@@ -45,19 +45,19 @@ const prob_dde_DDETST_A1 =
4545Delay differential equation model of chronic granulocytic leukemia, given by
4646
4747```math
48- \b egin{align*}
49- u_1'(t) &= \f rac{1.1}{1 + \s qrt{10} u_1(t - 20)^{5/4}} - \f rac{10 u_1(t)}{1 + 40 u_2(t)}, \\
50- u_2'(t) &= \f rac{100 u_1(t)}{1 + 40 u_2(t)} - 2.43 u_2(t),
51- \e nd{align*}
48+ u_1'(t) = \f rac{1.1}{1 + \s qrt{10} u_1(t - 20)^{5/4}} - \f rac{10 u_1(t)}{1 + 40 u_2(t)},
49+ ```
50+ ```math
51+ u_2'(t) = \f rac{100 u_1(t)}{1 + 40 u_2(t)} - 2.43 u_2(t),
5252```
5353
5454for ``t \i n [0, 100]`` and history function
5555
5656```math
57- \b egin{align*}
58- \p hi_1(t) &= 1.05767027/3, \\
59- \p hi_2(t) &= 1.030713491/3,
60- \e nd{align*}
57+ \p hi_1(t) = 1.05767027/3,
58+ ```
59+ ```math
60+ \p hi_2(t) = 1.030713491/3,
6161```
6262
6363for ``t \l eq 0``.
@@ -246,19 +246,19 @@ const prob_dde_DDETST_C1 =
246246Delay differential equation
247247
248248```math
249- \b egin{align*}
250- u_1'(t) &= - 2 u_1(t - u_2(t)), \\
251- u_₂'(t) &= \f rac{|u_1(t - u_2(t))| - |u_1(t)|}{1 + |u_1(t - u_2(t))|},
252- \e nd{align*}
249+ u_1'(t) = - 2 u_1(t - u_2(t)),
250+ ```
251+ ```math
252+ u_₂'(t) = \f rac{|u_1(t - u_2(t))| - |u_1(t)|}{1 + |u_1(t - u_2(t))|},
253253```
254254
255255for ``t \i n [0, 40]`` with history function
256256
257257```math
258- \b egin{align*}
259- \p hi_1(t) &= 1, \\
260- \p hi_2(t) &= 0.5,
261- \e nd{align*}
258+ \p hi_1(t) = 1,
259+ ```
260+ ```math
261+ \p hi_2(t) = 0.5,
262262```
263263
264264for ``t \l eq 0``.
@@ -305,11 +305,13 @@ const prob_dde_DDETST_C2 =
305305Delay differential equation model of hematopoiesis, given by
306306
307307```math
308- \b egin{align*}
309- u_1'(t) &= \h at{s}_0 u_2(t - T_1) - \g amma u_1(t) - Q,\\
310- u_2'(t) &= f(u_1(t)) - k u_2(t),\\
311- u_3'(t) &= 1 - \f rac{Q \e xp(\g amma u_3(t))}{\h at{s}_0 u_2(t - T_1 - u_3(t))},
312- \e nd{align*}
308+ u_1'(t) = \h at{s}_0 u_2(t - T_1) - \g amma u_1(t) - Q,
309+ ```
310+ ```math
311+ u_2'(t) = f(u_1(t)) - k u_2(t),
312+ ```
313+ ```math
314+ u_3'(t) = 1 - \f rac{Q \e xp(\g amma u_3(t))}{\h at{s}_0 u_2(t - T_1 - u_3(t))},
313315```
314316
315317for ``t \i n [0, 300]`` with history function ``\p hi_1(0) = 3.325``, ``\p hi_3(0) = 120``, and
@@ -367,17 +369,19 @@ Delay differential equation model of hematopoiesis, given by the same delay diff
367369equation as [`prob_dde_DDETST_C3`](@ref)
368370
369371```math
370- \b egin{align*}
371- u_1'(t) &= \h at{s}_0 u_2(t - T_1) - \g amma u_1(t) - Q,\\
372- u_2'(t) &= f(u_1(t)) - k u_2(t),\\
373- u_3'(t) &= 1 - \f rac{Q \e xp(\g amma u_3(t))}{\h at{s}_0 u_2(t - T_1 - u_3(t))},
374- \e nd{align*}
372+ u_1'(t) = \h at{s}_0 u_2(t - T_1) - \g amma u_1(t) - Q,
373+ ```
374+ ```math
375+ u_2'(t) = f(u_1(t)) - k u_2(t),
376+ ```
377+ ```math
378+ u_3'(t) = 1 - \f rac{Q \e xp(\g amma u_3(t))}{\h at{s}_0 u_2(t - T_1 - u_3(t))},
375379```
376380
377381for ``t \i n [0, 100]`` with history function
378382``\p hi_1(0) = 3.5``, ``\p hi_3(0) = 50``, and ``\p hi_2(t) = 10`` for ``t \l eq 0``, where
379383``f(y) = a / (1 + K y^r)``, ``\h at{s}_0 = 0.00372``, ``T_1 = 3``, ``\g amma = 0.1``,
380- ``Q = 0.00178``, ``k = 6.65`, ``a = 15600``, ``K = 0.0382``, and ``r = 6.96``.
