diff --git a/docs/source/conf.py b/docs/source/conf.py
index ddaf87f0..d2f2bbbf 100644
--- a/docs/source/conf.py
+++ b/docs/source/conf.py
@@ -38,7 +38,6 @@
autodoc_mock_imports = [
"estimagic",
"matplotlib",
- "estimagic",
"jax",
"numpy",
"pandas",
@@ -116,7 +115,7 @@
html_logo = "_static/images/logo.svg"
-html_theme_options = {"github_url": "https://github.com/OpenSourceEconomics/estimagic"}
+html_theme_options = {"github_url": "https://github.com/janosg/skillmodels"}
html_css_files = ["css/custom.css"]
diff --git a/docs/source/how_to_guides/how_to_decompose_variance.ipynb b/docs/source/how_to_guides/how_to_decompose_variance.ipynb
new file mode 100644
index 00000000..f73328d8
--- /dev/null
+++ b/docs/source/how_to_guides/how_to_decompose_variance.ipynb
@@ -0,0 +1,557 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Variance decomposition into the signal and the measurement error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This notebook contains information on how to decompose variance of each skill measured into the measurement error and the signal. The calculations implemented follow section 4.2.2. The Empirical Importance of Measurement Error of CHS paper (*Cuhna, et al. 2010, 907*)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from skillmodels.config import TEST_DIR\n",
+ "import yaml\n",
+ "from skillmodels.likelihood_function import get_maximization_inputs\n",
+ "from skillmodels.simulate_data import simulate_dataset\n",
+ "from skillmodels.variance_decomposition import create_dataset_with_variance_decomposition"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open(TEST_DIR/\"model2.yaml\") as y:\n",
+ " model_dict = yaml.load(y, Loader=yaml.FullLoader)\n",
+ "\n",
+ "params = pd.read_csv(TEST_DIR / \"regression_vault\" / f\"one_stage_anchoring.csv\")\n",
+ "params = params.set_index([\"category\", \"period\", \"name1\", \"name2\"])\n",
+ "\n",
+ "data = pd.read_stata(TEST_DIR / \"model2_simulated_data.dta\")\n",
+ "data.set_index([\"caseid\", \"period\"], inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)\n",
+ "/Users/sophie/Desktop/project skillmodels/skillmodels/skillmodels/process_data.py:60: FutureWarning: In a future version of pandas all arguments of MultiIndex.set_levels except for the argument 'levels' will be keyword-only\n",
+ " df.index = df.index.set_levels(range(len(df.index.levels[level])), level)\n"
+ ]
+ }
+ ],
+ "source": [
+ "max_inputs = get_maximization_inputs(model_dict, data)\n",
+ "debug_loglike = max_inputs[\"debug_loglike\"]\n",
+ "debug_data = debug_loglike(params)\n",
+ "filtered_states = debug_data[\"filtered_states\"]\n",
+ "state_ranges = debug_data[\"state_ranges\"]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The following formula from CHS paper (*Cuhna, et al. 2010, 907*) is used to decompose variance:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "$$\n",
+ "\\begin{equation}\n",
+ "Var(Z_{1,C,t,j}) = \\alpha^2_{1,C,t,j}*Var(ln\\theta_{C,t}) + Var(\\epsilon_{1,C,t,j})\n",
+ "\\end{equation}\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The fraction of the variance due to measurement error and due to signal are the following:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "$$\n",
+ "\\begin{equation}\n",
+ "s^\\epsilon_{1,C,t,j}=\\frac{Var(\\epsilon_{1,C,t,j})}{\\alpha^2_{1,C,t,j}*Var(ln\\theta_{C,t}) + Var(\\epsilon_{1,C,t,j})}\n",
+ "\\end{equation}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "\\begin{equation}\n",
+ "s^\\theta_{1,C,t,j}=\\frac{\\alpha^2_{1,C,t,j}Var(ln\\theta_{C,t})}{\\alpha^2_{1,C,t,j}*Var(ln\\theta_{C,t}) + Var(\\epsilon_{1,C,t,j})}\n",
+ "\\end{equation}\n",
+ "$$\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "where:\n",
+ "* $Var(\\epsilon_{1,C,t,j})$ is variance of the standard error (**meas_sds^2** from the filtered states dataset)\n",
+ "* $Var(ln\\theta_{C,t}$ is factor variance\n",
+ "* $\\alpha$ is loadings from the filtered states dataset \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " loadings | \n",
+ " variance of factor | \n",
+ " meas_sds | \n",
+ " fraction due to meas error | \n",
+ " fraction due to factor var | \n",
+ "
\n",
+ " \n",
+ " | period | \n",
+ " name1 | \n",
+ " name2 | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " y1 | \n",
+ " fac1 | \n",
+ " 1.000000 | \n",
+ " 0.078080 | \n",
+ " 0.868389 | \n",
+ " 0.906174 | \n",
+ " 0.093826 | \n",
+ "
\n",
+ " \n",
+ " | y2 | \n",
+ " fac1 | \n",
+ " 0.890828 | \n",
+ " 0.078080 | \n",
+ " 1.189555 | \n",
+ " 0.958049 | \n",
+ " 0.041951 | \n",
+ "
\n",
+ " \n",
+ " | y3 | \n",
+ " fac1 | \n",
+ " 1.418478 | \n",
+ " 0.078080 | \n",
+ " 1.111846 | \n",
+ " 0.887244 | \n",
+ " 0.112756 | \n",
+ "
\n",
+ " \n",
+ " | Q1_fac1 | \n",
+ " fac1 | \n",
+ " 1.187757 | \n",
+ " 0.078080 | \n",
+ " 0.721278 | \n",
+ " 0.825263 | \n",
+ " 0.174737 | \n",
+ "
\n",
+ " \n",
+ " | y4 | \n",
+ " fac2 | \n",
+ " 1.000000 | \n",
+ " 0.054363 | \n",
+ " 0.764474 | \n",
+ " 0.914896 | \n",
+ " 0.085104 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " loadings variance of factor meas_sds \\\n",
+ "period name1 name2 \n",
+ "0 y1 fac1 1.000000 0.078080 0.868389 \n",
+ " y2 fac1 0.890828 0.078080 1.189555 \n",
+ " y3 fac1 1.418478 0.078080 1.111846 \n",
+ " Q1_fac1 fac1 1.187757 0.078080 0.721278 \n",
+ " y4 fac2 1.000000 0.054363 0.764474 \n",
+ "\n",
+ " fraction due to meas error fraction due to factor var \n",
+ "period name1 name2 \n",
+ "0 y1 fac1 0.906174 0.093826 \n",
+ " y2 fac1 0.958049 0.041951 \n",
+ " y3 fac1 0.887244 0.112756 \n",
+ " Q1_fac1 fac1 0.825263 0.174737 \n",
+ " y4 fac2 0.914896 0.085104 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "create_dataset_with_variance_decomposition(filtered_states, params).head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Change in the measurement error affects the variance decomposition. Two cases where measurement error is equal to **0** and **10** respectively are presented below. In the first case all skill variance is related to the factor variance while in the second case most variance is reffered to the measurement error."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " loadings | \n",
+ " variance of factor | \n",
+ " meas_sds | \n",
+ " fraction due to meas error | \n",
+ " fraction due to factor var | \n",
+ "
\n",
+ " \n",
+ " | period | \n",
+ " name1 | \n",
+ " name2 | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " y1 | \n",
+ " fac1 | \n",
+ " 1.000000 | \n",
+ " 0.078080 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | y2 | \n",
+ " fac1 | \n",
+ " 0.890828 | \n",
+ " 0.078080 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | y3 | \n",
+ " fac1 | \n",
+ " 1.418478 | \n",
+ " 0.078080 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | Q1_fac1 | \n",
+ " fac1 | \n",
+ " 1.187757 | \n",
+ " 0.078080 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | y4 | \n",
+ " fac2 | \n",
+ " 1.000000 | \n",
+ " 0.054363 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " loadings variance of factor meas_sds \\\n",
+ "period name1 name2 \n",
+ "0 y1 fac1 1.000000 0.078080 0.0 \n",
+ " y2 fac1 0.890828 0.078080 0.0 \n",
+ " y3 fac1 1.418478 0.078080 0.0 \n",
+ " Q1_fac1 fac1 1.187757 0.078080 0.0 \n",
+ " y4 fac2 1.000000 0.054363 0.0 \n",
+ "\n",
+ " fraction due to meas error fraction due to factor var \n",
+ "period name1 name2 \n",
+ "0 y1 fac1 0.0 1.0 \n",
+ " y2 fac1 0.0 1.0 \n",
+ " y3 fac1 0.0 1.0 \n",
+ " Q1_fac1 fac1 0.0 1.0 \n",
+ " y4 fac2 0.0 1.0 "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "params.loc[('meas_sds')] = 0\n",
+ "create_dataset_with_variance_decomposition(filtered_states, params).head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " loadings | \n",
+ " variance of factor | \n",
+ " meas_sds | \n",
+ " fraction due to meas error | \n",
+ " fraction due to factor var | \n",
+ "
\n",
+ " \n",
+ " | period | \n",
+ " name1 | \n",
+ " name2 | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " y1 | \n",
+ " fac1 | \n",
+ " 1.000000 | \n",
+ " 0.078080 | \n",
+ " 10.0 | \n",
+ " 0.999220 | \n",
+ " 0.000780 | \n",
+ "
\n",
+ " \n",
+ " | y2 | \n",
+ " fac1 | \n",
+ " 0.890828 | \n",
+ " 0.078080 | \n",
+ " 10.0 | \n",
+ " 0.999381 | \n",
+ " 0.000619 | \n",
+ "
\n",
+ " \n",
+ " | y3 | \n",
+ " fac1 | \n",
+ " 1.418478 | \n",
+ " 0.078080 | \n",
+ " 10.0 | \n",
+ " 0.998431 | \n",
+ " 0.001569 | \n",
+ "
\n",
+ " \n",
+ " | Q1_fac1 | \n",
+ " fac1 | \n",
+ " 1.187757 | \n",
+ " 0.078080 | \n",
+ " 10.0 | \n",
+ " 0.998900 | \n",
+ " 0.001100 | \n",
+ "
\n",
+ " \n",
+ " | y4 | \n",
+ " fac2 | \n",
+ " 1.000000 | \n",
+ " 0.054363 | \n",
+ " 10.0 | \n",
+ " 0.999457 | \n",
+ " 0.000543 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " loadings variance of factor meas_sds \\\n",
+ "period name1 name2 \n",
+ "0 y1 fac1 1.000000 0.078080 10.0 \n",
+ " y2 fac1 0.890828 0.078080 10.0 \n",
+ " y3 fac1 1.418478 0.078080 10.0 \n",
+ " Q1_fac1 fac1 1.187757 0.078080 10.0 \n",
