You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+60-10Lines changed: 60 additions & 10 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -1,6 +1,6 @@
1
1

2
2
3
-
**TensorFlow.NET** (TF.NET) provides a .NET Standard binding for [TensorFlow](https://www.tensorflow.org/). It aims to implement the complete Tensorflow API in C# which allows .NET developers to develop, train and deploy Machine Learning models with the cross-platform .NET Standard framework.
3
+
**TensorFlow.NET** (TF.NET) provides a .NET Standard binding for [TensorFlow](https://www.tensorflow.org/). It aims to implement the complete Tensorflow API in C# which allows .NET developers to develop, train and deploy Machine Learning models with the cross-platform .NET Standard framework. TensorFlow.NET has built-in Keras high-level interface and is released as an independent package [TensorFlow.Keras](https://www.nuget.org/packages/TensorFlow.Keras/).
4
4
5
5
[](https://gitter.im/sci-sharp/community)
`SciSharp STACK`'s mission is to bring popular data science technology into the .NET world and to provide .NET developers with a powerful Machine Learning tool set without reinventing the wheel. Since the APIs are kept as similar as possible you can immediately adapt any existing Tensorflow code in C# with a zero learning curve. Take a look at a comparison picture and see how comfortably a Tensorflow/Python script translates into a C# program with TensorFlow.NET.
20
20
21
21

22
22
23
23
SciSharp's philosophy allows a large number of machine learning code written in Python to be quickly migrated to .NET, enabling .NET developers to use cutting edge machine learning models and access a vast number of Tensorflow resources which would not be possible without this project.
24
24
25
-
In comparison to other projects, like for instance TensorFlowSharp which only provide Tensorflow's low-level C++ API and can only run models that were built using Python, Tensorflow.NET also implements Tensorflow's high level API where all the magic happens. This computation graph building layer is still under active development. Once it is completely implemented you can build new Machine Learning models in C#.
25
+
In comparison to other projects, like for instance [TensorFlowSharp](https://www.nuget.org/packages/TensorFlowSharp/) which only provide Tensorflow's low-level C++ API and can only run models that were built using Python, Tensorflow.NET also implements Tensorflow's high level API where all the magic happens. This computation graph building layer is still under active development. Once it is completely implemented you can build new Machine Learning models in C#.
<PackageReleaseNotes>Keras for .NET is a C# version of Keras ported from the python version.</PackageReleaseNotes>
17
+
<PackageReleaseNotes>Keras for .NET is a C# version of Keras ported from the python version.
18
+
19
+
* Support CIFAR-10 dataset in keras.datasets.
20
+
* Support Conv2D functional API.</PackageReleaseNotes>
18
21
<Description>Keras for .NET
19
22
20
23
Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages.</Description>
@@ -27,11 +30,17 @@ Keras is an API designed for human beings, not machines. Keras follows best prac
0 commit comments