384+ ``Q = 0.00178``, ``k = 6.65`` , ``a = 15600``, ``K = 0.0382``, and ``r = 6.96``.
381385
382386# References
383387
@@ -421,19 +425,19 @@ const prob_dde_DDETST_C4 =
421425Delay differential equation
422426
423427```math
424- \b egin{align*}
425- u_1'(t) &= u_2(t), \\
426- u_2'(t) &= - u_2( \e xp(1 - u_2(t))) u_2(t)^2 \e xp(1 - u_2(t)),
427- \e nd{align*}
428+ u_1'(t) = u_2(t),
429+ ```
430+ ```math
431+ u_2'(t) = - u_2( \e xp(1 - u_2(t))) u_2(t)^2 \e xp(1 - u_2(t)),
428432```
429433
430434for ``t \i n [0.1, 5]`` with history function
431435
432436```math
433- \b egin{align*}
434- \p hi_1(t) &= \l og t, \\
435- \p hi_2(t) &= 1 / t,
436- \e nd{align*}
437+ \p hi_1(t) = \l og t,
438+ ```
439+ ```math
440+ \p hi_2(t) = 1 / t,
437441```
438442
439443for ``t \i n (0, 0.1]``.
@@ -443,10 +447,10 @@ for ``t \in (0, 0.1]``.
443447The analytical solution for ``t \i n [0.1, 5]`` is
444448
445449```math
446- \b egin{align*}
447- u_1(t) &= \l og t, \\
448- u_2(t) &= 1 / t.
449- \e nd{align*}
450+ u_1(t) = \l og t,
451+ ```
452+ ```math
453+ u_2(t) = 1 / t.
450454```
451455
452456# References
@@ -498,23 +502,31 @@ const prob_dde_DDETST_D1 =
498502Delay differential equation model of antigen antibody dynamics with fading memory, given by
499503
500504```math
501- \b egin{align*}
502- u_1'(t) &= - r_1 u_1(t) u_2(t) + r_2 u_3(t), \\
503- u_2'(t) &= - r_1 u_1(t) u_2(t) + \a lpha r_1 u_1(t - u_4(t)) u_2(t - u_4(t)), \\
504- u_3'(t) &= r_1 u_1(t) u_2(t) - r_2 u_3(t), \\
505- u_4'(t) &= 1 + \f rac{3 \d elta - u_1(t) u_2(t) - u_3(t)}{u_1(t - u_4(t)) u_2(t - u_4(t)) + u_3(t - u_4(t))} \e xp(\d elta u_4(t)),
506- \e nd{align*}
505+ u_1'(t) = - r_1 u_1(t) u_2(t) + r_2 u_3(t),
506+ ```
507+ ```math
508+ u_2'(t) = - r_1 u_1(t) u_2(t) + \a lpha r_1 u_1(t - u_4(t)) u_2(t - u_4(t)),
509+ ```
510+ ```math
511+ u_3'(t) = r_1 u_1(t) u_2(t) - r_2 u_3(t),
512+ ```
513+ ```math
514+ u_4'(t) = 1 + \f rac{3 \d elta - u_1(t) u_2(t) - u_3(t)}{u_1(t - u_4(t)) u_2(t - u_4(t)) + u_3(t - u_4(t))} \e xp(\d elta u_4(t)),
507515```
508516
509517for ``t \i n [0, 40]`` with history function
510518
511519```math
512- \b egin{align*}
513- \p hi_1(t) &= 5, \\
514- \p hi_2(t) &= 0.1, \\
515- \p hi_3(t) &= 0, \\
516- \p hi_4(t) &= 0,
517- \e nd{align*}
520+ \p hi_1(t) = 5,
521+ ```
522+ ```math
523+ \p hi_2(t) = 0.1,
524+ ```
525+ ```math
526+ \p hi_3(t) = 0,
527+ ```
528+ ```math
529+ \p hi_4(t) = 0,
518530```
519531
520532for ``t \l eq 0``, where ``r_1 = 0.02``, ``r_2 = 0.005``, ``\a lpha = 3``, and ``\d elta = 0.01``.