+ " y4 fac2 1.000000 0.054363 10.0 \n",
+ "\n",
+ " fraction due to meas error fraction due to factor var \n",
+ "period name1 name2 \n",
+ "0 y1 fac1 0.999220 0.000780 \n",
+ " y2 fac1 0.999381 0.000619 \n",
+ " y3 fac1 0.998431 0.001569 \n",
+ " Q1_fac1 fac1 0.998900 0.001100 \n",
+ " y4 fac2 0.999457 0.000543 "
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "params.loc[('meas_sds')] = 10\n",
+ "create_dataset_with_variance_decomposition(filtered_states, params).head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "hide_input": false,
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ },
+ "toc": {
+ "base_numbering": 1,
+ "nav_menu": {},
+ "number_sections": false,
+ "sideBar": true,
+ "skip_h1_title": false,
+ "title_cell": "Table of Contents",
+ "title_sidebar": "Contents",
+ "toc_cell": false,
+ "toc_position": {
+ "height": "calc(100% - 180px)",
+ "left": "10px",
+ "top": "150px",
+ "width": "285px"
+ },
+ "toc_section_display": true,
+ "toc_window_display": true
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs/source/how_to_guides/how_to_visualize_pairwise_factor_distribution.ipynb b/docs/source/how_to_guides/how_to_visualize_pairwise_factor_distribution.ipynb
index 2cb1a7ab..8f590abe 100644
--- a/docs/source/how_to_guides/how_to_visualize_pairwise_factor_distribution.ipynb
+++ b/docs/source/how_to_guides/how_to_visualize_pairwise_factor_distribution.ipynb
@@ -5,7 +5,19 @@
"execution_count": 1,
"id": "fa154a17",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "ename": "ModuleNotFoundError",
+ "evalue": "No module named 'skillmodels'",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpandas\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mskillmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTEST_DIR\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0myaml\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m from skillmodels.visualize_factor_distributions import (\n",
+ "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'skillmodels'"
+ ]
+ }
+ ],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
@@ -38,7 +50,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"id": "431490ae",
"metadata": {},
"outputs": [],
@@ -55,18 +67,10 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"id": "ad841610",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"max_inputs = get_maximization_inputs(model_dict, data)\n",
"debug_loglike = max_inputs[\"debug_loglike\"]\n",
@@ -85,23 +89,10 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"id": "0d1c1363",
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAANcCAYAAADCUfvoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eXik6V3fC3/uZ6lVVdql3qf37pmenpn2zPQ6xgaz2AbiY8hLMIGELOaFAIecJIScnPMmhHCCEyeAiQ3EBxxCIPgQzOKDN1aPx8vY05Ja3a3e1KvUkrq1q/aqZ7nfP6qep0vVJamqVNq67891+fK0VPXU/Uiqu+7vb/n+hJQShUKhUCgUCoVCoVAo6kHb6AUoFAqFQqFQKBQKhWLrocSkQqFQKBQKhUKhUCjqRolJhUKhUCgUCoVCoVDUjRKTCoVCoVAoFAqFQqGoGyUmFQqFQqFQKBQKhUJRN8ZGL2A9efe73y0///nPb/QyFApFcxEbvYA1QNlsKxRbkydxPypH7U0KxdZlTfanpyozOT09vdFLUCgUCoVCoVAoFIongqdKTCoUCoVCoVAoFAqFojkoMalQKBQKhUKhUCgUirpRYlKhUCgUCoVCoVAoFHWjxKRCoVAoFAqFQqFQKOpm04pJIcS7hRDXhRA3hRD/osr3f1oIcaH0v8tCCEcI0bERa1UoFAqFQqFQKBSKp41NKSaFEDrwMeA9wHPAB4QQz5U/Rkr5YSnlS1LKl4D/HXhdSjm77otVKBQKhUKhUCgUiqeQTSkmgZPATSnlbSllAfgk8L5lHv8B4PfWZWUKhUKhUCgUCoVCodi0YnInMFr27/ulrz2GECICvBv41BLf/xEhxHkhxPmpqammL1ShUCgUCoVCoVAonkY2q5gUVb4ml3jsdwNfWarEVUr5cSnlK1LKV7q7u5u2QIVCoVAoFAqFQqF4mtmsYvI+sLvs37uA8SUe+/2oEtennoeJHO/72Ff40Oeu4bhLxR0UCoVCoVAoFApFszA2egFL8BZwSAixDxijKBh/oPJBQohW4B3AD67v8hSbiYWMxd/5zW9wezrF4Og8VycS/MoHTtAaNjd6aQqFQqFQKBQKxRPLpsxMSilt4CeALwBXgd+XUg4JIX5UCPGjZQ99P/BnUsr0RqxTsfHkLId/+NtvcXs6xX/94ZP8u/cf5ys3p3n/x77CranURi9PoVAoFAqFQqF4YhFSPj0lga+88oo8f/78Ri9D0SRsx+VHf6ePv7w2yX/+wAm+64UdAHzjziw/9jt9FGyXX/nACb75aM8Gr1SxxlTrsd7qPD0bs0LxZPEk7kflqL1Jodi6rMn+tCkzkwrFSkgp+d//8BJ/cXWSn/sbx3whCXByXwd/8hPn2N0R4R/+9nmuPUhs4EoVCoVCoVAoFIonEyUmFVuS3/zyHf5n333+13cd4ofO7H3s+7vaI/zuPzxFLGTwbz59hacpA69QKBQKhUKhUKwHSkwqthx52+G/fOk2bz/Uxf/2rYeWfFx7NMA//fYjfO32DJ+7/GAdV6hQKBQKhUKhUDz5KDGp2HJ85uIEU8k8H3z7foRYvvz7B07u4ei2GP/XZ66SLTjrtEKFQrEVkVJi2zaFQgHXdTd6OQqFQuHjui6FQgHHcVS1lWJTocSkYkshpeQ3v3yHgz0tvP1Q14qP1zXBz/6NY4zNZ/kvX7q1DitUKBRbEU9IWpaFbdtkMhnS6TS5XA7LspS4VCgUG4KUEsdxsCwLy7LI5XKk02my2awSl4pNwWadM6lQVOWtu3MMjSf4d+8/vmJW0uP0/k6+84Xt/NoXb/E3X97FrvbIGq9SoVBsJVzXxbZtNE3DMAx0XUcIgeu6OI6Dbdvk83mEEOi67v9P01Q8VqFQrB1ekEtKiWEYaJqGaZr+3uSJTCnlY3tTrWckhWK1qE9CxZbiE1++Q1vE5P0ndtb1vH/53mcRAn7hs9fWaGUKhWKr4R3UbNvGMAwM41F81ROOgUCAcDhMNBolFAqhaVrVzKXKDCgUimbiui6WZSGEwDTNRd/zRGUoFCIajRKJRDAMA9d1VeZSse6ozKRiyzA6m+HPrjzgR99xgHBAr+u5O9vC/Ng7DvJLf3GDH7w1w5kDnWu0SoVCsRWQUi46qK0UxS/PSnrP97IDlmUtylyWZzcVCoWiHryyVtd1/WwksOx+ommaLzCBZTOXhmEghFD7k6JpqMykYsvw3756F00IfujMMw09///7jv3sbAvz7z9/TUXpFIqnFO+gVigUFh2s6qU8cxmJRBZlLguFAul0mnQ6TT6f98vUFAqFYjm8IJeUEtM0Gy6lXy5z6VVVZLNZvx9c7U+K1aDEpGJLkMrb/D9vjfLe49vZ3hpu6BohU+cfffMBLozO89VbM01eoUKh2Ox4Za2O42CaZlOzh9XEZTAYBPDFZSaTUeJSoVBUpRlBrqVYSlyWl+yXi0uFoh6UmFRsCf7g/CjJvM3ff23fqq7zN1/eRW88yEf/6maTVqZQKLYClf1Hy0X8myH0hBAYhkEwGPTFZSAQAB6Jy2QySTqdVuJSoXiK8bKRKwW5pJRkMplV7xVCCF9cev3gkUgEXdcXicuFhQUlLhU1oXomFZse15X81lfvcmJPGy/tblvVtYKGzgffvp+f/8xV+u7N8fIz7c1ZpEKh2JSU9zaW9zyuN5649Ex+pJSMjIyQzWbZs2cPruuiadoiR0bV06RQPNl4TtIr9W5ns1n6+/t94RmPx+nq6qK7u5tIZHUO9V7/pBfs8vbML33pS5w+fVo5WStWRIlJxabns5cnuDuT4Z99x5GmXO8HTu3hY399k4/99U0+8cOvNuWaCoVi81Fuq1+Lyc56Um7WE4lE/F5Or9RNiUuF4snFE2yek/RyQa6HDx9y5coVjh07Rnt7O4ZhsLCwwPT0NBcvXiSbzdLW1kZXVxddXV2Ew421Anl4e5MQgnA4vCggp8YkKaqhxKRiU+O6ko/8xTAHe1p4z/Pbm3LNSMDg75/bx3/68xsMjS9wbEdrU66rUCg2D5WzIze7EKuWufTEZT6fR0q5aA6mmiOnUGxNyoNcgUBgyfex67pcuXKFVCrF2bNnMU0Tx3EQQtDW1kZbWxsHDx7EdV3m5+eZnp5mYGCAQqFAe3u7Ly693u1GWc7Jupq43Ar7raK5KDGp2NR89vIEw5MpfuUDJ9C15m1Of+fsXj7+pdv86l/f4mN/+21Nu65CodhYvDKwe/fuceDAgboj5qlUCoC2trYNPRCVi8tgMOiLS9u2fbdHJS4Viq1FrUGudDpNf38/27dv59ixYwghlnRd1TSNjo4OOjo6OHz4MI7jMD8/z9TUFHfv3sW2bTo6OnxxWTmzsl7qEZdqTNLTgRKTik2Ll5U81NPCdx5vTlbSozVs8kNnnuHXXr/FzckUB3tamnp9hUKx/pTb6k9MTHDo0KG6nnv37l3u3btHNBolmUwSi8X8A1hLS8umEZfeej1n2so5ckpcKhSbi6VmR1ZjbGyM4eFhXnjhBTo6Oup+LV3X6ezspLOzOE/btm1mZ2eZnp7m5s2bSCnp7Oykq6uLzs5Of09plOXEpVey7+1fqmT/yUSJScWm5TOXilnJ/9zkrKTHP3htH5/4yh1+7Yu3+E/f92LTr69QKNYPryTUO6jU40BoWRYXLlwgEAhw+vRp3+01mUwyPT3N1atXSaVStLa2Ns30YrV4hh21DClX4lKh2Dhc1yWfz2MYxrK9247jcPnyZQqFAufOnVt1BtHDMAx6enro6ekBivvd7OwsU1NTXL9+HSGEHzTr6OhYtUlZubgMBAKL+kNVP/iTiRKTik2J40p+5S+LWcn3Njkr6dHZEuQDJ/fw21+7xz/99sPsaFtd07pCoVh/yvuPVor4V2Nubo7BwUEOHTrEzp07sW0bKB6I4vE48Xic/fv3I6X0TS8GBwfJ5XKL+pJCodBa3F7NaJrm2/2DEpcKxWbAe/994xvf4Ju+6ZuWfM8lk0n6+/vZs2cPe/fuXdP3pmma9Pb20tvbCxRHFU1PTzMxMcHQ0BCmadLV1YVt277wWw3VMpfKbOzJQolJxabks2uclfT4++f28V+/cpc/Ghjjx7/54Jq9jkKhaD612upXQ0rJ7du3GR8f59VXXyUajS77+KVML6amprh37x6WZS3qS/Js9jeK5cRlKpUimUzS09OzyDBDHeAUiuZQXtZqmiZSyiVnR46MjHDnzh1OnDhBa+v6GwIGAgF27NjBjh07AMjlcszMzGBZFl/60pcIBoP+vtaMXvLlzMYKhQL3799n586dqix2C6HEpGLTUZ6VbHavZCW7OyKc3NfBp/rv84/eeUBtWArFFqAeW/1qFAoFBgYGiEajnDt3rqHIe7npxZEjR3Acx+9LunXrFq7r+gewZvQlrZZycZnJZJibm2PHjh04jkMmkwF4zDBD7YcKRf3UGuSyLIuLFy8ihOC1117b8D3CIxQKsXPnToaHh3nnO99JNptlenqaO3fusLCwQCQS8fe2eDzedHE5Pj7O/v37VeZyC7E5/nIVijK8rORHf+AE2hpmJT2+58RO/sUfXuLi/QVe3N225q+nUCgap1Zb/aWYmZnh4sWLHD16lO3bmxes0nWd7u5uuru7gUd9SdPT02vSl7QaPCdYr+dSSrnILTafzwMsygyoOXIKxfJUBrmWKyWfn5/nwoULHDhwgN27d6/zSusjHA6ze/dudu/ejZSSTCbjm/kkEglaWlqablS2XOayXFyu9HNWrA9KTCo2HZ/4yh0OdEd5b5PmSq7Ee1/Yzr/69BB/NDCmxKRCsYlZzexIKSXDw8NMTk5y6tSpNTfQqaUvKRAIEAwGm9KXVA+VJXdeFtITmJ64tG1bDSlXKGqgPMjlGXgt9bjbt28zNjbGK6+8QktL7U7ym0EwCSGIRqNEo1GeeeYZpJSkUinfqCydThOPx31xuVL7QK2vuZS4zOVyakzSJkCJScWm4v5choGRef75u4+sS1YSIB4y+bbnevn04Dj/x3c+i6mrQ5JCsZmox1a/GrlcjoGBAVpbWzl79uyKz682y221VOtLunHjBnNzc7z++uuEw2H/ANba2rqmh6Gl+rc8PHHp9X2uNKRciUvF00ytQS6vvD4cDnPu3LkNrU5oFkIIYrEYsViMffv2IaUkkUgwPT3N5cuXyWQytLW1+XtbOLx6o8NqM3jVmKSNRYlJxabiMxcnAPiu4zvW9XW/58ROPnNxgtevT/Gtz/Wu62srFIql8Q4KQN0mOwBTU1NcvnyZY8eO+db4m4FQKERHRweRSISDBw+SyWSYmpri1q1bJBIJotGoP4ak2TMuVxKTldQzpFyJS8XTQnmQq/z9UQ3btvnKV77S9PL6zYYQgtbWVlpbWzlw4ACu6/ou2AMDAxQKhUUu2MFgsCmvqcYkbSybVkwKId4NfATQgd+QUn6oymPeCfwyYALTUsp3rOMSFWvAZy5N8OKuVvZ0ru8Mt2863E1nNMAfDYwpMalQbBIcx+Hhw4dks1n2799fd1nrtWvXmJmZ4fTp002JiK8lkUiEZ5555rHSsWvXrpFMJv0Zl80oHatXTFZSr7istyRZodjs1BrkklJy48YNcrkc3/It37Lh82nXG03TaG9vp729nUOHDuG6LnNzc0xPT3P37l0sy6Kzs9M3KmuGC7Yak7T+bEoxKYTQgY8B3wbcB94SQnxaSnml7DFtwK8C75ZSjgghNk/IWdEQ92bSXLy/wL9879F1f21T1/juF3fwP74xwkLWojXcnGHBCoWifsoj/lA0s6nnwz6bzZJOpxFCcPbs2S13UFiudOzSpUtks9lVlY55PUbNXO9S4tKyrEXistwtVqHYipSXtS73t5zL5ejv76etrY1oNLpqISmlZG5ujo6ODl8obTU0TaOzs5POzs7HXLBv3ryJlJJsNsvDhw+bdp9KXK49m1JMAieBm1LK2wBCiE8C7wOulD3mB4A/lFKOAEgpJ9d9lYqm8qelEtfvfGF9S1w9vudtO/mtr97ls5cm+MDJPRuyBoXiaafSVt8wDF9U1sLDhw+5cuUKoVCII0eOrOFK149qpWPz8/OPlY51d3fXNONytZnJWtbrHcwCgcAicfnw4UMsy6K7u1vNkVNsKerp3Z6cnGRoaMgvr5+cXN0RNZ/PMzAwgBCC69evo2naInforVpWXs0F+4tf/OIiF+zOzk66u7ub5oK9nLi8evUqBw4ceKyqQu1Py7NZxeROYLTs3/eBUxWPOQyYQogvAjHgI1LK3668kBDiR4AfAdizRwmEzcyfXpzgbXva2Nm2MeVox3e2cqA7yh/1jykxqVCsM0vZ6muaVpOYdF2Xq1evkkgkOHv2LF/72tfWYdUbQ/mMy8OHD+M4jl86dvv2bRzHWVQ6VhndXwuDoeUoF5e2beO6LqFQCNu21Rw5xZZASulXSCxX1uq6LteuXWNhYYEzZ84QCoVW/dqzs7MMDg5y9OhROjo6CAaDvjv02NgYly9fJhgM+j3Wa23gtZZ4vY/