Skip to content

Commit 993d6ef

Browse files
author
hhsecond
committed
python client changes for new redisaipy
1 parent c2f7577 commit 993d6ef

11 files changed

+67
-79
lines changed
Lines changed: 8 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,23 +1,22 @@
1-
import sys
21
import numpy as np
32

4-
from redisai import BlobTensor, Client, Backend, Device
3+
import redisai
54
from ml2rt import load_model
65

76
from cli import arguments
87

98

10-
tensor = BlobTensor.from_numpy(np.ones((1, 13), dtype=np.float32))
9+
tensor = np.ones((1, 13), dtype=np.float32)
1110
model = load_model('../models/sklearn/boston_house_price_prediction/boston.onnx')
1211

1312
if arguments.gpu:
14-
device = Device.gpu
13+
device = 'GPU'
1514
else:
16-
device = Device.cpu
15+
device = 'CPU'
1716

18-
con = Client(host=arguments.host, port=arguments.port)
17+
con = redisai.Client(host=arguments.host, port=arguments.port)
1918
con.tensorset('tensor', tensor)
20-
con.modelset('model', Backend.onnx, device, model)
19+
con.modelset('model', 'onnx', device, model)
2120
con.modelrun('model', inputs=['tensor'], outputs=['out'])
22-
out = con.tensorget('out', as_type=BlobTensor)
23-
print(out.to_numpy())
21+
out = con.tensorget('out')
22+
print(out)

python_client/sklearn_linear_regression.py

Lines changed: 7 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -6,19 +6,17 @@
66
model = load_model("../models/sklearn/linear_regression/linear_regression.onnx")
77

88
if arguments.gpu:
9-
device = rai.Device.gpu
9+
device = 'gpu'
1010
else:
11-
device = rai.Device.cpu
11+
device = 'cpu'
1212

1313
con = rai.Client(host=arguments.host, port=arguments.port)
14-
con.modelset("sklearn_model", rai.Backend.onnx, device, model)
14+
con.modelset("sklearn_model", 'onnx', device, model)
1515

1616
# dummydata taken from sklearn.datasets.load_boston().data[0]
17-
dummydata = [
18-
0.00632, 18.0, 2.31, 0.0, 0.538, 6.575, 65.2, 4.09, 1.0, 296.0, 15.3, 396.9, 4.98]
19-
tensor = rai.Tensor.scalar(rai.DType.float, *dummydata)
20-
con.tensorset("input", tensor)
17+
dummydata = [15.0]
18+
con.tensorset("input", dummydata, dtype='float32', shape=(1, 1))
2119

2220
con.modelrun("sklearn_model", ["input"], ["output"])
23-
outtensor = con.tensorget("output", as_type=rai.BlobTensor)
24-
print(f"House cost predicted by model is ${outtensor.to_numpy().item() * 1000}")
21+
outtensor = con.tensorget("output")
22+
print(f"House cost predicted by model is ${outtensor.item() * 1000}")

python_client/sklearn_logistic_regression.py

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -7,20 +7,19 @@
77
model = load_model("../models/sklearn/logistic_regression/logistic.onnx")
88

99
if arguments.gpu:
10-
device = rai.Device.gpu
10+
device = 'gpu'
1111
else:
12-
device = rai.Device.cpu
12+
device = 'cpu'
1313

1414
con = rai.Client(host=arguments.host, port=arguments.port)
15-
con.modelset("sklearn_model", rai.Backend.onnx, device, model)
15+
con.modelset("sklearn_model", 'onnx', device, model)
1616

1717
dummydata = np.array([[6.9, 3.1, 5.4, 2.1]], dtype=np.float32)
18-
tensor = rai.BlobTensor.from_numpy(dummydata)
19-
con.tensorset("input", tensor)
18+
con.tensorset("input", dummydata)
2019

2120
# dummy output because by default sklearn logistic regression outputs
2221
# value and probability. Since RedisAI doesn't support specifying required
2322
# outputs now, we need to keep placeholders for all the default outputs.
2423
con.modelrun("sklearn_model", ["input"], ["output", "dummy"])
25-
outtensor = con.tensorget("output", as_type=rai.BlobTensor)
26-
print(f" Output class: {outtensor.to_numpy().item()}")
24+
outtensor = con.tensorget("output")
25+
print(f" Output class: {outtensor.item()}")

python_client/spark_decisiontree.py

Lines changed: 7 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -7,15 +7,14 @@
77
model = load_model("../models/spark/decisiontree_with_pipeline/spark.onnx")
88

