Skip to content

Commit ff826a3

Browse files
committed
Use Unicode characters in docstring formulae for Greek
The KaTeX renderer used by Documenter.jl recognizes them and some of the source files already contain them
1 parent c078ab3 commit ff826a3

File tree

11 files changed

+190
-190
lines changed

11 files changed

+190
-190
lines changed

lib/BVProblemLibrary/src/BVProblemLibrary.jl

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -224,11 +224,11 @@ Given by
224224
\begin{align*}
225225
\frac{dz_1}{dt} &= z_3 \frac{V_c}{h} \\
226226
\frac{dz_2}{dt} &= z_4 \frac{V_c}{h} \\
227-
\frac{dz_3}{dt} &= \frac{f}{V_c} \left(-\frac{z_6}{z_6^2+z_7^2} - V_c\eta\exp(-z_2\beta)z_3\sqrt{z_3^3+z_4^2}\right)/m \\
228-
\frac{dz_4}{dt} &= \frac{f}{V_c} \left(-\frac{z_7}{z_6^2+z_7^2} - V_c\eta\exp(-z_2\beta)z_4\sqrt{z_3^3+z_4^2}\right)/m - g_{accel}/V_c \\
229-
\frac{dz_5}{dt} &= -\eta\beta \exp(-z_2\beta) (z_6z_3+z_7z_4)\sqrt{z_3^3+z_4^2}\frac{V_c}{m} \\
230-
\frac{dz_6}{dt} &= \eta \exp(-z_2\beta) \left(z_6(2z_3^2+z_4^2)+z_7z_3z_4\right) V_c/\sqrt{z_3^2+z_4^2}/m \\
231-
\frac{dz_7}{dt} &= \eta \exp(-z_2\beta) \left(z_7(z_3^2+2z_4^2)+z_6z_3z_4\right) V_c/\sqrt{z_3^2+z_4^2}/m \\
227+
\frac{dz_3}{dt} &= \frac{f}{V_c} \left(-\frac{z_6}{z_6^2+z_7^2} - V_c η\exp(-z_2 β) z_3\sqrt{z_3^3+z_4^2}\right)/m \\
228+
\frac{dz_4}{dt} &= \frac{f}{V_c} \left(-\frac{z_7}{z_6^2+z_7^2} - V_c η\exp(-z_2 β) z_4\sqrt{z_3^3+z_4^2}\right)/m - g_{accel}/V_c \\
229+
\frac{dz_5}{dt} &= -ηβ \exp(-z_2 β) (z_6z_3+z_7z_4)\sqrt{z_3^3+z_4^2}\frac{V_c}{m} \\
230+
\frac{dz_6}{dt} &= η \exp(-z_2 β) \left(z_6(2z_3^2+z_4^2)+z_7z_3z_4\right) V_c/\sqrt{z_3^2+z_4^2}/m \\
231+
\frac{dz_7}{dt} &= η \exp(-z_2 β) \left(z_7(z_3^2+2z_4^2)+z_6z_3z_4\right) V_c/\sqrt{z_3^2+z_4^2}/m \\
232232
\end{align*}
233233
```
234234
@@ -287,9 +287,9 @@ Given by
287287
288288
```math
289289
\begin{align*}
290-
\frac{dy_1}{dt} &= \mu - \beta(t) y_1 y_3 \\
291-
\frac{dy_2}{dt} &= \beta(t)y_1y_3 - \frac{y_2}{\lambda} \\
292-
\frac{dy_3}{dt} &= \frac{y_2}{\lambda} - \frac{y_3}{\eta}
290+
\frac{dy_1}{dt} &= μ - β(t) y_1 y_3 \\
291+
\frac{dy_2}{dt} &= β(t) y_1 y_3 - \frac{y_2}{λ} \\
292+
\frac{dy_3}{dt} &= \frac{y_2}{λ} - \frac{y_3}{η}
293293
\end{align*}
294294
```
295295

0 commit comments

Comments
 (0)