Hjh0DiqZFMzMzPHjwgCtXrmAYhi+i29vbmyKiy8Xl3NwckUjEL9kvFAqAmsG7EptVTFb7LVV++hnAy8C7gDDwNSHEm1LKG4ueJOXHgY8DvPLKK+v7CaqomVtTKa5OJPhX3/Xchq1BCMH3vG0XH/7CdUZnM+zueLp6GxSKjWI5W/1axGQmk6G/v5/e3l5Onz7tf9g3koHzRO1mGSBeC7qu+wcsKJp9zM7OMjU1xY0bNx6L7je7zLUeys1Kystil5ojp8SlYqPxhMVKMw29fainp8ffh8qpdz+SUnLr1i0ePHjAqVOnCIfDvripdIfOZrOPGXh5Gb9oNLpl3z+BQIDt27f7pkX5fJ7p6Wnu37/PpUuXCAQCi0T0avY1L8hWLi7VDN7a2KyflveB8imuu4DxKo+ZllKmgbQQ4kvAi8ANFFuOz1ycQAh47/GNdTn7X07s5MNfuM4fDYzxv77r0IauRaF4GljJVt8ThUsxMTHBtWvXePHFF+no6Fj0PE+41Eomk+H8+fM4jkMgEPAPY21tbVvqMGYYBj09Pb57bXl0f2hoyM8MdnR0NC26XyvVfifLzZFT4lKxUdQ6OxIe7UMvvPACnZ2dj32/3uCWN0YkGo3644yW2wfD4TB79uxhz549voHX1NQUQ0NDZDIZWltb/f2sGdnSjSIYDLJz50527twJFEW0Z+YzPz9POBz2y/3j8Xjd4r3yd6xm8NbGZhWTbwGHhBD7gDHg+yn2SJbzJ8BHhRAGEKBYBvtL67pKRdP404vjvPpMB9taN3aT29kW5tS+Dj5zcUKJSYViDam1/2ipzKTjOFy5coVMJsO5c+ce6xNc6fBVyYMHD7h69SrPP/887e3t2La96JASiUT8w1izR3WsNZXR/du3bzM/P8/o6CiXLl1a1xK5WgS+EpeKjabW2ZGO4zA0NEQ2m626D3nUsx/Nzc0xODjIkSNHGhojUm7gtX//fn88x9TUFP39/RQKBTo6OnzRtVXNfKAoonfv3s3u3cX8Uzqd9s186h2x5DjOikJQzeCtzqYUk1JKWwjxE8AXKI4G+YSUckgI8aOl7/+6lPKqEOLzwEXApTg+5PLGrVrRKDceJrnxMMXPve/YRi8FgG8+2sOHPneNyUSOnvjWjeApFJuVemZHVhOTqVSK/v5+du7cyfPPP1/1+StlND28XstkMukPEpdSEgqF2LVrF7t27UJKSTqdZmpqimvXrpFKpYjH47643OxjRyoxDIO2tjb2798PFDOyXr/lwsKCL5y7urqIxWJNFWqeEKyHesTlSqWICsVylIuDlWZHevvQrl27OH78+LJ/c7VUSkgpuX37NuPj47z66qurHgHkUT6ew+ux9srgPQdVr0y+s7OzKSY3G0U0GiUajVYdsZRKpYjFYv7eFolEFv3OGt2b1AzeTSomAaSUnwU+W/G1X6/494eBD6/nuhTN508Hx9EEvPv5bRu9FABeO1jsO/ryzWm+5227Nng1CsWTRa22+h6VYnJsbIzh4WFefPFF2tvbl3yed3hbjmw2S39/P93d3Zw6dQohBI7jVL1WS0sLLS0t/qgOL9Lvual2dHT4B7JmzEpbSyrL7SKRyKISOS+6f/36dZLJJPF43I/uVx7A6qWW6P9KLCUubdsml8v55WpeX5MSl4paqCxrXe5vZnR0lFu3bvHSSy/R1ta24rVXykxalsXAwAChUIizZ8+uqaCr5qA6PT3tO2Gbpkl3d7dvlrVVxc9yI5YuX77sl/96exuw6p/70zqDd9OKScXTgZSSP704wal9nfTENkcW8LntcTqjAd4YVmJSoWgW9djql+OJScdxuHTpEpZlce7cuRVLs1Y6vHnW/cePH/eNa2pFCEFbWxttbW0cOnTId1P1DDC8SH8z7eybyXK9W+XCee/evUgpSSaTTE1NLTqAedH9jZ5x6a25Ulzatq3myClqxnVdkskkw8PDvPzyy0v+fdi2zcWLF5FS1rQPeSwX3Jqfn+fChQscOnTI7wVcT0zTXFQGn8vlmJqaolAo8PrrrxOJRPz9rNmVCutJ5YglKaU/YunChQtkMhlc1+X+/ft0dXU1pbe01hm8W31MkhKTig3l+sMkt6fT/IO379vopfhomuDcwS7eGJ5e83lsCsXTgJTSN5TwMoC1omkahUKBL3/5yzzzzDM888wzNT1/qcOblJLr168zOzvbNOv+SjdVy7IWGd54kf5KM5/1HtHhUY+gE0IQj8eJx+P+jMuFhYXHZlx69x8MBpe9XjMyk7Ws2RsxAIvnyF27do29e/dimqYSl4pFQS7TNP0Zt9VYWFhgYGCAffv2sWfPnrr3scr3u5SSu3fvMjo6yiuvvEJLS8uy1yjfN9by7zUUCrF7925u3brFO97xjkWVCl6Jf3mlQjNZzz1RCOGX/x46dIiFhQWGhoZIp9Pcu3cPy7KaXnGy1Axe27Z5+PAhtm3T3d295frBlZhUbCj99+YB+KZD3Ru7kArefqiLTw+Oc+1Bkme3xzd6OQrFlqXcVj+Xy9X9wTg+Pk4ikeC1116jtbW15udVO7zlcjn6+/vp6OjgzJkza/YhbZom27ZtY9u2bf7rTk1NPWbmU62kdj2o1+W2nPL+Ky8rOz8/z9TUFHfu3MFxHN/co9qMy40omyu3+p+dneXYsWOLsgMqc/l0Ujk7Eqj6nvRE38jICC+//DKxWKzu16oMblmWxeDgIKZp+r3am5FqlQqJRIKpqSkGBwfJ5/N1BZNWYqMD+OFwmCNHjnDkyBG/t7TW+b2NUC4uvb0oEAhsObMxJSYVG8qViQViIYNd7ZvLwOLtJXH75eFpJSYVigaox1a/Gl45meu6xOPxuoQkPH54m56e5tKlSxw7dswfmbHc2puJF+nfvXv3IjOf8fFxstksyWSy4bLRRmnWgUTXdTo7O/1xCN6My+npaW7cKE7q8g6aHR0dm6IHyzuUVctcVopLr6dpMx7gFI3j/b7LgwfVzL4sy+LChQsEAgFee+21VQVhvH3Fy3AePHiQXbu2VitNeanowYMHcV3XL/H3gkneTNvOzs665/VupJis3Jsqe0uXmt/r7W2rnU3sjaTaik7WSkwqNpSh8QTPba9vFtB6sK01xKGeFr40PMUHv2n/Ri9HodhS1GqrvxTeYWv//v3s2rWLL3/5y3WvwXNzlVJy8+ZNHj58yOnTpzfcebU80u9la7u7ux8z81lL2/61PLBVzrj0Sn4fPnzI1atXyWQyGIbBzp07133G5VKUZy5hsbjMZDJ88IMf5Pd+7/c2eJWKZrBc77au64syk7Ozs1y8eLEpvYyeudfdu3e5d+9ewxnOzYamaY8Fk2ZmZnzna68FoLu7u6b3+1r0VNfKSoGuanubZ1x09erVRe0O7e3tdQcebNt+7PNpJSfrX/u1X+PMmTOcPXu2zrttLkpMKjYMx5Vcm0jygZN7NnopVXntUBf/4+sj5CyHkLk5S1AUis1EPbb6Sz3/3r17iw5b3jXrxeu1/PrXv04sFvMHf282qpn5eJm9mzdvAviR/maZ+biuu24BvMqS36997Wu0tLRw//59Ll26RCAQ8IVza2vrpvgdlYtLx3G4evXqRi9J0QS8IJdX1lr5HijvSbx58yYPHjxo6oiOq1evEgwGOXfu3KqzWJsVwzDo7e2lt7cXgHw+z/T0tP9+DwaDfrYvHn88kbCZMpMrUWlclM/nmZmZYWxsjMuXLxMIBHxx2dbWtuK1vc/N5agUl7du3eLll1+uec1rxZP516zYEtyZTpO1HJ7bsTnLSL/pUDf/9St3OX93jtcO1ef2qFA8bdRjq18Nr4fIMIxF5WSNHiwKhQIXLlzg2LFjDQ3+3iiWsu2fmJhgaGjIP6BUmvnUw0Ye2IQQbN++3Z9xmc1mmZ6e5s6dO/6My83kHFkoFFbdB6bYWMpNTjzXzKVwXdcPQJ07d64pwY1EIsHk5CT79u3j6NGjq77eViIYDLJz504/s5vJZPz5lolEgpaWFj+YFI1Gt5SYrCQYDLJjxw527NgBPNrb7t27x+DgIOFw2BeXra2tj91nLWKyklQqtaJx03qgxKRiw7gykQDg2CYVk6f2d2DqgjduTikxqVAsw2rLWj1r/Gb0EHmDv+fm5njhhRe2lJCsRmX0u1J8RaNR/zDW0tJS889+Iw9s5QemcDi8qJ/UO2zeuHGDRCKxaMh4NBpd1bobycimUqmmZaYU6095kCsQCCz7+5+amiKdTnPs2DE/s7ZaRkZGuHPnDt3d3Sv2aq+EbdvcunWLWCxGT0/PlgxyRCIR35W7fOzQ0NAQmUyGWCxGPp8nl8s1xWm7HprtNF2+t8EjIX3r1i0SiQTRaNQXl7FYrCExmclklJhUPN0MjS8Q0DUO9mz8G6EakYDBy8+088aNaf7392z0ahSKzUcjsyPLI8+e8BsbG6vJGn8lygd/79ixoylW7puNSvHlmflcvXqVdDpd0wzI9SxzrfbaS/2dCCGIRqNEo9FFMy6np6f9w6Y3ZLyrq6vusQSO49RdXqjE5Nal1iCX67rcuHGDmZkZotFoU4Rk5TzKq1evNlSu75FKpejr62Pbtm1kMhnOnz+Pbdt0dnbS09PTFAOY9aba2KHJyUkuX75MX18flmX5Bjdr1T9ezlqbg1UK6cqRK5ZlEQqFME2z5sCZykwqnnqujCc4vK0FU9/4HpmlePuhbj78hetMp/J0tWy9KKBCsVZU2urX8sHnuSXquu7PnYxEIk2xxq8c/H358uWGXVk3av5jvZSb+ezbt2/REO7lzHy2SilZ+WFz//79SClZWFhYNJagra3Nd45cKZPRSOQ/mUwqMbnFqCfIlc1m6e/vp7Ozk7Nnz/L666+v+vWTyST9/f3s3bvXn0dZzSm2VsbHx7lx4wYvvfQSkUgE0zQ5cuSIb3YzOTnJ1atXMQyj6jzbrYKmabS2thKLxTh16hSO4zAzM8P09DTDw8O+e2oz+8fLWU+n6WojV77yla8A1BU4S6VSm8LISYlJxYYgpeTKeIJ3Pbu6so+15u2HuvjwF67zlZvTvO+l1bm5KRRPCtVs9WtB13V/6P3g4CBHjx5ddRmqZ9ozMjKyKLtZbc7kSti2zeDgIHNzc/4syO7u7qr9LZuRyiHcnpmP16MERTOfdDpNR0fHhqxxNVnRSrMibyzB9PQ0d+/e9YeMe+KyMjO9lXuSFLXhlbUCKwa5Hjx4wNWrVzl+/DhdXc1pZRkdHeXWrVucOHFi0Tgjz126HlzX5erVq6RSKc6ePUsgEKBQKPjfrzS78ebZVpbA9/T0bJmASHmgS9f1qu6pzewfL2cjxxZ5AYd9+/YRDAb9wNn09PSiwJknLr3AWSaTqbtCYy1QYlKxIUwm88ykCxzbUd/suPXm2I5W2iImbwwrMalQSCnJZrNMTEywb9++uj94hRDcvHmTmZkZTp06teoPQU/86br+WHazcs7kSnhlZM888wwvvPACtm0v6m/xevd6eno2fLxIrSxl5uOVkt2+fdvPWq5nJqNZr1M+lqB8yLgnnqWUi4aMNyIm0+m0EpNbBC/I5c3hW66s9cqVK75Iq+w9bCRz7zgOly5dwrZtzp0791hJZr2ZyVwuR19fH93d3Zw8ebKm9VTOs02lUkxNTXH58mUymQzt7e3+frBZWwCW+9mv1D9eHgCsp3/co7Kfe70p35/KA2fePM/5+Xmmpqa4d+8ehUKB3/qt30LTNBYWFuoKhgghPgF8FzAppXy+yvf/NvAzpX+mgB+TUg4ud00lJhUbwtD4AsCmdXL10DXBuYNdvDE8taGlYQrFRuP1H7muy8OHDzlw4EBdz8/n877pQDPGdCQSCQYGBti3bx979jw+XqiezOTExATXr1/npZdeIh6P4zgO4XCYPXv2sGfPHqSUJBIJpqamuHDhAvl8fs1nQa4F3mFsenqa7du3E41Gq5r5dHd3r9rsZiOoJp7LZ955WdHp6ema58CpMtfNTz1lrel0mv7+frZv386xY8ce+xsvL8WvlVQqRX9/P3v27OGZZ56p+r6pJzM5PT3NpUuXeP755/2/5XoRQhCLxYjFYuzfv9/P4nuZS9d1F/VbbqSIKqeec9ZK/ePxeNzfD2oJALquu6F7+XLBLk3T6OjooKOjgyNHjmBZFgsLC3z1q1/le7/3e8lms3zqU5/yzX5W4LeAjwK/vcT37wDvkFLOCSHeA3wcOLXcBZWYVGwIV8aLTq5Ht218rfdKvP1gF5+5OMHNyRSHejf/ehWKZlJpqx8Kheru/fEORy0tLRw4cKAhIVl+yPAcEk+cOEE8Xj0gVcvhzSsjSyaTfhlZtXsTQtDa2kpraysHDx5clAHzenm8Q0stg7k3Gu9nWXkYS6VSTE9Pc+XKlUVmPt3d3evurNgMKmdcjo+PMzIy4s+BM01zUWa22u9NZSY3NyvNjixnbGyM4eFhXnzxRdrb26s+pl4x6V3zpZdeoq2tbcnH1RLcklJy69YtHjx4wOnTp5taAVGexYdHgZYHDx74JaOboay/0TL4av3jXn+1FwD0MrNdXV1VM7MbnZmE2qs2TNPkfe97Hz/7sz/L66+/TjqdrnmPllJ+SQixd5nvf7Xsn28CK1qsKzGp2BCGxhPs7YwQC23+iP65g8XygTdvzygxqXiqqGar72UBan3+jRs3mJ6e5vTp01y9erXm55bjHcRc1+XixYu4rrvi4O+VylzLy8hOnTpV1wGmMgNWKBSYnp5mdHSUixcvrrrcaq2pFv0vz2SUm/lMTU3R39+/pJnPVsIz+Hj22WeBpefAlQ9UVz2Tm5PKINdyvdu2bXP58mUsy6paglqO19e9Eo7jMDQ0RD6fX/GasHKZq+dEHYlEVqzcaEaVVGWgJZvN+mX9CwsLxONxCoXChvTkNWO/rOyvdhzHz8zeunXLL4H3zHwMw9jQnslGKBfea1g98Q+Az630ICUmFRvClYnEpp0vWcmu9jBdLUEGRuf5oTMbvRqFYn1Yyla/1nKtXC5Hf38/HR0dnDlzxu9jasTRUNM0EokEFy9eXLaUrPI5S61zZmaGixcvcuzYsVXPfgMIBAKLhlWn02nfYdHL8PX09NDd3b0pZsPVchgtN/M5fPhwVTMfzwxiM5XJLUflaJDKOXCeVf/NmzdZWFjg61//OpcvX+bYsWN1H+CFEO8GPgLowG9IKT9U5THvBH4ZMIFpKeU7Gr+7p4fyIJdpmssKAK8c3hvJUMu+sdIelU6n6evrY9euXRw/frymv4vlglsLCwsMDAz4TtQbQWVZfzKZ5Gtf+5pv/lLeb7mWgaS1aifSdd3fr+BRZtbbp3Vd9/+etoqoLBQKa9r7KoT4Zopi8rWVHqvEpGLdSeQs7s1k+L5Xaqrt3nCEELy0u40LI/MbvRSFYs1pZHZkJZOTkwwNDT3W89OoPb43RuTEiRPLlpKVU+3w5s21HB8fb3oZWTnRaJR9+/YtyvBNTk5y7969RbPhVjN3bjU0cmBbysyn3FlxM5TJLcdKBjzejEtvDlxXVxf9/f18+tOf5pOf/CQ/+ZM/yQc/+MEVX0cIoQMfA74NuA+8JYT4tJTyStlj2oBfBd4tpRwRQmxua/NNguu6WJaFruvLzo6UUjIyMsLdu3eXLYevRNO0ZasnvDEdy5XKLnXdasEtr2T/5Zdf3hQjHuDRSJ5gMMiZM2cey+oBfga/o6OjqcJrvWbgVmZm8/k8AwMDTE1NMTo6SigU8qswvCqFzcZa9nMLIV4AfgN4j5RyZqXHKzGpWHeuTSQBeG771shMApzY08ZfXH3IfKZAW2RzuqApFKulHlv9ariuy7Vr11hYWODMmTOP9XCsdFCrxCslKxQKvPbaa3WVG1Ye3izL4sKFCwSDQc6dO7diGVmzKM/wVc6Gm5iY8EXves6Ga1aZXDVnxdu3by9p5rPR8zvrcXMVQvDCCy/wzDPP8Pf+3t/j3e9+N8lkstaXOgnclFLeLl3rk8D7gCtlj/kB4A+llCMAUsrJWi/+NOIFucbHx8lkMhw9enTJx1qWtcjlebly+EqWCni5ruvP//P6q+tBCLFo7/PcXx3HqXuN601lVs8r6/d6j4PBoF95EYvFVrW3bJTRYTAYJBKJsGvXLjo6OvwqheHhYZLJJLFYzBfQayHgGtkb16oEXwixB/hD4IeklDdqec7m/etVPLF4Tq5bpcwV4MTuNgAujM7zziMqgKx48qjVVn8pstksfX199PT0cPr06arPryczmclk6OvrY8eOHbS1tdVdRll+eEskEvT393PgwIFa3e7WjPLZcK2traRSKcLhsO+o2tLSskiErQVrcWCrZuYzNTW1yMynq6trQwWl4zh1l+h5Bjxev2WN7ARGy/59n8fdEA8DphDii0AM+IiUcil3xaea8iBXIBAglUot+dj5+XkuXLjAwYMH2bVrRd+Qx6hWil++Fz3//PMNvXc0TfPvwSuT3b17N3v37t2UWa/lqCzrz2QyTE1NcePGDZLJZN0uqpVspPmPF2SsrFJIJpNMTU1x6dIlstksbW1t/j02o3WhsgS/FlKpVEOfEUKI3wPeCXQJIe4D/5piqT1Syl8H/hXQCfxq6XdhSylfWe6aSkwq1p0r4wm6WgJ0xza+d6hWXtjdhhBKTCqePJpR1uoN/37hhRd8t8Bq1Noz6Y3qeOGFF+jo6GB2drbuklAvE3b//n1u3rzJ2972tppL3daC6Te+zr2P/neiz+7jmQ/+bcI7i+VVpmkuEmHlh5ZcLrcmvUprHf2vHEvglfo+fPiQbDbLF7/4RX/+43qa+TQyZ7LB6H+1H26lijaAl4F3AWHga0KIN2vNBDwtlPdue6Wt1aobvBL2sbExXnnllYYzNpXVEw8ePODatWv+XtQoXgXCw4cPuXLlCi+++OKqrreWSCm5+aFfJf/meYb+39cJ9HbR+faTdJx5terjI5GI35Na7qI6MDBAoVDwjW46OztXfK+vV5lrNbxgaiVe2W88HufAgQOPzXy0bds3J6vlHpd67