99
if arguments.gpu:
10-
device = rai.Device.gpu
10+
device = 'gpu'
1111
else:
12-
device = rai.Device.cpu
12+
device = 'cpu'
1313

1414
con = rai.Client(host=arguments.host, port=arguments.port)
15-
con.modelset("spark_model", rai.Backend.onnx, device, model)
16-
features = np.array([[0., 0., 0., 0., 0.], [0., 0., 0., 17., 206.]], dtype=np.float32)
17-
tensor = rai.BlobTensor.from_numpy(features)
18-
con.tensorset("input", tensor)
15+
con.modelset("spark_model", 'onnx', device, model)
16+
features = np.array([[0., 0., 0., 17., 206.]], dtype=np.float32)
17+
con.tensorset("input", features)
1918
con.modelrun("spark_model", ["input"], ["output"])
20-
outtensor = con.tensorget("output", as_type=rai.BlobTensor)
21-
print(outtensor.to_numpy())
19+
outtensor = con.tensorget("output")
20+
print(outtensor)

python_client/spark_linear_regression.py

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -6,15 +6,14 @@
66
model = load_model("../models/spark/linear_regression/linear_regression.onnx")
77

88
if arguments.gpu:
9-
device = rai.Device.gpu
9+
device = 'gpu'
1010
else:
11-
device = rai.Device.cpu
11+
device = 'cpu'
1212

1313
con = rai.Client(host=arguments.host, port=arguments.port)
14-
con.modelset("spark_model", rai.Backend.onnx, device, model, inputs=['features'])
14+
con.modelset("spark_model", 'onnx', device, model, inputs=['features'])
1515
dummydata = [15.0]
16-
tensor = rai.Tensor.scalar(rai.DType.float, *dummydata)
17-
con.tensorset("input", tensor)
16+
con.tensorset("input", dummydata, shape=(1, 1), dtype='float32')
1817
con.modelrun("spark_model", ["input"], ["output"])
19-
outtensor = con.tensorget("output", as_type=rai.BlobTensor)
20-
print(outtensor.to_numpy())
18+
outtensor = con.tensorget("output")
19+
print(outtensor)

python_client/spark_one_vs_rest.py

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -7,16 +7,15 @@
77
model = load_model("../models/spark/one_vs_rest/spark.onnx")
88

99
if arguments.gpu:
10-
device = rai.Device.gpu
10+
device = 'gpu'
1111
else:
12-
device = rai.Device.cpu
12+
device = 'cpu'
1313

1414
con = rai.Client(host=arguments.host, port=arguments.port)
15-
con.modelset("spark_model", rai.Backend.onnx, device, model)
15+
con.modelset("spark_model", 'onnx', device, model)
1616
dummydata = np.array(
1717
[[-0.222222, 0.5, -0.762712, -0.833333]], dtype=np.float32)
18-
tensor = rai.BlobTensor.from_numpy(dummydata)
19-
con.tensorset("input", tensor)
18+
con.tensorset("input", dummydata)
2019
con.modelrun("spark_model", ["input"], ["output"])
21-
outtensor = con.tensorget("output", as_type=rai.BlobTensor)
22-
print(outtensor.to_numpy())
20+
outtensor = con.tensorget("output")
21+
print(outtensor)

python_client/spark_pca.py

Lines changed: 7 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -6,17 +6,16 @@
66
model = load_model("../models/spark/pca/spark.onnx")
77

88
if arguments.gpu:
9-
device = rai.Device.gpu
9+
device = 'gpu'
1010
else:
11-
device = rai.Device.cpu
11+
device = 'cpu'
1212

1313
con = rai.Client(host=arguments.host, port=arguments.port)
14-
con.modelset("spark_model", rai.Backend.onnx, device, model)
14+
con.modelset("spark_model", 'onnx', device, model)
1515
dummydata = np.array(
16-
[[2.0, 0.0, 3.0, 4.0, 5.0], [4.0, 0.0, 0.0, 6.0, 7.0]],
16+
[[5, 1.0, 7.0, 7.0, 7.0], [2.0, 0.0, 3.0, 4.0, 5.0], [4.0, 0.0, 0.0, 6.0, 7.0]],
1717
dtype=np.float32)
18-
tensor = rai.BlobTensor.from_numpy(dummydata)
19-
con.tensorset("input", tensor)
18+
con.tensorset("input", dummydata)
2019
con.modelrun("spark_model", ["input"], ["output"])
21-
outtensor = con.tensorget("output", as_type=rai.BlobTensor)
22-
print(outtensor.to_numpy())
20+
outtensor = con.tensorget("output")
21+
print(outtensor)

python_client/tensorflow_imagenet.py

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -6,9 +6,9 @@
66
from cli import arguments
77

