +rmses_pred = np.empty(n_sim) |
| 17 | + |
| 18 | +# Run the simulation |
| 19 | +for i in range(n_sim): |
| 20 | + # Generate data |
| 21 | + X = rng.normal(loc=0.0, scale=1.0, size=(n, p)) |
| 22 | + mu_X = X[:, 0] |
| 23 | + tau_X = 0.25 * X[:, 1] |
| 24 | + pi_X = norm.cdf(0.5 * X[:, 1]) |
| 25 | + Z = rng.binomial(n=1, p=pi_X, size=(n,)) |
| 26 | + E_XZ = mu_X + tau_X * Z |
| 27 | + snr = 2.0 |
| 28 | + noise_sd = np.std(E_XZ) / snr |
| 29 | + y = E_XZ + rng.normal(loc=0.0, scale=noise_sd, size=(n,)) |
| 30 | + |
| 31 | + # Train-test split |
| 32 | + sample_inds = np.arange(n) |
| 33 | + train_inds, test_inds = train_test_split(sample_inds, test_size=test_set_pct) |
| 34 | + X_train = X[train_inds, :] |
| 35 | + X_test = X[test_inds, :] |
| 36 | + Z_train = Z[train_inds] |
| 37 | + Z_test = Z[test_inds] |
| 38 | + pi_train = pi_X[train_inds] |
| 39 | + pi_test = pi_X[test_inds] |
| 40 | + tau_train = tau_X[train_inds] |
| 41 | + tau_test = tau_X[test_inds] |
| 42 | + mu_train = mu_X[train_inds] |
| 43 | + mu_test = mu_X[test_inds] |
| 44 | + y_train = y[train_inds] |
| 45 | + y_test = y[test_inds] |
| 46 | + E_XZ_train = E_XZ[train_inds] |
| 47 | + E_XZ_test = E_XZ[test_inds] |
| 48 | + |
| 49 | + # Fit simple BCF model |
| 50 | + bcf_model = BCFModel() |
| 51 | + bcf_model.sample( |
| 52 | + X_train=X_train, |
| 53 | + Z_train=Z_train, |
| 54 | + pi_train=pi_train, |
| 55 | + y_train=y_train, |
| 56 | + X_test=X_test, |
| 57 | + Z_test=Z_test, |
| 58 | + pi_test=pi_test, |
| 59 | + ) |
| 60 | + |
| 61 | + # Predict out of sample |
| 62 | + y_hat_test = bcf_model.predict(X=X_test, Z=Z_test, propensity=pi_test, type="mean", terms = "y_hat") |
| 63 | + |
| 64 | + # Compute RMSE using both cached predictions and those returned by predict() |
| 65 | + rmses_cached[i] = np.sqrt(np.mean(np.power(np.mean(bcf_model.y_hat_test, axis = 1) - E_XZ_test, 2.0))) |
| 66 | + rmses_pred[i] = np.sqrt(np.mean(np.power(y_hat_test - E_XZ_test, 2.0))) |
| 67 | + |
| 68 | +print(f"Average RMSE, cached: {np.mean(rmses_cached):.4f}, out-of-sample pred: {np.mean(rmses_pred):.4f}") |
0 commit comments