Ub2pkbEpJTyAyt8/x8C/7CeayoxqVh3hsYTPLdjc/bULEVL0OBwT4wB1TepeIKox1a/EiklUko/83Tu3LkVS79WKnOtNqrDe14j/YXj4+N+WetGuY8mrw0z8AM/Ser6PWTBBQ1Gf+P3iB7eRedP/xj6oUfzOqsdWjzTm2b2Kq13KZlX6huNRpmdneXUqVOPjVbx7qvW+Y+NYNt23dducDTIfaA8Bb4LGK/ymGkpZRpICyG+BLwIKDHJ0kEuXdcf20O8nupIJMK5c+dW9ffj7TVL7UWNIoTg4cOHTE9Pc/bs2U1hxFWNuW8M0P+DP0lhYgE3V2CsYxA7leFeR5ydf/t9PPuh/2PZ51dzUfVmvd64cQNN0+jq6qKnp6fqOJ6NnOddq/FO5cxH27b9/ezGjRsN7WfrGOhaE5SYVKwrBdtleDLJNx1ubBDvRnJiTxufu/xgQzc7haIZ1GOrXw1d10kmkwwODrJjx46qw7+rsZwo9Mpke3t7HxvVUa+YzGazDA8PE4lEePXVVzfs/VqYmeP8//J3sBMpzPYW3HQaqUncfI701Zvk/sm/Ztcf/OaSz/cOXkv1KnkmEfX2KkkpN8St0DusLWXmMz4+zuXLl9fMzKeRUrIGxeRbwCEhxD5gDPh+ij2S5fwJ8FEhhAEEKJbB/lK9L/QkIqXEsqyqQa5KMek5Mx89etTv310Nuq6TzWb56le/WnUvaoR8Ps+NGzcwTXPJFoDNwOTn/owLf/efokdbcHOF4hcFIKEwk2D8k79P5u4t3vZ7v1nzPei6Tk9Pj++anc/nmZ6eZmRkhMHBwcfGKG0FMVmJYRiL7rFyn65lP2sk0KXEpOKpZXgyieXILdUv6fHS7jY++dYod6bT7O/eHG9ghaJevP6jixcvcvDgwXr6wHxs2+b8+fOcOHGiLkfDpcpcPffX48eP+8KpnHrE5NTUFJcvX/b7pTbqYGKn07z13X8LazYBIoA9n0QPaeCAMMC1JCKbZ+pffYjDn/rvNV1zqV6l69evk0qliMfjvhHGcgOsN+rAttRhrZqZz9TU1LJmPo3QaPS/XpdNKaUthPgJ4AsUR4N8Qko5JIT40dL3f11KeVUI8XngIuBSHB9yua4XegJxHGfZIJcnJr0ZtlNTU011Zs5kMoyOjvLyyy8vW7JfK7Ozs37QbbUlnHNzcwwMDCCEoKOjg56enqaViaeuXuPyj/8LzNYgetDG7TBxcg52IlN8gA4CycI3zjP8c7/A4X/9Lxt6nWAwyM6dO9m5cydSSjKZzKIxSsFgEE3TyOVyy+5ha0GzRoJU7tNL7WddXV3+HOJG9qYGA11rghKTinXlyngCgOe2opjc0wYU+yaVmFRsRSr7j+otHXUch8uXL5PP5zl79mzdPYiapmFZlv9vKSXXr19ndnZ22dKvWpxApZQMDw8zNTXFmTNnmJ+fZ25urq71edfJ5XINudl62Nksgz/4d8ncGkdvCSJcFzMUwHEN7IUsuAI9GkDmLfKXhhj73U+y829/f92vU61XaXJykr6+PizL8keQdHZ2LsrIbZSYXKonqZLKmXeemY/nptnW1uaXkdVz4GzkwJbJZBoSKlLKzwKfrfjar1f8+8PAh+u++BNIrbMjdV2nUCjwta99jfb2ds6ePdsUAeA5Uc/NzXHo0KFVC8nyMUSnTp3y/4Yb5d69e9y7d4+XX36ZaDTq9+wNDw+jaZofbKlWOroShdlZLv3Ij6KHJJoJbsEi0GEgDBMn7ZB9UCDU2wJ2AVx4+Cefo/dvfCetJ15s+H6guK9XjlG6desWDx48oK+vzx+j5PUirrXjreu6a1Jiv9R+Vj6HOBQK1W1OtpajQepl04rJlQb+lob9/glwp/SlP5RS/tx6rlFRP0PjCSIBnb2dm+MNUA+HemJEAzoXRuf5nrfV7xKnUGwU1fqPDMPw3QVrIZlMMjAwwO7duykUCg2JkXIBm8vl6O/vp6OjgzNnzix7vZUyk5Zl0d/fT0tLC2fOnPEzGvV+ODuOw+DgIMlkEtd1aWtr8zN9tfZMObbNxQ98gPTNUcJ728k/SOEUbKQli4e09ghC2AS6I7j5NEZI5/6v/QqtbztOy7PH6lpvOeW9SocPH17Ux3Pt2jUMw/AF2EaZXDQS+a8083Fd1zf4KBfNtZhfNCImpZRr1sOpKFIe5FpudiQUM33z8/OcPHnSLytcLdlslv7+frq6uti7d++qf9+2bXPhwgVM0+Ts2bPouk4mk2nIydgbIeK6LufOnfPfQ175+7PPPkuhUPDNYAYHB4lGo37ZZSQSWfb6rmVx7Sd+DDdfACkR4tEaNU2gxQzCO9rJTyVwSh8Xbj7PtX/2z3n1zz6L1sT3hicuu7q6OHr0qD9GqXIP8/otm72HNSszuRxLmZPduXOHmZkZvvjFL9LR0eH/fpf73Emn01UreTaCTSkmaxn4W+INKeV3rfsCFQ1zZSLB0W0xdG1z9gwsh64JXtjVpkx4FFuKpWZHVjOyWIrR0VFu3brFiRMnaG1tZX5+viFDHE8UTk9Pc+nSJY4dO1bTgXA5MbmwsMDAwACHDx/2y4q859RzeMtkMpw/f57du3dz7NgxTNP0o/937tzxZ0H29PTQ3t6+5KFj5MMfIjs+jmZIhCsxIjoiWixrdV0Dw3BwpaCQSGEENZy8g2aaDP/0P+H4J/8nRktzqjYq+3hyuRzT09Pcu3eP2dlZBgYG6O3tXXXpaD0047CmaZo/t/Pw4cM4jlOz+UW9fUmqP35t8Xq3PZG/3O/GM8TxygSbJSQrS+zv3r3b0N7mkUwm6e/vZ//+/YvGEHlurvWQzWY5f/48u3bt8keIVLtGIBBYVDqaSqWYnJzk4sWL5HI532m0WknstZ/6STK37mAniz2S0inumUJ/9D6VVp5Qe4D0g2zx9drCkEtw5xf+HQf+z/9fXfe0EuXvufIxSvBoD/PGKDWr/N1jPcRkJZ45WTabpaWlhQMHDjA3N+ebrkkpFwXLyt8j6XSavXv3rut6l2JTiklqG/ir2GJIKbn+IMl7j6++SX6jOLGnjY9/6TY5yyFkqmi1YnNTWda6nJFFNWzbXhQV9w4iK7myLoUQgqmpKWZmZurqc1pKTI6MjHDnzh1efvnlx/ra6jm8eQfKF198kfb2dizLesyxz7IspqamuH//PhcvXvSNI3p6evyDTPrGdWb+8q8xgxrZjEsg6CIMiZ1yQEKwXSCMELmpNGbUwMrYBFsM0E3y03Pc/fmf5eCHfrGmNddLKBRi165d7Nq1i3Q6zZEjR5ibm/NLR8tHkKzWuXIp1uKwVmnms5z5hdeLVy9KUDafyrLW5X7GmUyG/v5+ent7OXPmDK+//npTXt8rsT9z5oxfLl1Zil8Py40hqje45ZV11zuSpDzzdeDAARzHYW5ujsnJyUUlsT09Pcz+yi+SungRPaDTsrsdV2pk7s8AEGiPYSeSABghE4FNqC1APmkjnCxoGnOvfxHnn/4z9Cb1q8LyAZzyPaxa+ftq97CNDB6VB1TKTdcsy2JmZoaHDx9y9epVPztr2zaJRKLuMlchxCeA7wImpZTPV/m+oFgV+l4gA/ywlLJ/petuVjFZy8BfgDNCiEGKltv/TEo5VPkAIcSPAD8CsGfPnjVYqqJWplMFFrIWh3u3br/hS7vbsF3J5bEFXtm7OWdEKRS1zI5cqcw1kUgwMDDA3r172bNnT91CtJJCocD169d9YVqPqKgUk17pl+M4nDt3rqpAqOXwJqXk5s2bTE5O+gfKpZ5jmuYiU4V0Ou2L0EwmQ0d7O/z7n0MPCKyES3RHJ+nRGQKxFuxk8XCqBzQKmTxGRMdK25hdMexsFnchiRkxSV68xMLXv0rrqbM1/2waJRaL0d7e7peOetHw27dvI6VcNIKkWWWe6xH5X8r84tatWyQSCc6fP19zNsN13YZKExXLU09Z6/j4ODdu3Fj1nMdyliuxb2QMkeu6fi/5UmOIag1ueX2DDx8+5PTp06s2oakUJ/l8vlht8asfwX3zq2ilrVPmcwSiIeiOUMg46MLG+3QQFPd6M2ZgtLUi8ymQEmnbjHzkP7HvX/yfq1pjObUKumrl7/Pz80xOTvqVJEtl9DYjS1VNmKbJtm3b2LatOJfYy87+x//4H/mDP/gD3nzzTW7cuMH73/9+nnnmmVpe6reAjwK/vcT33wMcKv3vFPBrVNdfi9isYrKWgb/9wDNSypQQ4r3AH1O8+cVPkvLjwMcBXnnlFfWpsIEMTxajXId66nPG20yUm/AoManYjCxnq1/OUoJQSsnIyAh3797lxIkTVU126hWTs7OzXLx40c+K1Ssoyg94mUyGvr4+du7cyb59+5a8v5V6Ji3L4sKFC4RCIb/Psh7KjSNc12Xkv32cRCGLk8tihHXsdA4zYqIJGz0UQAiHQrpYSqaZAiNsEGoLosVLkf9gCNd2Gf3l/0Dsdz7V1F6kSioPbJqm0dnZSWdnJ0ePHvVHdUxMTDA0NEQwGPQFWDwebzh6vxFlZOXmF4lEgmefffYxMx+vBLDy4J7L5ZrmEqqoLcjl4TgOQ0ND5HK5psx59FipxL6RMUR9fX1s376d48ePL/neqCW4Zds2AwMDK+5JqwlwBINBjNf/AuMbX8PK5RCRMG666NgqHQdNFwRbdPSATn6h9KTSeBChCYIdQbITKQDcfI7Zv/oie/63n0Zv0tzMRrOD5ZUksDijd+XKlTUbN9QsHMepafaol5395V/+Zaampvi+7/s+Hj58yOjoaE1iUkr5JSHE3mUe8j7gt2Xxj+xNIUSbEGK7lHJiuetuVjG54sBfKWWi7L8/K4T4VSFEl5Ryep3WqKiTm5PFDejQFs5M9sRC7GwLq75JxaZkJVv9cgzDoFAoLPqaZVlcvHgRXdeXzPjB0iM+Kil3NDx58iSWZZFIJFZ8XiVeVN87GLz44osrZimWywSkUin6+voe62tqFE3TKLzxF+iaIBAOUMgU0HVJsCOEnbUId+qY4TDJB6VDmCOJH+rBml1Abwli5wrorsQMmxim4MHHP8KOH/snq17XUqx0YKs2qsMrk0smk8Tjcf9gVo/YWiu3xFpZKpsxPT1d1cwnlUo15JaoDAQfp9YgFzwy+9q1a9eyAq3e179x4wbT09PLltjX43LtVSa88MILK7q/rpSZbPaetBQj/+HnWPjK69jpQtFcSkpcikLRKRQDhHrAQDc1zK449mwSWWbYpWOhB3WcfLF0P9Ldwtiv/Qp7/vFPN2V9zSo1rczoVVYoxGIxfw9byaRoPWjEHCybzfLcc8/xvve9r5lLqVYZuhPYkmJyxYG/QohtwEMppRRCnAQ0YGbdV6qomeGHKWIhg55YcyJYG8VLe9q4oMSkYhNRq61+ObquLypznZ+f58KFCxw8eNCf0Vjrc6thWRYDAwOEw2G/rNVzSa0XIQTj4+O4rrvsCJFylsoETExMcP36dd9MqBr1Rv4XvvrXaHYOO51BCAh1d1CYmUOUjMaEKGYiw51hsjNZ9EgQmUujmzpWOo8W0NFbori5LFYiQeprXyT/vu8juGNtXKPrdXMNh8OLRpAkEgkmJycZGBigUCj4M+9WclPdiMzkcpRnMzwzH8898jOf+Qy//Mu/jK7rvP7665w+fbqmvztlIPg4juP4h+WVglwjIyPcvn172fcn1Cc68vk8/f39tLa2rliFUEs/eLkwLe+3XI7lMpO17EnNYPQ//CyZwX6McBANidCDGC1RUhMWWpmYNMMm0nEJhyRWWwjp7dmiOGsyGA+TmUphtoTQZIHMm3+FlP+saaJ/LbKGleM5kskkU1NTvkmR1ytvWVZT5nbWi+M4dfdzNxrsWoFaKkMfY1OKyVoG/gJ/E/gxIYQNZIHvl6q5YVMzPJnkUE/LpisvqJcTu9v4zMUJJhM5euLrO1RXoaiG9wG8Uv9ROeXDv+/cucP9+/d55ZVXahqCvFL03hOmlQ6rjcy2LBQK3L171y/9qvX+KjMBUkquXbvGwsJCU8vmABb+9A+QQifUGiI7n8NwC489RroSM6RjxyKEOlsQhQyBeJDMTBrDNCjMLqCbGoFQBFko8OA//wLP/MLHmrbGShrdh4UQtLa20trayqFDh3w31cnJSW7cuOGPLfDs+8sP7ptNTFai67rvgHvs2DH27dvHv/k3/4bf//3f55d+6Zf44z/+41ouowwEy/AcW1cqa7Vtm4sXLyKlXLLv0MMrRa0lkzMzM8PFixd57rnnfFfQ5VipzLVQKNDf308sFqurPL5aZnIt96RKxj/yf5H6+leQAqRdXIcRjeCkM4TbIjgFyxeTmqHhOMWAU7g9THYug3QlRqwFIcAwBXrIwIiFwHEQZpCFP/9T2r79u1e9zvUwwRFCEI/HicfjHDhwANd1mZ2dZWJigjfffBNgSUfotaKRzGQqlXrMeK4JrFgZWo1NKSZh5YG/UsqPUmwiVWwRbk6meNfRlTfzzc6JUt/kwOg833Fs28YuRqGgeACq95DuDf9+6623CIVCnDt3ruYPs6UcD6WU3L17l9HR0arCtF4X2Lm5OQYHB+np6SEcDtd1yCjPBHgHwNbWVk6dOtXUw0p+9A7W+D2QGq5lE+qIU1hIlRZhAgX0gIEsHc4inUGkLP7s7LyFMHQKqTxmSxAjbCItC8uScO82C3/9WVq/+b1NW+taUOmmms/nmZ6eZmRkhMHBQd/1tru7G8dxNkxMNjJbMxgMcuTIET72sbpEfdMMBJ8EvLLW5fDG++zfv78mo0QvELbcfuWZa3lGNrWWYy8X8PKCZEeOHPFLwGulMjO5lntSJQ9/7T+QHngLADMaoTBf9K/Ae03XxYyY6OEwmYfzyLLb10MBIj0B0g/mCAQ1vG9Ge+IIJCCRumDsDz/J5N4j9PT0rKonUUq57nuEFwALhUK8/e1v9527PUdor2e8p6eHWCy2Jr+rRsTkGvV0fxr4iVIQ7BSwsFK/JGxiMal4sphNF5hOFbZ0v6THsR2tmLpgYESJScXWJZ1O8+DBA1566aVF2cNa0HWdXC636Gu2bTM4OOj3W1b7YKyn1/LevXuMjIzw6quvMj8/TyaTqWuNXibAO6g2cgCsheTn/wAQ4NoI3QArj50tIAGrZGxhRgO4VrEsWNcFejhEftZCupJgZxyZyxJujyBdiWYItGgUzbaY/aP/zn1Mup4r9mQ1MtZivQkGg4tm3qXTaaamprh69Spzc3NEIhFM06S7u7umstFm0WgZWS2Z+gqaZiD4pOMFn0ZGRqqO91kKwzCWDUqVZw/Pnj1bt3N05bUr96MG+2j9vc/bk44ePer39K0Vc3/8u6S+8WXsdB6hC6Qs/XlqAqe0P+lBE6SLhk3LtlYKyeyjdWsaOg6hzhiarj3KapoawjRxMllEPo+RLxBKJbiVTPo9iT09PXX3VW9UgWH561Y6d2cyGX+O7Wp6xpejETHZSA+6EOL3gHcCXUKI+8C/BkzwE3afpTgW5CbF0SB/r5brbv5PJsUTgWe+c7Bn64vJkKnz7PY4F0bnNnopCkXdeNbz9+/fp62trW4hCY+7uSYSCfr7+zlw4MCy5hG1OCV65W5CCF+UJhKJustjhRBkMhkuXLhQ10G1HpxCjsLNIQLtbWQnZxCmCaVe0kAsSm66aIeombovJo2wiREQ5L11ug6BeAiEBjjo0RiykEfiYmgabV/4H0y3tnPt2jUMw/APaJvRkbASIQQtLS20tLSwb98+bt68iW3bpNNp7t69i+M4fjnZWtv3N3JYSyaTjQgHZSBYA4VCgQsXLhAMBnnttdfq+t0s5ybtOUc3KtQq96hq+1EjeJnJ0dFRbt++XXNLwWpwLYuFL/wxgZYwZtBASomUYJhxXC2ANVs8w+gBAydfKLZKRE0wTApzCbSAgZAuCEEwYuLYj34uetBED4dwMlmQEj0SwvjiZ3n5n/wrv696amrK76suf58vF9TZqFmPy5XgRyKRRT3jCwsLi+6t1p7x5VhqNMhSNCq6pZQfWOH7Evjxeq+rxKRiXfDHgvRu3bEg5by0u41P9d3HdSWatrkPdAqFRz6fZ2BggJaWFk6dOsWFCxcauk55hnFkZIQ7d+5UHdRdyUplrp6j4d69exfZnNdr1++6LtevXyefz/Oud71rzQwVMq9/FieTQZgBAvEIuekEUmhEumNEdnQR6Y6TuPtgUapKNw2QLkZLBDuVIdTRghHQKMynMDvasefn0QIGRiyOm8sh81l63/gTjv3UvyWXyy1yJPQi5D09PaueR7ceuK5LLBZj586dHDlyBNu2mZ6eXhf7/kbEZDqdbuTArwwEV2B2dpbBwUGOHDnSlGAWPAqSTUxMcPLkyYYdOsv3tqX2o0bwTF8ePny4rFP2StTznpj7g/+KGQkiHRdpWeihME42g65DsD2KsHMUEllEIAD5Yp+3buhoOlgJDT0WBbv4daFrBFvj5B4U4x26qSPkIxM24Trkbl7zxaDXV33w4EHf2GpycnJRUKynp+exUUMbUeYKtWf5hBC0tbXR1ta2qGfcy1x6JbNev2Wt99JI5YS3ns2AEpOKdWH4YYpoQGdH6+Y/8NTCc9vj/HbBYWQ2w96uprtpKRRNxzOiePbZZ9m2bRu2ba/oyLoUuq77bq2u69Z8OFrug89zNHzppZdoa2t77Hm1islcLkdfXx+dnZ20tLSsqTNfvu/L6OEwdjZbFIlCEOmIgOuiCxcpLNr3dpAvaFiZYi5S0wApCHW2kkpl0DWJHg7DfAqZzyNdiR4IYCcSaEEDPRQhd+cmC5/6TVq/9x+we/dudu/evchVtb+/3x9r4UXIN+OQ7srov2EY62bf36jBRb2ZSWUguDReH+ODBw84derUqgRfuZgsFAoMDAwQiUR85+hG8QJX4+Pj3Lhxo+p+VC+5XI7z588jhODll19eVT/h7du3yefz9Pb2Lvs+d3JZcn1vgG35PZDCKHuslScQNtEMHTuX978sXYlAEt3RiWvZuKWPCCMUQDckQhPFcnxdFPthW2NYC0kCbVHMsE76zb+k5cy3LlpLubEVPHqf37x587Gg2GbMTC5HZc94oVBgamqK0dFRLl68uKhnvKVlaQPKevenRnrA1xIlJhXrws3JFAefACdXj+d2FDMwVycSSkwqNjVLzVdbrlRsJfL5PBMTEzz33HPs2bNnVe9r13W5evUqyWRySUfDWjOTXsbj2LFjtLe3Mz1df9WglJL79+/T3t5Oe3v7kvdWuHcTa24KHBdN13GlTmRHNzKXLj7AKa5XaBqR1gD5aa2YIZCymKksZAh1xRHSxUmlEJrATmfQQwGsTI5QdzuGIRC6CYZG/vJb5I6eIHTsbcXrVriq2rbtR/+9LJ93gFsr04h6WenAVs2+f3JyksHBQfL5PO3t7fT09NDV1VV3kKDeMjIoZiZrcQCtRBkIPo43niMej69a8JXvXZ5JV6Vz9GpIJBKMjo42xWHV25Oef/55hoaGGn4flo9a6urq8rP5wWDQf5+Xi5XUp38brAJoGjJfFItuodjnLgwdtyQgAy1hAjFB+sEsmqGVTHVAcwrokRD5bPE5esBAQxJqayG3kPbXZUaD2Kk0gXAAEQiR6/vyY2Kyksr3uRcU6+vrI5VK0draimma6xoUa5bTdCAQ8HvGgUU94+l0mtbWVl9clleT1GtOlsvlNlU1ihKTinVheDLJawe7N3oZTeNwbwxdE1yZSPCe48039VAomkEul6O/v5/29vbHbOwbPdSMjY1x/fp1WltbV1365WURu7q6lnU0rEVMekYeXsbDcZy6+yzz+Tznz5+npaWFhYUFBgcHfSOJylLS3Jt/hqbr2JYNpcHfQRMKmeJhzC0ddvVIBOHaxHd3k5yY9UtehZREumK4mSy4LoF4lPx8Cj0aJRQAIx7FWUggTBPNdZB5i+Qf/yaBw8+jmY8fcA3DoLe31xc/2WzWH9eRTCb9Q4yXHdgI6jmwldv3e6Vyc3NzTE5OMjw8jBDCH0FSSzlZowY8+/btq+s5iseZnp7m0qVLNY/nWAlvzu3t27e5f/9+w6Y4lXgZRICTJ0+uKgDjjVwaGxury022Gl657YEDB9i2bRtCCN9MLJPJMDk56YuV9vZ2eiIhzBuDAGihME42X+yX9EzAwmHcbNFkR49EcTMpIts6sFIZPK8oYZoYAR3LNHAtuzQzV2KEDEw7+OhnYxUItUWLxrBC4kyM4DoOWo0isDIodvXqVYDHgmLd3d2PlcQ2k7UaWxSNRolGo+zduxcpJfPz80xNTdHX14dt23R2dtLd3V13RrbBfu41Q4lJxZqTyFk8TOSfCCdXj5Cpc6A7ypXxxMoPVig2gKmpKS5fvsyxY8eaIiAcx2FoaIh8Ps8rr7zif+g3ild2W8v6lhv47TgOly5d8sttvUi2EKIuk4L5+XkGBgY4duwYra2tfkaiPGpu27YvYMTILTTTRJcSO50lENIRZecnt1Ac/6GFgsiMjREQRHs7kLlHrrRGS5RCpnio0/TiQSbUGkHmssiSW64oXUuPRhCuS+pT/zfx71/ZHyEcDj9mGjE5Ocn58+dJpVIMDQ3R09NDR0fHloj+67pOV1cXXV1dQLGcbHp6mvv373Px4kXC4bAf8a+WiW20Z3ItjJueNjRNW7WgqmR4eJi2trZVmeKU4wneY8eOceXKlVWJFsdxGBwcRNM0zp49u6r1PXz4kKtXr/rltpWtCZFIhL1797J3715c12Vubo7CH37cF4tuaQ/Uo1GcVNEIUZT7PJT6HjXpEuxoxZqdB8CIxdCcAuHOOOkHsyAliOJzQ21RX5gKwGyNAhIcG2ybXN+XiJz85obu1+tJrCx9Hx4e9p1UPXHZzMzceszAFUL4FS+HDx/Gtm1/Rm86neYrX/nKon7L5f4GG+znXjOUmFSsOZ6T66EnwMm1nOe2x/n6ndmNXoZCsQjPfGZubo4zZ8405QM3nU7T39/Pzp07OX78OIVCoeESWc8oY3x8vOa+qaUyk9lslvPnz7Nr1y727t276MO3HjHpOSyePHmSaDRKvlQWVq2UdHp6mvnBN4nnM7iOi27o6NEowrYotsgVy8ik7ZSuUYz1CyEIb28nc+eRmNTcAlrQxM1bOLk8oc44mmtBKICTK37PyWTRw0HcbA50gXX3GoV7Nwg8c7ime/PuwzONOHz4MH/9139NZ2cnExMTDA0NEQqF/Kzlcn09q6WZB7ZAILDIvt8rJ7t+/bpfKldeTtZoz+RmOrBtVTo6Opp2rfn5ee7du0dvby8vvPDCqq/n7UcPHjzwBe+VK1cavl46naavr88P5KxmXTdv3mRqaoozZ87UNEZH0zTaDMH8w3sUXDBbImjRMIQNRCiEFQtjZ/L4jZCALBT8/zZMA9kWx55PoAVMyBYQQhLs6US4jx4X7O4iN/7A/7cZCeJkcuA4iECAXN8bDYvJygxdZUmsFxQrD+41ww16PcRkJeVGRNPT07z88stMT09z7949BgcHiUaj/h4WjUYX/VySyeSq+8ibiRKTijXn5kNPTD5ZEd5nt8f54wvjzKULtEdX11ehUDSDbDZLf38/XV1dnDlzpimiwDPGefHFF2lvbwdqnxdZiWVZZLNZ0ul0XRH7amLSy7y++OKLVQ+rtdy767pcuXKFTCZTk4mQZxgT/fIYdjiIpZm4yQVENAoLxbmRACIYRNpF0VieBTAMgdEaw15IooeDaEKgx+O4U0Ujz9C2Tkin0cJhnFwBYQQgbyE1AyOoobfGEVae7F99Cv3v/POGD09CiEXGN16p3LVr10ilUrS1tfnR/9X2jJXTyFy0WlmpnMw0TaLRKLZt11zuqsTk5sGbSTk6Osq+ffuaMnPV60OMRCJ1z6OshleaWb5XNoJt2/7YlNOnTz+2ruWCZLk3/wzpSgKtMXTNxclbIASaEJhCYkYDSC1E3nGRuoEsBQWFoYNrYwYNHNMAu1hZIYQg1BHHKus/14SL2dGONTuHHg4VXWIzxUoKLRTGun8Xp5BDD9QfyFyu3LMyKOb1iZf3j3pBsXr7xOvtWVwLQqEQu3btYteuXUgpSaVSTE1NMTQ0RCaTob293RfOjexNn//853nPe95znWLU8zeklB8q/74QohX4HWAPRX34H6WU/7WWaysxqVhzhieTBA2Nne3NK3HZDJSb8Jw92LXBq1E87XgfqMePH/dLAVfCc0mt9iHqCS1P+JWLikbMe5LJJP39/RiGwfHjx+v6oC8Xk+WZhNVkXguFAufPn6ezs5NXX3215vVIKWFhCqTECGhYRgBdCGzAdYqHPGmUmcOUiWAhBKH2GKmFJEY8DrgYhsAC9JYoRsDAToObySAMAzebQY/HMKPh4hjKXA40ELkk1vm/QD/1HQ3deyXlpXJSSubm5piamuLOnTu4rutHxzs6OlZ14Fqv6H+1crKhoSG/lMwwDP+e2tralvzdb7ZSsqcVy7IYHBzEMAzOnTvHxMQE2VIZZ6MsLCwwMDDAoUOHfLOURvFMzmZmZmrOIi6Fl9ncu3cve/bsqfv51q0hjHAQgURqBshiRtEXjYEAwnUIdcZxtAD2dDGQpQWDCFyQknBvJ3Yi5b8v9ICObGsrji0KhxFI9HCwuG9FwggBWrQFN51C2gWwLXJvfJbou76n7vXX0ztYS5+4FxRb6XeyEZlJj2r3LIQgFosRi8XYv38/ruv6AbLf+Z3f4ROf+ATt7e38+Z//Oa+99tqKJeSO4/DjP/7jAO+hOAv3LSHEp6WU5Wn4HweuSCm/WwjRDVwXQvyulLJQ5ZKLUGJSseYMT6Y40N2C/oTNY3x2e1FMXlFiUrEJyOVynD17tq6DjCcKKz9Es9ksfX199Pb2cuzYsaofdPX0I46NjTE8PMzb3vY2BgcH685QeaLXi9gHAoFVZRK8g2Qjg83tG/3g2miBAG4+hxmP4iSL1ReuVYzmG6aBVXq8V+5a/IdE10GLRNADOrguwrbQW6KYrS1QKICug+NgtESw5hOY8SiikEcYQaS0wAwhs1kK/V/CfOkd6MHmOvoJIejo6KCjo4MjR45gWRbT09OMjY1x+fJlvzexp6fnsdKrldioA5thGEQiETo7O9m1a5c/r/POnTssLCzQ0tKyqJzMQ4nJjcd7rx44cIDdu3cDq3OihkezcV9++eVV98RalkV/fz8tLS1Vs4j14FVbvPTSSw1lNt3ELDKbRo9GkekUeHZfUiJLe5MIRZCZJEIIAvEwgk6s6Rm0SAQyxX1MD5rQGsdJFOeDC8CIBLDnQW9pAVw0aSNMs/jY0nPcNMhcDqO7C2fkWkM/g9WMBqnsE/fE1/nz5xf1u1frE99IMVlLCb6maf6+/DM/8zPs2LGDz372s3zmM5/hc5/7HL/4i7+47PO/8Y1vcPDgQW7dunUbQAjxSeB9QLmYlEBMFH8BLcAsUNP8MCUmFWvO8MMUr+xtvORjs9LVEqQ3HlQmPIpNQSP9OYZh4DjOojELk5OTDA0N8cILL9DZ2bmqNbmuy9DQENlslnPnzmGaJpqm1d2/pmkalmXxla98hX379jUUsffwhG2jB0l7+AIyn0ULhnBtB/I5nIKFFKCFQphtcYRh+mLS9XqShADXKWYnezoQ0oFS0tJsiWCYOuBitESxFxLguhjt7RhC4mh60d7fNIs9ToaOsAsU3vhjwt/6/Q3/LGrBNE22b9/uu0em02n/b8QrvfKi/yuN69joA5tXGhkKhRbN60wmk0xNTXHp0iWy2SwdHR3cuHGDXC5X99+IEOLdwEdYopSs7HGvAm8Cf0tK+QerurknECklIyMj3L1797H3aqNi0jPrchyn5tm4y5FIJOjv7191dtObH7naaovcN/4SIxwCw0AC0vGGRBrgiUldwwsDCldimiBjLeBY/nWEbmCEBE5SQCCIcO2ioGxrRQuaYOeLYrSzHa00u9Ir59eCQUKdbeDkKdwYIHD4RN0/i2a0Z1RWJ1iWxczMjN8n7o1U8Qy7NnJvamRskeu6vPTSS/zMz/xMTY8fGxvzgzEl7gOnKh72UeDTwDgQo7g31dTPosSkYk1J523G5rN8oGf3yg/egjy3Pc6VCSUmFVsTz2Ifih/i165dY35+vu4MZzW87Oa2bdt4/vnn/QNCrTMjy5menmZhYYHXXnut4QHiUkp/nqUnbJdiqcOMlBI3MQOui7QKCNMANwhOgtD2HnTvLBIKo4dCZEfvF10QKQpN77qGIXGtR5ldoVMUl0L4g8XdXI5AbwxcBz0SwkmlEbqOtCyEGQYjgHXrMsG359CanJ1cjmg0yr59+9i3b5/vHjk5OcmtW7cA/KxlW1vbY4ezjRaT1Q5s5SNIDhw44N/TJz7xCW7evMm3fuu38i3f8i381E/91IquwyWB8zHg21i6lAwhhA78e+ALTbq9Jwrbtn031GqizwuC1UMmk6Gvr6+qWVcjlFdbxOPxhq/jOA4XLlzAMIzHxjfVi5wcQdMFTqnfETMIuTyaoftVE7JMNGIViqKwLYqdsx6JTIqzcEVnR9FSzC1VXESCjwQqxdmTQpSe5bqIUBijsx1hmMhCGmvwjbrFpOu6a2IAZprmY33i5YZdgUCAQCBAPp9f9WdfvTRiDlbvaJAlKokqv/gdwAXgW4ADwJ8LId6QUq54yFViUrGm3Joqlk0cfMLMdzye3R7njeFp8rZD0Fgfe32Foll4EX5vHmVnZyenT59e9Ye5V65VrX+zHvMeKSXXr19ndnaWWCzWsJC0LIu+vj5aW1tXNT/OGrmOdOyiQU46jRAarm4Q2LUTMxrCTZXKwmybYAD0A3vJ3L4LFHuKvP4lzTDQW2LYU1MAGPHWYr9SNlPMZApR7KGMhHBTaV+QylwOEW/FCJrFewiGKLz1Z4Re+xs130M95ckroWkanZ2dfgbbG9cxMjLiuxF60f9oNLopxWQl3j195CMf4Utf+hKf+9zneP3111fMukKxlAy4KaVcrpQM4CeBTwGv1nkbTzyJRIKBgYFlKxDqzUx6/eRLmXVVY6kMmeu6XL16lVQqtWJQaiUymQznz59ftfMrgLMw7bu0ynzRDEdaXlXEo/ecP3IoGHwU6ApHCAQd8vk8QtPBLQa2AppbFKTZ0pgj6SKDQciVfvYBEw2JtG2EEOiRMEY4WKzCAMimcJLz6LG2uu5lrdyky4lEIotKYr2e17feegvXdReVxK71ntWImMxkMnXNbN21axejo6OLvkQxA1nO3wM+JIsfEjeFEHeAo8A3Vrq+EpOKNWXYc3J9gmZMlvPcjji2Kxl+mOL5na0bvRyFoi50XWdmZoZ79+7x/PPP093dvarreXb2k5OTS5ZreWWuK+H1IsViMU6fPs0bb7zR0JqSySR9fX0cPnzYHyPRKO7tQQQgDQMRieDOL6C3tqHZhaLZBRQPUqXovdkaJ7C9l8LEQzCNYk8kRcdDLRr1xaQWiaAJiZPNIFwXvb0N0dKCo5vFrifbRoQjyHwOM96CKOQhEADpIifv4lgFdLM219VmlZFVo3xcR7kb4aVLl8jlcr5BRi0lsc2m3gObJ7pbW1t53/veV9NzxsbGAMpPbI+VkgkhdgLvpxj9V2KyDK+X8cSJE8tm+2oVk41WW3jXr8yI5vN5+vr66Orqajgo5b3/vLmW9Qjc5bCu9YFjFXOKto0UAhEIord3IKwcIhzBzWagUBx7pAUC/n+LQBCRSxPo7sTJWQhZEo+AiEZxsiVn6lAIIxLBLglSMxIB10GW5lcaoQCarhVNeIQAKbEv/DX6299f989nPRFCEA6H6e3t5cCBA36f+Pj4OJcvX17z0UnV/tZWIpVKsW/fvpof/+qrrzI8PIwQYh8wBnw/8AMVDxsB3gW8IYToBY4At2u5vhKTijVleDKFqQue6dg883CayXNlJjxKTCq2ElJKEokEs7OzDQ8UL//g98RfNBpdtlyrljJXrxepXAA2klHzMpKrLUXzcKdGS3MjNTTDwNUN9GCgeIgr3a8IhsDLDGiCUHsca24BrdyALBQqzm0rPVYTIPRH39dCIQwchOXiBoLFQ18oBJGysibXAcdB5rNYF19Hf/nbarqH9TqsVXMj/Ku/+ivm5+e5efMmmqYtKold6zU10pcE9WVJaiwl+2XgZ6SUznofmjcrjuNw8eJFXNetqZexFjHpCb+Ojo66qy2q7VFzc3MMDg7y3HPPrVjuvBSekdi9e/cYHx9veN+thjs1Avl8sT/SDGD2dBeDTgBmuFia3x7HTmVwpqdAN4Di9yUCAehCQiwKifni14MhDE3ilEzBtGAAzdR9oSgCJkIEcEtiUoSLwUMBOIEgIp8lf+86C0cma54DuVZlrrW8rre+an3iU1NTXL16lXQ63fTRSY3OwK2nn9swDD760Y/ynd/5nV+g2M/9CSnlkBDiRwGklL8O/Fvgt4QQlyj+Gn9GSjm99FXLrl/X6hWKOrk5mWR/VwuGvjGlTWvNM51RIgFdmfAothT5fJ6BgQEAjhw50tCBxutbMgzDd1ysJfu3Upnrag1y4FF5bKFQ4B3veEdTPvDt+8MI2wbpIgImbsbC6OoGq3Qg8/qUDNMXkyDQNAg/sws7lfGvJXQDTbronV044/fRsMGWxYOgbRdt+kt9SiISQRbyaI6NHg4iXAc3EEIUciA0hOvijN/CPfGumsqxpJQbUmqqaRqGYfDcc88Bxb/Bqakp7t69y/z8PC0tLf4A72YdsMup98DWyBzVXbt2AZQbBFQrJXsF+GTpwNwFvFcIYUsp/7juF3wC8EYGeaMwahES5b3e1ZidnfWFXz2lgOXXL//937t3j3v37vHqq6/W1adWiRDC7wU9c+ZMw8GNyqCFnU5CNlnam8IEtvUgNR0KeSQgSvciNA0zZCJ27YJM9lGPZFkfpd4ax0knwXEQoUhxDEhrK87sLMIsltdr7Z24s9MlQeoW/9+x0aLFHm+sPHowiMzn0O0CCzcvc+WK5pveLJfh24jMJBTf70sFMcpn2JaP6CgfndTT00N7e3tDe2ujYrJep+n3vve9SCkPl3+tJCK9/x4Hvr2ui5ZQYlKxpgxPPtnln7omOLItpkx4FFuG2dlZLl68yLPPPksymWzo0AyPylXHx8frstlfqszVm2uZyWRW1YvkDSKPRqNEIpGGhWTloca5PQgtbbAwDdKlGM93HvUleVmA8kRUyQjPNECGAshcGigNCLfACGi4kUixlFUItFgcd24WLRgEV4d8rpQJBdHSgohEIZNEC4WhkINIC+QzyEySoS98ikLPfv+wtlRJ30Yd1ioJBoOLBnR7jqoXLlwgn8/T2dlJT08PnZ2dTRlQX28pWTabrVvUvvrqqwCHlislk1L6tWlCiN8C/vRpFZL379/n5s2bnDhxgtbW2s8JS2UmpZTcuXOHsbExTp06RSTSWEWUl5ksd389e/bsqv4Os9ksyWSSHTt2cODAgYbfg/Pz88zNzbFt2zZfTLh3BhEIpKahhUMIx34kOM1AWXCr+DUDF9negZ1JFb9k5f3rC9tC696O++A+WsAAx0I3dBzwnVu1SAR3QUejmEUUsRhyfg5hmiACi66HbrIrPc6hb/tBMpkMk5OTfoavmhP0RorJWoRg+YiO8tFJ9+/f59KlSw2NTmpETG62sUVKTCrWjJzlMDKb4f0nVjcQeLPz3PY4nx4c3zSHNIWiGlJKbt26xYMHDzh58iSRSIRMJrNshH85NE3j0qVLAHXZ7FcrIcvn85w/f57u7u6qcy1rJZVK0dfXx4EDB9i1axdTU1N1vy+9TEkgEPAHYoeDJm5qDqnryGgckZxHD4WQpXIvCY/EZJnZBW5pULgQmJ0dFObniv8uHeo010b27ABZGsAejkAyiaYLiLQWjTTyOTBM9GAAYejFZ+aLj5dWHuE4aAgORiT5AweYnJxcZCLR29u7KGLeTAOeZlHpqOo4DjMzM0xNTXHt2jUMw/APaK2trQ39fdR7YEsmk3Uf1krvgZ+g6NK6VCnZU4/jOFy+fBnLshoKHFXbQ7wZtKZpcvbs2YayfuXXT6fT9PX1sXPnTvbt27eqz/aZmRkuXrxINBqtOftajdHRUW7fvs3OnTv9kUsdHR0cGBtGOC6io6voCg3glt7nWtnPofQ1qRvoOMhtO3Dm5/z9SJoB9FKgzA0E/K8LJHrv9qJJGCDsPCL+qDRdBILISBRNE7ii9HqFkoCVIB+O4CRmiMQ72bt3r5/h85ygy8ve8/kyIbqOVJu3XAtLjU66cuXKIsHc1dW1ZGCzkRJ8JSYVTw23plJICYeeUCdXj+d2xPndr49wfy7L7ie0N1SxtfH6GSORCGfPnvU/NHVdx7KsFZ79OJlMhrm5Ofbu3cvRo0frOhxVlpDNzc1x4cIFjh071nAvEjxybDxx4oTv+uqVhNW6Pm9+4vHjxwkGg755TFdyjO1IKBQQgRBuuAU9n0GWhKM0A765DlrZx2qp9FXqJqYhKLR3wdw02Hl/fUZrDOaL4lCzcrjtnWiAU77m7u1owkZ62RjHhnAUYVuwbTfoGiRmiYUDtB0+7M9V8yLm3kF2qZEdmw1d1/0MK0Aul2Nqaopbt26RSCSIx+N0d3fT3d1dc/awXifZRsrIAKSUnwU+W/G1qiJSSvnDdb/AFieVStHf38/u3bsbHtFR+RwvALR///7KWXoNUSgUGBwc5MSJE6uetXv37l1GR0c5ffo0Fy5caKgSRErpi5PTp0+j6zoHDx7EcRxmpyfRbiWxBZjBADKTLlY6eEGj8p+VN9YjEATXwdAFsr0D5meKXw+GKXaES7SOzmLQynt+tAWyxQosTYDe3g5WrvRvifT6ub2xhFJCMIhoa0cEAhSGvkz4zCMjq3In6GeffdYve7937x7f+MY3aG1t9feARudu1kOzyv8rRyfNz88/Njqpu7t7UYCvUQMeJSYVTwU3J72xIJvnD34tKDfhUWJSsdmYn5/nwoULVfsZDcMgm83WdT1PtLW3t7Njx466D4PlZa5eL9LJkycb7kWSUjI8PMzU1NRjjo1eBmOlQ4KXtX348CFnz54tijzD8M1jsl/5I5iXuLqGVcijhSKQzzw6sOmPMiuubaEB0jTRvYh/oLgms7ODQiaFVpYd1MsOSpp0MVpbwcmh5TM4WrEnkmAALBvhWLjhFkQ2hQyGEK3tiECwWFYWCmPd6EM//vbia5VFzD1nVU8sz8/Pc+nSJT9ivposznoQCoXYvXs3u3fv9o2jJicnGRgYwLKsRSWxzbqXZDLZcJmkojrj4+PcuHGDl156qeExP5V4pbLNMNny9oFkMsmLL764KiHpuq5vKuRlSjVNq7sywDMRa2tr49VXX8V1Xf8auq7Tmp3BkRI9Ei5+XRa/L61C0Xm6ZK7jBkJodjHgJcyAX92gtbTgWhYinSiWxDrFQJceLM2ULAlQEQohCxlE6d96JAoLnpgEosX3ipAurmEWA10dPWjRSHGbzGdw5qfQ26o7hntl72NjYzz//PPYts3k5CR9fX3Ytu2P6ujs7FyTYFijmcnlKC+JPXr0qD86yQvwRSIRenp6yGQydZV5QzEz2ainwFqgxKRizbg6kSSga+zrarxhfStwdFscTcCV8QTfcWzbRi9HoQCKByMvKr6UcUQ989rKZz6ePXuWa9eu1T04HIofsF5J2mp7kWzbZmBggFAoVNVBtppZRSWO4ywyxdA0jYKXZQTc9DzSthCltRum7kffbadYy0iZwZjw+oXMIFD6+QTD4OYxNQeruxcKKf/xunCRJYEIICJhSOYQUkJLGzIxix40kVbRXk+EIpBNQaQFTTq4rlOc/6ZpyMRM1Xssd1bdsWMHg4OD9Pb2+v1LgUDAzwLEYrFNXa4vhKC1tZXW1lYOHTqEbdvMzMz4pWXevXR3dxOPxxu+l81WRrbVGRoaIp1Or3o2o4eUkosXL5LP55tyzfK9ZPv27au6Xi6X4/z582zfvp39+/c/KgctubnWile2f+jQoUWBwPI9TT64C+EWhFNAajoa4AoN4WUIveoIMwglMYnxSEwKM4Bo70Rmkgjd8MUkgSC2FsBcKI4vErqOjLYivD0mGCr2cpfWIcIRKOSKPZShKKTmEfE2cAqg6+DYWMPn0V99z7L37GUIK9/j09PTTExMMDQ05Pcl9vb2rsoQqZz1mIFbOTrJc4l98OAB4+PjzMzM+JnLlf7+crncumRsa0WJScWacWUiwaHeFgLG5i6pWi3hgM7erqgy4VFsGizLYnBwENM0OXfu3JLZmlrFZKFQ8KPjZ86cKQ6ornNwuIfjONy9e5f9+/evqhfJ62nyXCCrsVImwDv07dixY8m15O8OgVNABiOQSyKk8MtNRSiCiMfRwmFo68ApWDA5XjxgBUOQLxruuLoJbr7UO9kFE0XhKIWG7to48TbIppBmEFHeVxNuQQI6EjsSx8gkwC4eGoWu46IjvNlyQkfaeXJTo4S6ly718w5r5WWk3vzH69evk0qlqhpjrJa16tU0DMPvbYXivUxNTTE8PEwymaS1tZXu7u66yws3WxnZVmf37t1NC1Rks1nS6TR79uzh+PHjq76mJ9q8MtmhoaGG9jZ45CRbbW5vPZlJLziynDmRlBI3NY8TiWMkp3Epld0HwohsBqkbCK+H2zShVITiOjbeqUwiMIRLvmcXuv2oX9ENRtBNBxZKaxfglvYmSak1PBSFXBoJyEj8UZ+kYSCNQMnltQCagbCzuJkEdmIWI770XM1qbQmGYbBt2za2bSsG672+xMuXL/t9o16VRaOByfUQk+UIIWhpaaGlpYVMJkNnZyemafolsUIIPxtbrTVho1y5l2LNxaQQ4lPAJ4DPSSkbsw1UbEmujCd455HVDUHfKjy3Pc7AyPxGL0Oh8Gc0HjhwYMX+IW+8x3J489WOHj3qf5hDfVlNj+npae7evcuOHTvYv39/Xc8t73+cmpri8uXLvPTSS7S3ty/7nKVExPz8PAMDA1UPfR5SStzkDFqhUOyLNCNo+TRuIYfd1o2pi2JZlxBoOohYC27kIO7dW9gYeBLeLTscyVAYJ9SCnkshw1E0IXD14kex3dJOyCngGgE0u4Cw8jiRYimTDEYgk0CzcljduzCFxApEMdNzOKEWhGsjkLgTt2AFMVl5WAuHwzzzzDM888wzfp/Pw4cPmzoPcr0OP+FwmD179rBnzx6klCwsLDA5OUkmk+H111/3D2gdHR3LlsSmUqmmZT0UNGXOKzzqaw6Hw4uyfo0yMTHB9evXF4m2WmbhVsMr21/KSbaWzKSUktu3b/PgwQPOnDmzpCszgDM9VsxCCk+gFv/fDbegt8QQmlZydgXpCkjMFu/PeWS6JkrZSjOg4zplP0tNQ3fy2OEWNNfBG4MrAUIRNCEoROOYuTQyFEWWj38TGsTb/b3RGz0iAOvORYwX37ns/a/0O63sS/QqE65fv45hGH6grJ7KhPUWk+U4joNpmn4PKeCXxI6MjDA4OOj3vHd3dzdcfv/5z3+e97znPdcpFtT8hpTyQ5WPEUK8k+IsXBOYllK+o5Zrr0dm8teAvwf8ihDifwK/JaW8ttKThBDvBj7CMjddetyrwJvA35JS/kHzlq1YDZPJHNOpvN9P+KTz3I44f3pxgoWsRWu4OZF8haJeRkZG6hrTsdy8Nikl9+7dY2RkpGqZbL0lsrdv32ZiYoKDBw82lKXyei3v3bvHxMQEZ86cWbHMZ6lMwP3797l169aSvZreAcR6eK+YCQyFiz2SZgiZF8hIHD0URBRKpWLeE40AJjmsvQeQyRzkFxZ/v7go3I5e9PEUMlA0j9HtHIVgBIJhhHCxI3ECiWn0QgbZEgdZQOPRIdQJRTGtFEIrXllqRlGcBsO46QUcK49uNjYapLzPp9wY486dO8zPzxOPxxsyxliLnqSVEELQ1tZGPB7nwYMHnD17dlG53HJz71SZ6+ZCSsmNGzeYnp7mzJkznD9/viHjkvLrXbt2jYWFBc6ePbvIaXOlWbiVuK7ru9MuV7a/UmbScRwuXryIEKJq2X4l9uQ9pKH7fYxCgtXWi4i1IXIJpG4iXAchQISjWD17MKbH0Eql+I4Z9Pu6MUyc1ij61GjxWrZVDOC1tCJLJm2aALulrfQ80LxxHqFiUMwxQ+hWDuwCbntPMZhmBBFWrlidgYSFSZx0Aj1a/WxYb9DJC3Z5AcFcLsfk5OSiygRPhC0nzDdaTFYGtqqVxE5OTnL+/Hk++MEP4rouf/Inf8I3f/M319Rv6TgOP/7jPw7wHuA+8JYQ4tNSyiveY4QQbcCvAu+WUo4IIWp2xFtzMSml/AvgL4QQrcAHgD8XQowC/zfwO1LKx6wEhRA68DHg21jipsse9+8p2nArNhFXxosln8/teErEZEk0X51IcHr/6tzfFIpGsG2bZDJZ15iOpTKTtm37h5qlymRrFZO2bTM4OIhhGJw9e5YHDx6QSqVWfF4lQohF1v+1fPBXZgKklFy9epVkMsnZs2dXLOG0HtwqRtk1DXQTUcjhBCPouDiaUSwVk9LvS8Iwwc5h6lDo7IbkAwA0+ejnJJAEAgJX07GMEEFKh7bWrtIcN7dYkkax1EyGwpAtoFk5HCNQLBkLBMACPV8cPC7yGQBsI4zmuuTHhonsfb7qPdU7KqVyHqRnflNujNHb20tHR8eyv5ONLMvyDmuV5XKZTMYfP5JKpWhra/NNPhrJTK4U+RdCvA/4t4AL2MA/llJ+uRn3+CRTKBTo7+8nFov5IsvbfxoRk971WltbOXXq1GPvh6Vm4VbDG2vU29u74vzI5TKTXsn9zp07a3a5dTJJNPGo7N6NtaMLiVMqApR6ACiZ5Lg2Rsggu+0AkZmR4vPNMDpFIeoaAUzDwAmEEY6NJm0QAkMXWNL0xYITbi2qVkDHRWo6rhko9moGI+hWDqHrxd5uO48bCKNZOTACiHwGaQQo3Bkk/Pzbq97TasvhQ6HQosoEz0317t27uK7rV1mUu6nC5hOT5ZSXxO7fv5/+/n5OnjzJ+fPn+cVf/EX+/M//fFmhDPCNb3yDgwcPcuvWrdula34SeB9Qrqt+APhDKeUIgJRystZ7WJeeSSFEJ/CDwA8BA8DvAq8Bfxd4Z5WnnARuSimXu2mAnwQ+Bby6JgtXNIzXP/jsU5SZhKKIVmJSsREYhsGxY8fqek61zKRn3e+VPS733JWi9+l0mvPnz7Nv3z6/r7Geg5pHNptlYWGBbdu2cfDgwZqfV27A441HicVinDx5csXDmpVJILNJ0E2kFAiT4szHlhgin/bHgji6iV4q43LBL201AzqF7mcITN1b1Iuky2LJWKFrJ0IzgJIQ1TWM0n8bJeMeJ9aBa4Yhu1AsEYt2gKZjuhYuRZFqh+IYuQSOGS66L0oHZ35qyftazTzcSvMby7KYmZlhbGyMS5cu+e6E3sDucjYiM+mx1By3SCTi/51LKZmbm2Nqaopf+IVf4Atf+ALPPvsszz//PKdPn15yRpxHLZF/4C+BT0sppRDiBeD3gaPNus8nEc+N+siRI/4sP2iszB5gYWGBgYGBx65XTq1lrl6pfK1jjZbKTHr3eOzYsSVL7iuxsylcKdGFQLgOdrQNoWkgnaKTKmCjoQNSCDS3uM9r0QgFdweBufFiX2Mpq+maYXQsnM7tiMQsemmP0HARkShYpSoMTRZ7IZEIAXYk/sjN2ij+vxOKlkr180h/3qVWLMM3A8jUHHZqHqOl7bH7aua8biEE7e3ttLe3c+TIESzLYmpqitHR0UXjknp6enBdd8NcresNikgpaWtr4+d//udrfs7Y2Fhl28t94FTFww4DphDii0AM+IiU8rdruf569Ez+IcXN8r8D3y2lnCh96/8RQpxf4mk7gdGyfz9200KIncD7gW9hGTEphPgR4EeAJU0aFM3nyniCXe3hp6bksycWoqslwFVlwqPYQlQeyLz+oVqs+zVNW3ZG5cOHD7l69epj16q3H8kb+B2Lxdi1a1fNzyt/LU/UHjhwoOZrWOO3cM0IWj6FpYfQJWixNjRvfFtJGEkjBCUxSdlBUXct9HgUJ92K6Raj/K7Q0Uv/LcJR9ELOa3NCDwQQOODa6K5NIdiCZYQw3Uc/Y2GYSMNESBcnFEfLJbDNMEYuQa6lGz2g46AjbJvcwhSh1scPps08rJmmuSjT540fuXTpErlcbpExxmaO/EPx4OmV9370ox/lp3/6p9E0jU9+8pNcu3aNH/mRH1n2+bVE/qWU5Sn5KP5vX1FJLWX2S5XoL8Xo6Ci3b9/mlVdeWbaEuZZAmXetesYaVctMjo2NcfPmzSUdt5ei8PBu8Y9HShAabrQVI58GKdHckmtr6bUcLeBnIKXQEbEoTjpSrLgobf82OiYWpiYphKIgHwXACqF2AiUxaboFnGAQZOl6oQjCM1ksvcfcYATpOdiW9kZZ6s10AmEczcQZuUb8udOP3ddaVjCYprmodNTbrwYHB5mdneX69evs2LGjqSOGaqGW/amcZDJZdwn+Ehnfyi8awMvAu4Aw8DUhxJtSyhsrXX89MpO/URri6yOECEop81LKV5Z4TrVPusqb/mXgZ6SUznIfjFLKjwMfB3jllVfUxr1OXJlIPDX9kh7Pbo9z9YESk4qtgye2XNfl2rVrJBKJx/qHlkLXdXK53GNf93qbZmZmqhpI1NqP5I02uX//PqdPn+bSpUt1m2IIIZidneXOnTsrmvWU49oF7Gyq6Iao6ehuAdcMYRQsXzgKt1RaZphQOndp0ju8GcUeRwGFbc8QmL4LgG1GCJQ+r4KiQN4M+A6IbiCCrRmEM8WsohVuJaBLdFwsM4JpZdCdPCKgA4K8HsEkge7a5IMx3HALppulYARxJciH99dcTFZSXorlOA6zs7O+MYYQAsdxSCQS6z5+pJFySNu2ec973sO3f/u31/T4GiP/CCHeD/wC0AN8Z12LekpoZpk9POpp9MaIrPS34I0vWupaV65cIZvN1tVS4F3X28O8nk1vz63XNdlOJ4pzZ4VAxjtK9qoUx4PYxaOul40slt+X/lsTaC7YPbsgteBfTxSHUiIEyGgcUsV9SAoNYT66R6mbyFALZOeL/zZN35xHx8XVDOxQDK2UrdSkg1uq3sjHe7DDrQjpYrmQT80RbFm8J6/l/lRO+bikAwcO8OUvf5menh7fRdfrp+7u7l7z/WqpyomlaKSfe9euXYyOji76EjBe8bD7FE130kBaCPEl4EVgU4jJnwc+W/G1rwFvW+Y594HyXbnaTb8CfLL0C+4C3iuEsKWUf7yq1SpWTaZgc2c6zd94ccfKD36COLotxn/72j1sx8XQNyYCr1DUgxcpf/PNN+ns7KzaP7QU1Q5zXilpS0sLp0+frhphrqXM1XEcXzyWD/yuV0ym02kWFhZqMuspJ/NwBFeC7rg4wRgil0JzC7hoGN6stpKJhSvL7rFUXuboQd8wxw1FsWLdmMkpHDMEpa/bRgjLiBMqFANQeS2EXnZoIxhCL6VBrUAU08pgBSKgRwi6Wf/6RiFFum0nhltAAo4UGJrEsm3yuSzBUHjRvbmuuy6HNV3XFxljeKLyxo0bJJNJvz+xu7u7puDFaqg38g/1jwapMfKPlPKPgD8SQnwTxf7Jb61rYU843piOvXv3rlhmX4uYzOVy9PX10dvbW/MYkaX2qHw+T19fH11dXRw7dqzu95FXdu/tk/F4vKaS+8pruK6L69iY0sEJRBG6hijlYNzSrEmk9MvrC1qAMJ5ZWPFxhi4phFvAKo4v0oX76K81HPXFpGVGMHWJqxloro0diOAEwpglMakFwkhchHRACAqhVoShI6SDi0Cj5DqdT1GIdaI7VilrKUk/HKsqJjcCKSW9vb3+PM/1GJfkUW/VRjKZrNvR9dVXX2V4eBghxD5gDPh+ij2S5fwJ8FEhhAEEKAbDfqmW66+ZmBRCbKNYrhoWQpzgUbYxDqz0U3gLOLTcTUsp95W91m8Bf6qE5Obg+oMkUj49/ZIez26PU7Bdbk+nOdy7spOmQrHRzM7Okk6nef7552vq+Smn8jDnjSQ5fPjwogHblawkCpea/ViPmHRdl0uXLpHP53nppZfqEpJSSqxshoB0cDQNzXVxg2FC6TksPUipWwjdzpUeX8pGCgO9VJLq6qZfJuYIA7u1CzM5hVtmiGHrYcyA8Ad/C13DEI+yITIURbqp4ve0ohByQm04mkGwkCXoZHCFRs6M4wSjmHYaWw9huBaa6+DoARJTD+je7X9U+qxnVtDDNE3i8Tgvvvii3584OTnJ7du3ARYZYzR7feshJmuM/PtIKb8khDgghOiSUk7XtbgnlHrK7GsRk8vNfFyOanuN12v57LPP+jNN60XTNLLZLF/96lfrKrmvxF6YKlawSokdjmEW0ril/ki3dNR2NMMPfEkeCRVR5gotW1pxUrPFkvyKcvpcoJVQYQHHjGAIQT7YSjg7U6yg4JGYso0QUkCokCy+bjiGWQqm22aYgJXBQceKdmNhomMhNRPh2jjZJPlMimBk8ftsI/anyp7upcYleTMgmzEuqZx6rtHIDFzDMPjoRz/Kd37nd36BYmv/J6SUQ0KIHwWQUv66lPKqEOLzwEWKUc/fkFJerun6da2mPr4D+GGKG+ovln09CfzL5Z4opbSFED9B0aW16k2vyYoVTcEz33kay1yh6OiqxKRiM+ON6hgfH/dNCOql/DA3NjbG8PAwb3vb21acJ7dcmat3+Dt+/DhdXV2LvlermCx3V4T6DyaZuSlcx8GVoCFxhYbuzXETRUFimWFMK49A+qVkthFGlyWBqel+L5LQNEwk6fjOYo9SCUcPENIkmVAn0dwMpuZiCIe8GSNoJdECAQp2hKCd8Q96mqnhyOIaBJJcsA07HEeW1lVwBVFZwBIBXBfsTBbbtheV4q1XGVkl5dH38v7Eo0ePUigUmJqa4t69ewwODtLS0uIbY4TD4RWuvDKNiMlMJlPXga2WyL8Q4iBwq2TA8zaK0f+Zuhb2BOK6LlevXiWVStVVZr+UmJRScufOHcbGxjh9+nTdf0OVe5Q3SmilXsuVyGQyjIyMcPLkyRXF8nLXSDy8