@@ -67,7 +67,7 @@ Van der Pol Equations
6767\\ frac{dy}{dt} = μ((1-x^2)y -x)
6868```
6969
70- with ``μ=1.0`` and ``u0 =[0,\\ sqrt{3}]``
70+ with ``μ=1.0`` and ``u_0 =[0,\\ sqrt{3}]``
7171
7272Non-stiff parameters.
7373"""
@@ -83,7 +83,7 @@ Van der Pol Equations
8383\\ frac{dy}{dt} = μ(1-x^2)y -x
8484```
8585
86- with ``μ=10^6`` and ``u0 =[0,\\ sqrt{3}]``
86+ with ``μ=10^6`` and ``u_0 =[0,\\ sqrt{3}]``
8787
8888Stiff parameters.
8989"""
@@ -139,22 +139,22 @@ end
139139The ThreeBody problem as written by Hairer: (Non-stiff)
140140
141141```math
142- y₁′′ = y₁ + 2y₂′ - μ′ \\ frac{y₁+μ}{D₁} - μ\\ frac{y₁-μ′ }{D₂}
142+ \f rac{dy₁}{dt} = y₁ + 2 \f rac{dy₂}{dt} - \b ar{μ} \\ frac{y₁+μ}{D₁} - μ\\ frac{y₁-\b ar{μ} }{D₂}
143143```
144144```math
145- y₂′′ = y₂ - 2y₁′ - μ′ \\ frac{y₂}{D₁} - μ\\ frac{y₂}{D₂}
145+ \f rac{dy₂}{dt} = y₂ - 2 \f rac{dy₁}{dt} - \b ar{μ} \\ frac{y₂}{D₁} - μ\\ frac{y₂}{D₂}
146146```
147147```math
148148D₁ = ((y₁+μ)^2 + y₂^2)^{3/2}
149149```
150150```math
151- D₂ = ((y₁-μ′ )^2+y₂^2)^{3/2}
151+ D₂ = ((y₁-\b ar{μ} )^2+y₂^2)^{3/2}
152152```
153153```math
154154μ = 0.012277471
155155```
156156```math
157- μ′ =1-μ
157+ \b ar{μ} =1-μ
158158```
159159
160160From Hairer Norsett Wanner Solving Ordinary Differential Equations I - Nonstiff Problems Page 129
@@ -224,10 +224,10 @@ end
224224Pleiades Problem (Non-stiff)
225225
226226```math
227- xᵢ′′ = \\ sum_{j≠i} mⱼ(xⱼ-xᵢ)/rᵢⱼ
227+ \f rac{d^2xᵢ}{dt^2} = \\ sum_{j≠i} mⱼ(xⱼ-xᵢ)/rᵢⱼ
228228```
229229```math
230- yᵢ′′ = \\ sum_{j≠i} mⱼ(yⱼ-yᵢ)/rᵢⱼ
230+ \f rac{d^2yᵢ}{dt^2} = \\ sum_{j≠i} mⱼ(yⱼ-yᵢ)/rᵢⱼ
231231```
232232
233233where
@@ -281,19 +281,19 @@ y₆(0) = -4
281281y₇(0) = 4
282282```
283283
284- and with ``xᵢ′ (0)=yᵢ′ (0)=0`` except for
284+ and with ``\f rac{dxᵢ (0)}{dt}= \f rac{dyᵢ (0)}{dt} =0`` except for
285285
286286```math
287- x₆′ (0) = 1.75
287+ \f rac{dx₆ (0)}{dt} = 1.75
288288```
289289```math
290- x₇′ (0) = -1.5
290+ \f rac{dx₇ (0)}{dt} = -1.5
291291```
292292```math
293- y₄′ (0) = -1.25
293+ \f rac{dy₄ (0)}{dt} = -1.25
294294```
295295```math
296- y₅′ (0) = 1
296+ \f rac{dy₅ (0)}{dt} = 1
297297```
298298
299299From Hairer Norsett Wanner Solving Ordinary Differential Equations I - Nonstiff Problems Page 244
0 commit comments