@@ -598,19 +610,19 @@ const prob_dde_DDETST_E1 =
598610Delay differential equation model of a logistic Gauss-type predator-prey system, given by
599611
600612```math
601- \b egin{align*}
602- u_1'(t) &= u_1(t) (1 - u_1(t - \t au) - \r ho u_1'(t - \t au)) - \f rac{u_2(t) u_1(t)^2}{u_1(t)^2 + 1}, \\
603- u_2'(t) &= u_2(t) \l eft( \f rac{u_1(t)^2}{u_1(t)^2 + 1} - \a lpha \r ight),
604- \e nd{align*}
613+ u_1'(t) = u_1(t) (1 - u_1(t - \t au) - \r ho u_1'(t - \t au)) - \f rac{u_2(t) u_1(t)^2}{u_1(t)^2 + 1},
614+ ```
615+ ```math
616+ u_2'(t) = u_2(t) \l eft( \f rac{u_1(t)^2}{u_1(t)^2 + 1} - \a lpha \r ight),
605617```
606618
607619for ``t \i n [0, 2]`` with history function
608620
609621```math
610- \b egin{align*}
611- \p hi_1(t) &= 0.33 - t / 10, \\
612- \p hi_2(t) &= 2.22 + t / 10,
613- \e nd{align*}
622+ \p hi_1(t) = 0.33 - t / 10,
623+ ```
624+ ```math
625+ \p hi_2(t) = 2.22 + t / 10,
614626```
615627
616628for ``t \l eq 0``, where ``\a lpha = 0.1``, ``\r ho = 2.9``, and ``\t au = 0.42``.
@@ -742,19 +754,23 @@ for ``t \in [0.25, 0.499]`` with history function ``\phi(t) = \exp(-t^2)`` and
742754
743755The analytical solution for ``t \i n [0.25, 0.499]`` is
744756
745- ``math
757+ ``` math
746758u(t) = u_i(t) = \e xp(-4^i t^2 + B_i t + C_i) / 2^i + K_i
747759```
748760
749761if ``t \i n [x_i, x_{i + 1}]``, where
750762
751763```math
752- \b egin{align*}
753- x_i &= (1 - 2^{-i}) / 2, \\
754- B_i &= 2 (4^{i-1} + B_{i-1}), \\
755- C_i &= - 4^{i-2} - B_{i-1} / 2 + C_{i-1}, \\
756- K_i &= - \e xp(-4^i x_i^2 + B_i x_i + C_i) / 2^i + u_{i-1}(x_i),
757- \e nd{align*}
764+ x_i = (1 - 2^{-i}) / 2,
765+ ```
766+ ```math
767+ B_i = 2 (4^{i-1} + B_{i-1}),
768+ ```
769+ ```math
770+ C_i = - 4^{i-2} - B_{i-1} / 2 + C_{i-1},
771+ ```
772+ ```math
773+ K_i = - \e xp(-4^i x_i^2 + B_i x_i + C_i) / 2^i + u_{i-1}(x_i),
758774```
759775
760776and ``B_0 = C_0 = K_0 = 0``.
0 commit comments