TwhJNtoNojSj1ikOBvTe264egJKY9PcvQJT2K0fo6Jog3bqLyMLYoxEhANKlEG4jVFgAs/i7cAIRyM6QFyECmoMrdDTpYOmBYq9kSUwSfBS4c/UAWBmEkLjhGKL0GrbrEpAuCJ3kw/sE920OD6ql9sXycUnAonFJCwsLxGKxhsYlNUqjY4ve+973IqU8XP61Sj0lpfww8OF6r71mYlJK+d+A/yaE+F4p5acaeP5nqSiPXUpESil/uKFFKtaEK+MJYiGDXe2rPwRsJQ50t2DqgisTCd730s6NXo5CURXbtheN2HjjjTcaEhjeYW5oaIhUKsW5c+dqKv9ZqoSsGQO/K7MHly9frqtsSkrJzINxQq6FZYbRrSymLODY4AqNgtmC1R4uOqfG23ER2AUHzbFw9ACUspVCNx6JSSFAgh6PIbNZ/+tS0wGbfLCdYCGBKWxAUAiUxKQhyNNC0M5gCIdksIegcKEse+kYIfSA7rVLFTMCNtiagXRcXJHj1q1bbNu2zR/gvV5lrpUsV8oVCATYuXMnO3fuREpJMplkcnKSgYEBLMuiq6uL7u7uho0x6u1Jgvqj/7VE/oHvBf6OEMICshTnYz/VXg5eGWp3d3ddJZ9LjTVyHIfBwUE0TfNL5OvF26OklFy5csUXuaspb7xz5w4zMzMcPny4YSHpmZE91x2mgIFm6IhSub0X1HJcDZNiRYSHZ4LjagY6Xl93EA0wIya5fDvRUuO3JQJoAvRg8fmyNB9SN0s/R8NACLCCMYK5+aJra9nP2AmEMUvXkqWKClcLgK6h4xRdqL3sKQKZXmCgv5/ukhjbCtQyLqmnp4eOjo41MfJpZGzRWrOWZa4/KKX8HWCvEOKfVH5fSvmLVZ6meALwzHc24sCykQQMjYM9Ma5OJDd6KQpFVZLJJP39/ezfv983C/EyfvV+6Nm2zeTkJPv27avrEFiZYWzWwG+vRO7ll18mFitWBtQiQD0sy6K/7zy728IIIRDShUAYkbeQQK6lG9AwpY2FVnwMAjNoYHfvxLY0mE+U7qnswm7RiMfQIR2ME84UDT21UilYJOhQKLQRLP38dFMnH4ijCXB49DsphFsJChcDl5weIeQUZ7YJIdDcAg4amp1DUlQypptBEKMgNH+Ad1tbG6FQqO7e02ZQa1+QEIJ4PE48HufgwYPYts3MzAwPHjzgypUrhEKhReNHaprH10BmMp1O+39HtbJS5F9K+e8pzsZWANPT01y6dKnuMlSonplMp9P09fWtONZoJTyn6jfffJOOjo66+xrL8UruHcfhmWeeaVhcjIyMcPfuXU68cBzrwW2sQBBdFjBKM2x1N48jDLLBVgqxTlw9QCHfhZmdxyxlDQtamIDXy60F0HDRhCDX0gnZ8dJjQgQAU4dsoA2vQtYQDrYexCgt3zIiBJlHMwx/TBJATosgJARl3i+vzQbb0TAwsXD1AIZTKFZ8lDKV29piJNJpvv71r5NKpbh+/XpTS0jXkspxSbZtMz09zcTEBENDQ4v2q9VktctppMx1rVnLMldPNm+uO1asKY4ruTaR5PtP7l75wU8gz26P8eVh1f6i2HwsVYrqHcrqOeTMz88zODhIJBLhyJEjda2jvISsnoHfS5W5eu6xs7Ozj5XIlc+ZXA5vdMj+ndsQVhrbCOM6LqaTo6CH0XQXDQme5X7pEGQRIEChKFpbWplz99GeuINb5gRpUPD/2wnHkBnhl3sBGJokHesmSFGImuRZMDqIAyGjLAsZiFLsEgFLDxNyMuTNFpAFDOGSEVFiMkmGKCEnB0iEBAOXXbv309vTztzcHLdv32ZmZoZEIkFPTw+9vb1+1nItaXQ0iGEY9Pb2+mXL6XSayclJhoaGyGQyi8aPLJU5akRM5vP5NTcGelqRUnLr1i0ePHjQUBkqFPeRQuHRe8v7m6jHtXkpstksDx484MSJE0vOoqwFb3/btm0b+/fv586dO3UHcrzsaDqd5uTJk8zNzGFIF6EJpCuLTtMSpB4iHetBFxINh7wjCAdNrGAPuWwr7Ym75AkQKPVs56Xh701OuAWrEMJ0cjj6I/ftQriNkF/iL0gGuwlrxS5vVzeQlGZYapDXIgTdDFrAoFAIEZR5TGHhCh0nGMZCw5QWOTdICwVsEcB0c7iaibDzHDr4LEeOHOGv/uqviEajfglpPB73xVilM/hmxDCMReOSVtqvGqkUeaoyk1LK/1L6/3+zVq+h2HzcnUmTtZynrl/S47ntcf6wf4yZVJ7Ols2/8SmefFzXZWhoyLeyrzxwL1UuthR+hPzECa5evVr3erwSskYGflcexGzbZmBggHA4zKlTpx4TK7X0WXqlYy+++CK52UkKWhjDzaELWew7DMQI2wkcdMzSrDa9VKvqaqYvMB3HJRI1WOAZwrlZEMVSM0OU3FsxCAUkC6FttOUm/LlvAHYwCvmimNQEuOEWIFsUiVoLETeFFjSRdtGsRzMMnIKGHtDIOFHiJHG0ADjgChNLOqQiPcjSWJNkJs+2Up9ioVAgGo2yf/9+JicnF2Ut19JdtVlzJqPRKPv27WPfvn24ruuPH7lx4waGYfjGGK2trf4hzXGchg6iGzUX80nGsiz/PXv27NmGf8ZeEExKyfDwMNPT05w9e3bVgmN8fJzr16/T0dGxKiHpldw/99xz/v5Wa3DLw7Zt+vr6iMfjvPTSSwBYuTSuEcVw88V5tUDGbMVtCSEAXXojQEzAwkbHiEaYs3eA9Wifd8tMedB05oPb6c7cwdUMvFp8LRxEK5s36YZjIIols7qQFPQomlZ8j+WNKGYhB7pW3Ivc4v0mgt1ohobtGMUYXKns30XH0YLMB3sBiTE9TVdvL5qmLSohXVhY4OHDh7z11ltIKdfUqGstWGm/6uzsREpZV6tJOp1m587N1Uq15qNBhBD/geJ4kCzweYozS/5xqQRW8YRxZbxkvrPj6RSTj0x4krx2SIlJxcaSzWbp6+tj27ZtPP/881U/rGod/u2Va9m2zdmzZwHqEqEemqaRy+UYHBysa+B3pTDMZDKcP39+2ZK2lQ5vnjB+9dVXKVg2tusCAhuzaK4TCOCUXtIVJp4TqylLI0DKDmRmyVpfi4RJul10WA/IixDeLpCVxf+W0RhWfsYXmVB0f3XQ/H4my4xAyco/b0QRtsQ0Ie+ECcksmrRIaO3omsByisJPL11PEy7JcA+WFiagFcgRRrPzzCdztMVC/qElGAyye/dudu/e/Zi7qudW2Nvbu0iUrYZKt8RmoGkaXV1dvllTLpdjamqKW7dukUgkiMfj9Pb2ks/n6ypZfcrbGNcMT2AdOnRo1YdhXdfJ5/O89dZbRKPRJUcR1Yo393FhYYGXX36Z69evN3yt8fFxbty48ZhhTy1jkTy8/W3fvn309vYihMB2HISdp6AHCDgZJIJ8IEY22E5I5nCkBpTm4EoHBLjCAGz0eCvZZAGcYpl9+TR3oWkY0QBO1ijNqyyu0RIBHKkTJQNQGm1UEpOaJBvq9AvxZSBE3imWnUtdx4uVFUJxdEpzLOGRY7V0WAj1lEaZuMykbNq7Fv9shBC0tbXR1tbGkSNHHjPqisVi9Pb2bpmsZbX9amxsjFwuxxe/+EVaW1v9gN5y95NKpeoeDbLWrMecyW+XUv7z0qDe+8D/B/hrQInJJ5ArEwkMTXCw5+msbi53dH3tUNcKj1Yo1g6vH6maM2o5tVjse6J0+/bt7N+/3xdp9ZZseQO/LcviW77lWxoe+F2eTfQc9pZ6TjVhUFk6pmka03NJpAgQkHkkDgURJEoap9STlHM0ghSt973ov+MWT0gS0N0CCMgTxGg1KcyGihH60uHLEgGCSIIBmDJ30kOqbJ2Q0ttpdWawMDBN4R/GhKaRNeKYQMqNEBJZTM1lNthJjOKhDhdC5HAQ5AJx0AU6DhouQjNxpM7DmfQiMVlOpbtqPp9ncnLSF2Wtra309vauKmsppVzzTF8oFFokkOfn55mcnGRsbIzJyUnm5ub8rEat/ZuK5mDbNpcvX17U07wa8vk89+/f54UXXli1MLUsi76+PlpbWzl16hS5XK6hvmKv5H5ubq5qFUitmUnP1fqFF14gFouhaRq6rjMzO4erB4r93EBBBLDDMTS0ov4Tmj8r0ihtII40iqZdQpCPdmAlZzFlYZHDq+NIgqZgIbTNn20LkCcMGkTdkpjUA9jSwCjtf/lAC5GS8BSGTsEolitruvRHHllGBB0bXRTNd0xsbHRyRgxb6MX2AYrLnp5PL/tzqTTqSiQSftbSdV0/ALZVspahUIht27YxOzvLK6+84u9Xd+/e9e+n2n6VSqWa8h5qJushJr1303uB35NSzm6FX7KiMa5OJDjY00LQaL6D1VagIxqgNx7kamk8ikKx3kgpuXnzJpOTkzX1IxmGsWxm0hNulaK03pKtQqHA+fPn6ezsJBKJ1CUk4ZGY9Fxfa7m3agY81UrHhNAo5C00BAURIKBJDMcGKQmUxn34BzhChEuReq2USczLAIHS4czGIKhbzLfswswm8cSkg+H/txuNg5sqfV0joDvkzAg4M6RFjKDhULBMAsIiZNgsuDFMigPJvcNisYcyQ0grYDsCQ0gSWgdOIIDl6IS0Ao4rEJoous5aFgXbrqmcqjJr6c1Y82ZCej1M9RhkNNK3uBqEELS3t9Pe3k4ul2P79u3Yts3o6CgXL170R+L09PQ8FuVfiyzq045hGJw9e7Yph/zx8XGGh4fp7OxctZBMJpP09fUtmo+73PiipfBK7iORCKdOnap6n7WU3Y+OjnLnzh1effVVAoEAuq7775tsOgNoGNi4aOSMFkzhkEk7BILgyNJYEFk0zAEouBrh0p+yrmvMh3fSnblTco8uYuglU55IlGDh0dnF0Yzi2I9SpasImCSyLXSIeQByWphIKSimaS45I4IOaJrAEiFMmccxg4CNJiS2CBKQefIiTN6MYEudoLCRCCSCmYVczT/vcuObw4cPY1nWY1nLWsd1bGQlgrcvlu9XR44c8e+ncr+KRqMNjQb5/Oc/z0/91E9x48aNmxTnR36o2uOEEK8Cb1J0mv6DWq+/HmLy/xVCXKNYs/OPhBDdeLVCiieOK+MqI/fs9rg/a1OhWE8sy6K/v59oNMqZM2dqOhAvlZlc7ay2crzytqNHj7Jt2zYmJiYaus7o6CiBQGBZ19dyKgVveemYZ5BgGAZjkwu+JY4rJQVhECWLLQ1CpY8rYRfAgIytEy69tNdDWRBB39jC60WKhAXzhRjxkvCU5TMmzRCpXJQWkSbtRjCFwDAlbk5Q0EIYQpDVogTkPIZw/fKykOlCASxMHKMYp9WEJEsLMZJkzRgBTeA4OkJAzg4QFDaGcMm7BiOTBf7/7P15lGTpXd8Jf56739gj9622zNqruqq6u5buloQwA8iSjcGegwfbr23G8HrwyK/x+JwZI8zxy3hsA15eDBKLMci2DAjLFlowICSDWbT0UvvatVdlZuUeGXvc/T7vHzciMqu6lsyqrupGnd9zpOqMvHHvcyMjnvgt39/3a63TBmZ1kNPxhOzQYVdTSQcGBh7atYzj+ImsFZ4EURRhWRa5XI6RkRGklDQaDRYWFjhz5gye53Xl/Ht7e2m1Wut+vz8qWBNC/DXgH7Z/bAB/R0p55m25wT8leNJEcrUf5fPPP8/Nmzef6HwdBeh7RcnW6mnbwep9paOSfT88rAAnpeTSpUvU6/VuMqppWncPbzQ9QikTgZ0ooqwUiQKBboKqtVVT3ZiUCQEaZofuuuoaqohRUiY1v5cUPiAIpIrasRbSBIHMYETVZE0isZmMXYEiEs9dX6wkZpFqQTuZFELQ0jJk253KukxhCR0QRFKgCkkjsulRPGoyiyJURHuv9CMVXYmQEjT7wUyTh0HXdUZGRrqf79V2HVEU0dfX1+1a3vu9+Dhq5m8XHmRbdO/9dParv/f3/h5f/epXE7/RWo0PfvCDj9yroijiox/9KF/5yleYmJjYC7whhPiilPLi6uOEECqJ2vTvrfc+nnoyKaX8ESHETwE1KWUkhGgC3/20r7uBZ4/FusdC3XvPiu90sHsox9euLeGHMYa2Ud3ewLOD4ziMjY2tq1p/v2QyDEPOnDnT7SY8yRdtZ37oSehtvu9z+/ZtUqkUL7744mPZkNxLHRNCdCvCTSdAERKJhlQURBQgkHgYuFEaVBVF8Ymlh2h7pyXUVg8UiOTK66MqK2sLUgUCZxmd4C76mFQUGkYPmaCJh4lOYh1SEwVkO0lsRQZ5BZoyhSNSZKmiqzGNOPG51HUSQR6R0N0iVEI9hYGL0r6WFAJNhMSYSCT1podprd9TdDUMw7hLIKNDzXrttdcAulSze7uW72TAdm9XVAhBNpslm80yMTFBFEWUSiUWFhb4vd/7PT7+8Y8ThiFvvvkmu3bteuTrtcZg7SbwQSllWQjxYeCXgGNP4Xa/KeF5HidOnKC3t5ejR4/SarUea2YbHq4ADeubbVwr5b5z3vslqWEYdouAL7zwAlJKdF2/631XrtaJ0NCIKAdpdFvDCJK5ar3dhez4PSbU1lWzk0AsBaoagxA0UoPY/jQCcGKTzt37UsdT06TbyaSiClRF0BBZbNlEVUHoaodggWqqBL7W7XLGmk0nuQyFgSN0hCJwfJOM5hKLZH0tJUOGMJlHb38sFSGJJFiZJ1Pihbfaddzb5ctkMl0l645V0jvFRFgLY2P1fvXpT3+aP/fn/hzf+Z3fyVe+8hVyuVxXw+BBeP3119m+fTvj4+NIKX0hxG+Q5GEX7zn0/wN8Fjiy3vt4Fp1JgD0kfpOrr/epZ3TtDTwjdKid71XxnQ72DGcJIsm1hcZ7/rXYwLNFx59vPbiX5vp2ebWtrrTfb35orejQ0Pr6+tbsK9hBpxPwMOqY64f4UYwhASlRZUQQxJTI04wNevI2ri+wMpJSVKRWiUAIrKiJrSVRlePF5NvfbmEYdr9ZLVMy7w0zFk9iqitBpKKAkVIJKmpbPTFBoKfR9OT+DD2GCJrYd3U1HVKgWqgqOL5JSvVQFSiFBVQRE8VgKCFRLLCUZH1uoKDrMa0Qqq6GraxYKjwJ7qVmdbqW95P1fxwJ/LcLjwrYVFXtrnP//v0MDg7yYz/2Y/zYj/0Yvu/zxS9+8aHnX0uwJqX8+qqnvAqMPdldvXdQLpc5c+bMXcqoa5n1vh867I1MJsNLL730QDrqWqiPt2/fZnJycs3Mjft1Jh3H4Y033mDr1q1d9dh7E0kpJS03JIoVfKmiGBqxlFiaBCnR24mj0k4cg5DugFnnMS9SUdp7iydMKkofxXiJAL2bTEZCA8Mg9FQ0EaG1i+GemmrPZAoMQxL5ggAdoSo0YpuiWieSglBbScoVTeBKCxUIZbLHqUqME9toupLsU2pEGCvoStR9fVRVo9zwKWbePkXpe7t89Xqd+fl5Tpw4QRiGFItFwjB8R5LKx6H/O47Dhz/8Yf7m3/ybazr+zp0793bMp7mnkCWEGAX+IvBtvBuTSSHEfwImgNN0JKKSou5GMvlNhg61873emdy7SoRnI5ncwLsdq4Oyt8urbbWgxZMYfs/Pz3Pp0iVeeOEFarUarru+CQkhBDMzM6iqel/qGMD8soOUAl9ayDAkr3tUQoNCTqC02sFXpGIRoqoKesZAmjqz9SJ22GRALKKqK+cz1U4nAFQRkcrrNMvpFRVDwNRiVFWwEPdhWitS/KquYmiJdEVKj2j6JqFpYxhAR1VWUZGagQp4GKTwMIRHQy9iKNDwTPKWR903KZguXqSBlO2Zz5C6b5GynfX+KdaEe7uWq2X9m80mfX19mKb5zAUy1huw9fb2snv3bj71qU+tKalYS7B2D34A+N01L+g9jM6M9JEjR+5Sfn6cZLLRaHDixAkmJiYYG3v8XD6OY86fP08QBOtibtzbmSyXy5w+fZrnnnuu6/XaYUusxlLVpRkoqJFHLTDpyUR4vgQdwljpzmt3hMG8ANCTQNvSVpLJTrobSpWGnifnlgjR6Gwubqihm4JlWaRAFUVN1hGqBlEQY5DMQzbItFVfk85mUa3jxBZSWXkdDF3itVOMuH2sqYbU4ixCgBcZpBQfN9LJ6B6RVIliiabAzKLztiaTqyGE6BZdO13LmZkZ5ubm+KM/+iPS6XSXtv8kox1rxeMkk61W6+1Qp773wX8D/MM2g3Rd64Fn05k8DOyVG1rb3/S4OFNjtGBTSL23jZ639aUxNIU35zbmJjfw7oeqqriuy5UrV9bt1daptK/+8rmfoMVanrcaq0WEXn75ZUzTpNForGuOKQxDbt26haZpD6SOAdRaEXEsiMKQOIioxCbZDIDEbr8McVJfB5JqOoDUTYwszDk20q8D4EcKppnYi7QCHc1IrjVLH5uVZD8IYwVNSY4RaRulwxkjmb10AkHecBOT8DiNYupomqTVMkhpProOUbvD4IQqRRXcSMcRNgY+fqQBHmHcFu2ILQLFohmoxFIiYwijp5/I3Svrf+bMGUzT5NatW5w+ffquWcunLev/oLmkB6HRaHQFLtYSWK0xWOuc78+QJJPvX/OC3oOIoohz584RRdF9Z6TX64/bKUw9//zz5PP5x15XR0isv7+f55577rGYEgDT09Ncv379vmyJe3FjxsHQQAoNRU2KT3FbSbojuoOU2FqnYJU85kcKup5cz/EV7HYuHqOgW4J5Z6AtItYWEotUdCAw07jeSuHOtiQV3+p2MANhEkkFAQg9+bu40kBRBG6gY6kBEQqBsFAJ0VTZXpWkKTKYSMI4STBle62tQMONLQKpYkYxTTcgbT39GWtd1+nt7aVYLHL48GEajQbz8/OcOnWKIAi6s5Y9PT1PpWsZRdG6xehc112XqvbY2BhTU1N3PQTM3HPYYeA32u/nPuAjQohQSvn5tVzjWSST54Eh4PEUFzbwpwYXZ2vsGX53yRW/E9BUhV2DWS7N1t/ppWxgA4+EEILJyUmGhobW7dXW6Q50vgwfJGhxLzozSff7Eo2iiNOnT6Np2