88
if arguments.gpu:
9-
device = rai.Device.gpu
9+
device = 'gpu'
1010
else:
11-
device = rai.Device.cpu
11+
device = 'cpu'
1212

1313
con = rai.Client(host=arguments.host, port=arguments.port)
1414

@@ -25,16 +25,15 @@
2525

2626

2727
out1 = con.modelset(
28-
'imagenet_model', rai.Backend.tf, device,
28+
'imagenet_model', 'tf', device,
2929
inputs=['images'], outputs=['output'], data=tf_model)
3030
out2 = con.scriptset('imagenet_script', device, script)
3131
a = time.time()
32-
tensor = rai.BlobTensor.from_numpy(image)
33-
con.tensorset('image', tensor)
32+
con.tensorset('image', image)
3433
out4 = con.scriptrun('imagenet_script', 'pre_process_3ch', 'image', 'temp1')
3534
out5 = con.modelrun('imagenet_model', 'temp1', 'temp2')
3635
out6 = con.scriptrun('imagenet_script', 'post_process', 'temp2', 'out')
37-
final = con.tensorget('out', as_type=rai.BlobTensor)
38-
ind = final.to_numpy().item()
36+
final = con.tensorget('out')
37+
ind = final.item()
3938
print(ind, class_idx[str(ind)])
4039
print(time.time() - a)

python_client/tensorflow_tinyyolo.py

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -31,15 +31,15 @@
3131

3232

3333
if arguments.gpu:
34-
device = rai.Device.gpu
34+
device = 'gpu'
3535
else:
36-
device = rai.Device.cpu
36+
device = 'cpu'
3737

3838
con = rai.Client(host=arguments.host, port=arguments.port)
3939
model = ml2rt.load_model('../models/tensorflow/tinyyolo/tinyyolo.pb')
4040
script = ml2rt.load_script('../models/tensorflow/tinyyolo/yolo_boxes_script.py')
4141

42-
con.modelset('yolo', rai.Backend.tf, device, model, ['input'], ['output'])
42+
con.modelset('yolo', 'tf', device, model, inputs=['input'], outputs=['output'])
4343
con.scriptset('yolo-post', device, script)
4444

4545
img_jpg = Image.open('../data/sample_dog_416.jpg')
@@ -48,11 +48,10 @@
4848
img = np.expand_dims(img, axis=0)
4949
img /= 256.0
5050

51-
tensor = rai.BlobTensor.from_numpy(img)
52-
con.tensorset('in', tensor)
51+
con.tensorset('in', img)
5352
con.modelrun('yolo', 'in', 'out')
5453
con.scriptrun('yolo-post', 'boxes_from_tf', inputs='out', outputs='boxes')
55-
boxes = con.tensorget('boxes', as_type=rai.BlobTensor).to_numpy()
54+
boxes = con.tensorget('boxes')
5655

5756
n_boxes = 0
5857
for box in boxes[0]:

python_client/torch_charrnn.py

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -5,9 +5,9 @@
55
from cli import arguments
66

77
if arguments.gpu:
8-
device = rai.Device.gpu
8+
device = 'gpu'
99
else:
10-
device = rai.Device.cpu
10+
device = 'cpu'
1111

1212
con = rai.Client(host=arguments.host, port=arguments.port)
1313
all_characters = string.printable
@@ -25,11 +25,10 @@ def int2str(int_data):
2525

2626
model = ml2rt.load_model(filepath)
2727

28-
out1 = con.modelset('charRnn', rai.Backend.torch, device, model)
28+
out1 = con.modelset('charRnn', 'torch', device, model)
2929
hidden = np.zeros((n_layers, batch_size, hidden_size), dtype=np.float32)
30-
hidden_tensor = rai.BlobTensor.from_numpy(hidden)
31-
out2 = con.tensorset('hidden', hidden_tensor)
32-
prime_tensor = rai.Tensor(rai.DType.int64, shape=(1,), value=5)
30+
out2 = con.tensorset('hidden', hidden)
31+
prime_tensor = np.array([5], np.int64)
3332
out3 = con.tensorset('prime', prime_tensor)
3433
out4 = con.modelrun('charRnn', ['prime', 'hidden'], ['out'])
3534
out5 = con.tensorget('out')

0 commit comments

Comments
 (0)