l0iQusRxehQxwqFQjdRuV8i6foRjg9xBDIUpHRBIHXSik8Uy26XMQrb9LGIducQOksxbQVXKzJfkZhaRKZ9iVao0XkFpJ1lwY0YsJrUPB07lRyUTglaTQO77SnpRDq+1Mi3xXwCzcbWkmNdTFL4VHwboelkzJCUJUFCLUzjKRrgdwM3Q4sJIpV6mMY2YoJIQdcgiGOW/WfPmBBCMDAwQE9PzzOX9V+vLcnqZHItWGOwhhDiAPDLwIellKU1X+A9BsdxOH78OKOjo2zbtu2+74e1qklLKbl69SpLS0vdwtTjolarcfLkya6Q2HrR2fc6fpYdmu29bInV+B9fXyTUoJgDIQzU9uc7ahvgtlox2RQ0Qw0pTcIAova5vFhHb7MeknnFtmpr2083zuQQrWr3WrI9761ZGk3PpqtxLETb+zaRdXUw0DQFFTAMiD1BJJLErxGYWGpAK7RoxBqWFqIpkjBS8KVOiIGJ11UG0pQYKaHqp9A0hTiWBIrOpemYw9vX/RI/Fjr01tWzidu3bycMQ5aWlrhz5w7nzp3rKqoODg6+bV3Lx1W5Xs9+duTIEa5evcrNmzcZHx83gO8D/urqY6SU2zr/LYT4D8B/W2siCc8mmewDLgohXqcrMAxSyr/wDK69gWeEhhdyY7HBR54bfqeX8q7AnuEsv39pYU0y/BvYwDuFer3Om2++SSaTYd++fet+fic4UlX1oYIW93ve/RLDThA5NjbGtm3b1vSce7GaOqYoCufPn2dpaYmhoSEGBwfJZDLdz+Sbt13CKEZXY1RF4oZaN0D1Yx1DSb6yTKMdnIU6upp0EmXUoZQpmDrEPUXKZZ8MSQfSDZVuMhlEKlLPA008jC7dzAk1ln2dgtlJJjV0c+Vr2Vcs7HaDq+mp9GiJj2XkJcmkrkOjaRKqZleRMWWEhDGkjIDFZg5dTyi3Qsi2p5tCKzSe+d60eh7p7ZT1fxpYbzK5lmBNCLEZ+E3gr0spr7ytC/4mwuLiIufPn+fAgQP09vY+0bk6dh2WZa27UHYv5ubmePPNNx9ZKHsY4jhmYWGB4eHhh7IlIEmCf/W/TjFTCXj5aIGWBxkbQtcHA+Ko3XGMbG65WQJhkk11upCCG0EWxa2RMRM1aaEodJLJTkNX0xVaIk2RCpBQWJNjBctxltRKyI6HSSeEt22BF2ldGxBH2jiRjgXEit5el9FmdABCUPNN3NjARZDWQVdi4vbcZMXLIFQVKSVSxsSxQrUlqTRCCpmnn6Y8aFZS0zSGhoYYGhq6S1H11KlT+L7f9YHs7e197PdWFEXr0hN4HJKnpml84hOf4EMf+hDAJeCTUsoLQogfap/zF9d90nuv8aQnWAN+/BlcYwPvMM5OV4glPL+58E4v5V2BPcM5PnN8msW6x0Du2QdDG9jAo9BRWd21axflcvmxzqGqKp7ncebMGdLp9AMFLe73vHsTw9VJ4Go/yw7u5xl5L+7cucO1a9fuoo59y7d8C67rdmlundm9upNjqpahkJPYpoalC9J2RMttzwI5kkybaKGJjtCOJNNubLTZXbihiqFHKKqgqWUpOw5FO0BoK7OQMYJMTmdmIZOIXLQTxIarkMqbBIFAVyWKrmJb4HoqlhoRCo26G5O1Iqx2BqoaBkG0ErhUAwstraIREcWgKtDyTQSSVmSRNWJankLajIikQCAJIpUbCxETg89Kg+/BARvcX9a/I5ARRdEDzbufFprN5l3zeY/CGoO1fwz0Aj/f/oyEUsrDb/vi/5RCSsn169eZm5vj5ZdffuIiQrPZ5Pjx44yPjz/UrmMt67p27RqLi4trKpQ9CI7jcP78eSzLYteuXcD92RIArhfxkz97hd//kwU+9mOHsMwI1xdAjKoke6BUdKaaOTzdIG+HeA509htDk6iGyVIwQNov0WvUWf2xMYyVazpqhlhWUERiKdmBr650IoNYQayaC9dUqIYGejs5XXZNRNsvSbZP4kmjKyYGEEgVqVlYIkkiFQUavk5KD6n5Boae0O+FUBEiIb+em4r5wJ7HebXXh7UI79yrAN3pWs7OznL+/HlSqVS3a3mvb+3DsF4Kfmct6y0EfuQjH+EjH/kIJBo2wIOTSCnl96/r5Dwba5A/EkJsAXZIKf+7ECJFVwx4A98sODVZAeDQWOEdXce7BXvaIjwXZ2sbyeQG3lW4V2W11WqxuLj42Oc6fvw4O3fuXJegxb3S+1NTU9y4cYOjR48+MIh/WGdSSsnly5cfSB2zLKurThtFEb/9lZv8p9+c42/9wC6EIgnCmCBUSRkxSpwkjnG7ABxGYBuy+9+QpIIpM1mL40pydudYQd3qIxvPgVxZqyAR1fHtHIrn0kkm3UinoAtmKyk255pYpkAogsWGyaZ8C6Fr1F1J1opImZJy3cRIK53xTaDdvWx3FJzAIGP6eKFKII2252WczDeJGN+XxFIiFMHt+XdPMrkaD+parpb178xaPq2uZaPRWFcyCY8O1qSUPwj84Nu1xm8mhGHI6dOnux6yT1oweLuExDoWSYZhPFFns1KpcOrUKcbHx5mamsL3fVKp1H0TguWyz4/+8wuUyj4f/rOj2JZCy6eteCqxjJj5moXQTTQVVP/uvSmMoetIJlSaRi/SCdG0lY6WaST7URyDYWrM1nOMpmvdAhkAioYTqNh6RK2lYKQ16q5G1gpp+AatyCTbpudHqt5lb2iqaCefGpomcAMVS4+IhQaqigo4gUrajPAjjSDWcEMdQ4+IYzD15B5iwAskC5WIgcLTTRkeR8V1ddcS6M5a3s+39mHJ4npprmEYvivZbs9CzfX/DfxtoIdkkx0FfhH4n572tTfw7HBqssJ4X5pi+r0tvtPBnqGOomudb9018A6vZgMbSOD7PidOnKBYLHZVVh9XYn9+fp7l5WUOHDiwbmXETmIopeTixYs0Gg1eeeWVh9J9HiTX36Gy2ba9JurYpz93hy/9QZlv+/bNxG3bbMNQiMIQkKTMiJqjEUqNMPJpeir5VMfHrd219BRs8+4gDsAyFewU3FoqUrBXhHU6t5XJ6pQDCZ0grC2eEeppGoGPnumoJ5rU3AAzq9Ly2vcsBIt+jnxGYOgJ7TVtRgTSxJJx4jfZ7liqiiBWNMz2PJKlSaQEXVNRhEQEITU35st/dJbRvtRTFZjoIIqixzr/w2T9H2VGDo9HC6vX62zdunXdz9vA+tFRWH3cDuJqunanuzk/P//E3U0pJV//+tef2CJpZmaGq1evcvjwYXRdx3VdTp06hZSSwcFBhoaGur63N243+Sf/+hK2rTLQZzCxq0jLichkdFQR4vlQCzNITcdqWw11/Wvbr0EQKmhG8juhCISi0LAGSEUVIMINBKrZLj75AqELXD2HGzZRV4Vvqqqw7KUZ1Wu0Ag0LqHkmWSukGej4qwpaGAZiFUW24dlo7eQyiDUsIrzYQI0FipKoxqbNCAT40sRo709JP1IShAJdjYikwtlbHh/Yoz5Vka63wxIkk8mQyWS6vrVLS0vMz89z8eJFLMvqFsDuLVKtV4Cn1Wqtq/P5rPAsypIfBY4CrwFIKa8KITai628iSCk5PVXmW3b2v9NLedcgn9IZLdhd780NbOCdRqVS4fTp028Rj1hvMrlaaXV4ePixvthUVcX3fV5//XVyudya7EPu15nszFhu3ry5qxz7oETSD2J+5t9e49Z0C10XFPvTxAjCKMJ1JRlLUq4rKHoeXVMASSk0qdV9dLVFyoy75uAtT3STSUNPun9SQtpK1pcp2DSakMEnjiG1KqZtSZtOMtkRocjnVeZnDXraY3qZjEq5amFnIbUqhgqUlWivXBekzYQ+Vm9JcmmZ+MsBpaaBnRLoKgSRgqHFuIGCqUc4voobCCxDRU8dpLd3uSsw8TS7fm9HwHY/Wf/7mZGvlvV/nOu2Wq11dyY3sH505hAfV2G1syeoqtrtIuq6fpdw1+NgeXmZZrPJ0aNHu76W64WUkitXrlAulzl27BiKoqBpGrt27WLXrl14nsfCwgKXL1+m0Wgwu5Tlf3wjxjI1ZCypuJDNGQhNI4piNBNmawb5rIrjxlgagMRoJ5WizYTwQ4nd3ibUtmWIRKUUFMhbi7Q8patS3XLB1sG0dWbLOfraW3kUJwU2t5lUwcK2jmvUnods+QpWWieOHRQFWr6OHwtyqWQNc3WDfG+yudUchawJgdSJIhVLibr7cxQrRKhoasLqMDRJFEk0VaCqgjgU+JHCH79xA0sudUW6CoXC29qd67yH3i6oqsrg4CCDg4NAQrmen5/n3LlzuK5Lb28vg4OD9Pb2rrszud557meFZ5FMem0TXwCEWDUwsoFvCkyXHZYaPs9vfnw6yTcj9gxnN5LJDbwr0KGRHj58+C1fROuR2O/Q0UzT5OWXX+bSpUuP1dXsKLbu3r2b0dHRNT3n3mSyQx17lEcbQKUa8G9+6Sqz8y6lZY+hkUyiRqgKNAV0TcHQApYaFoM2hJHE1AEUQtWmKi0WSg4FK1FZbbqS3rYGh2Uk999wFcx2/lV3FaSaJYxKNDwVs91x9AMoFA2myjabCg6WtSJQsRyl6Gmv1zAEC6SwAdMU1B2VrB3hBiuecLHQaXkRlqVSqcbk0hHZtKTpCkzLwPUkekrieCS2AlKh2hI0Ax1V1ZABNL0YOZBix44daJqG4zgsLCzcNav4dimsPg1D8Pt1LRcWFjh58iRhGNLf3/9YHdd3a8D2zQIpJW+++SaVSuWJ5hA7hTDP8zh+/PgTdxEBJicnuXXrVpdq/TiIoohTp05hmiYvvPAC8NYil2mabNq0iU2bNvHZ357mj1+bZXbeoZCVTM4Ivv+HDhLGKraIicKYJU8nJgmfo1gBIoIQOk5snVlK15Hk20lhR9nZCwS6ZTG5bKMrYVcAzI+17n/XZYq+dpGr5asITWCldRxf6fpHmqZCFEOMhqoKKi2NnkyIFwgariDXvm6grCpESZASQjRaDcFQMUJTk+KbHxtECAxF4gaCrCZxQwVLl8QxlFsqAkE6vYMje7ZRKpW4efMm1WqVfD7fLXytR8Dmfojj+KlSR9PpNOPj44yPjxNFEaVSqdu1dF0Xy7LQNG1NBax6vf6uLHQ9i2Tyj4QQPwrYQojvAP534LeewXU38IxwcjIR73h+U+GdXci7DHuGc/yPy4u4QYSlb4wJb+DZo2Ou7fs+73vf++5Lp+lU9R+FZrPJiRMn2Lp1K5s3bwbeOvu4FiwuLrK4uMiePXvWnEh2rtVJJldTx0zTfKhH283JJr/0n25y6Wod21KJYti6qx8pVPxA4kuJmoLFuoGiqkBEy4F8W3wnjmIUVUG1bVzN5tqSRxCE+KGLqkDaSgK2ekt0k8mWJ+gpatxaSpPSAsx2XlJrKdhZQaCmCSOHlLUSwESKDfjdn93YoiOosVxXkDImXzBouS4pC9K2oFTX0DMCVUvWrQiYKpvkioJmXZJNrcx+RnGEF6cQCFQlobjFscqlOZOj4wGO4yClZHh4uPv3LZVKXYXV1b6QjxP8P41kcjVWdy23b99OEARdWf9qtcrrr7++ZjPyjWTy6cH3fU6ePEk+n1+zYNeDoGkai4uLXLlyhYMHD9LT0/PoJz0AUkouXLiA4zi88sorHD9+fF2+th24rssbb7zB2NhYl/6vadp97zOMJP/xN27z+3+ywNSMw3N7ciyWfD74bT0UeyxiRWDoEeWqIJ02EK1kn/a9EDICz5fdZNI0Eopop1PTmT8EcD1JRofQKhI5le71Y7myJicyqbZ88qmIliswMiCEwkJzhbKqaQpLDQOrPc5UdwQ9maSwJTRBZ78KY50wjNE0QTqtstzUk0Kf0rEtgnJDJUSl0RL05iUKESCIYoEfQqlhQDuJrbQizt6O2D2cpaenB03TujOKN27cQAjR7QR2KMPrwdvdmXwYVFXtsicAvva1r6Eoyl1dy4GBAfr6+u67pseZ534WeBbJ5I+QGPSeA/434HdIfJY28E2CU5MVbF1l99CGx+RqHBwrEMWSM1MVjo0/mcT5BjawXriuy4kTJxgcHHyoufaDZhFXoyPXf6+gxXooslJKbt68yczMDKOjo+umx3YS18uXL7+FOvagJOX1U8v8wn+4wdUbTfbuzFKtBQwNmPQNJImCoioIqdDyIJ9RaTU7dh8r5zDM5NxNB4o5QTZvUapAKUhRXmqyZTDENiSev/L6+u2cMFNMUV2s03nFHF9gA5mczvVZi5HRledYtsFSNaAvn9BVEyn/5LWVQmW5oWDmFapNhZQVY5kKS3WbPJC2FYIwUZhtBgY5IJdRiOOITAo8H0p1Hc0QaKpESkEYgqYJlpsaummQ1pKOShAEeJ5HHMdkMhmKxSKaplGv11lcXOS1117rekYODg52u8KPwrMM2CDpBA0PD5PNZonjmF27dnVl/R9lRr6RTD4dNBoNjh8/zq5duxgefjIbMSkljuNw7dq1J56PDIKA48eP09PTw759+7osh/Umk9VqlZMnT7J//37y+fxD2RKNZsjPffI6/+0rc9iWwr5dSfxUyGnsOjBKGIGlJoWpREgLVC0RztH0hIbv+x3PW4nVFglLZhclrg9mO9HszHXruspyI81QuwMpWVmXRGWxYZNPNfBClU65yIsN8vbK57bU0Cm2fXKlohHLAMPSQCTX0VRAUVmqRgz1ChRFML2sUugD21w5puoYWCkFQ2/Pc+sqURyjqVB2TIJIYKiAhFiqXFtIsXvEI4pCPM9DUZSuhVQcx92iQr1ep1gsMjg4SH9//5rmER93nvvtwrZt29i1a1e3a7mwsMClS5cwTbO7z3b2o3fr3vQs1FxjIcTngc9LKR9PMnAD72qcmqpwYCyPpr5zH8Z3I17ckoSQx2+XN5LJDTxTLC8vc+bMGfbv309//+PPMkspuXHjBrOzs/cN2NaaTMZxzNmzZ5FS8vLLL3P16tV1dzTjOKZSqZBOp7vUsQclklJKfvsrc/zLn79CFMGLBws4TkR/r0HPSIFYqASBBBlRzAgaTmf+8d7z0J6NFPhB8i+AZUhUTSHS0iw6krRbY7X2vqKK9uujUA8sOvKrYbiStLdkhq51SAx2SqFcUunLhyxVBbmcjuMG2BakMwrlmoIJbVuQtmG5p5In8XorVSSZFNgpPREh0qDalBSzgtllsLMm1WpAT0Gj3pIYmiRGIYgEb1yVvH9vkphrmoZt28RxTBAE3eRSVVVGR0fZunUrcRyztLTEtWvXqNVqFItFBgYG6O/vfyDl7J3y3O0IXKzuWj7KjLzVaq07YPvSl77ED//wD3PlypVrwC9LKX9y9e+FELuBfw+8APwjKeW/ettu8k8JTNO8L9V+vYiiiDNnzhCGIS+++OITJZL1ep0TJ06wc+fO7tw1rJ91MTs7y+XLl7vrUVUVRVHu+56/M+fwYz9xgas3mmwZtSkWDcJQUqkG7DwwglR0TBPCICCIdAw9EQez2pYeXdVVkewFjie7j3VIUI4ru8lkEKwkxZ60Wa659ORk11cyOZVANW38sJHsjW3EmoHnSWyr8/wVVkI6rVGqClQr2fuWqoKebIxhaTTqMZ19youTPUFVBcs1wUBRUm+BlUo6qk0nJpNSWK7GeLEFUtLJAcMwaVDGwKvXTb7zkEUcx28pfHX2IFVVu9ZCV65cQdf1btfyQe+7p82aeBhWz0ze27VstVrMz89z4cIFWq1Wt1ixXjGizt4URRHXr1//kfvsTX8N+IftHxvA35FSnlnPNZ5aMimST9D/F/i7JN/AQggRAR+XUv6Tp3XdDTxbuEHExZkqP/D+8Xd6Ke86FNMGE/1pTtx+PA+/DWzgcTA5Ocnt27d56aWXHknnexg6AZuqqg+U619L9b4zzzQ0NMT4+DhCiIfafNwPnS6rpmns3r0beDB1LAhjPvEr1/nsf5uhkNPYPp4hDCVRnMwP6rlC0o1VEtGHhhOha8nvO0I5iogBhZYbd+caO4lgGElS7Zc1CGIs28ALikRRo7sGY5UMv2aZTM6FbB66uxMQoDFbihnulVQboFoKdtpCygZNVyWfEZRqgjFLkrKUhPbFikdcoyUJV32Fe6GKV5OYWZVy1aOnoNJqxRQyKm7Qno1qv15x3AniJL4fc/ampDxT5oV9eUaGrO7fyDRNTNO8b/BWKBTo6+tD1/Vu8Hbt2rW7xCcymcw7LmN/P4GLh5mR//iP/zilUonTp08zMjKyJkpvFEV89KMf5Stf+QoTExN7gTeEEF+UUl5cddgy8PeA73kbb+9PFXRdf+L5to7o1qZNm9A07bHUejtYWFjg4sWLvPDCC+Ryubt+t9Y9SkrJ1atXKZVKXfuQh7ElTp+v8GM/cRHHjTj6fIEoSqj4xYKB40s2b+9DEQl7wA1UdF1iGgq+H5Ntkzk6+0vnk+UFSTcSwNCTf/1V7Aqxai2qAgvNND25RtJF7NyvkGi6xnTJuKsw1nQEzaZkc7uRHEQqjWZEJq2iqgpTyyoD7Ry85baDfVNB01QgJo4lQltJ9h0fGg6ksyZ+IDF0QcuFTCoR8jEslUYjJJdVcL0YIdoJeSxZrMPkomRzv4KiKN33UhzH+L5PEAS4roumaWzZsqVLd19cXOxSmFeL33T2hTiOn/h9+bh4WCKbSqXYtm1bt/v62muvcfbsWd544w0uXrzID/7gD/K93/u9Dz3/6r1pbGwM0zT/yn32ppvAB6WUZSHEh4FfAo6t5z6eZmfy7wPvA45IKW8CCCHGgV8QQvwfUsqfforX3sAzwoWZKkEkeX5z4Z1eyrsSh7f08KULc8Tx3VXADWzgaaFYLDI6OvpElMLVAdvDLBI6qqwPQqeSum/fvrtUEddDIeucY8+ePZw/f556vf5ANb9mK+Qf/9RFzl6scnBvDtNUWCz5xDKm3pBEQufwQBpEMgup6YIgUilkI5qtmHRbb6NT0W+2oNP06ARe9UZMMZ/80FmCqilEeppGq0nKglxu5bXPZTWiMEMY1knZq4MGQcPTAZ9qQ5K3wE5pzJUgFu0Ett0YWVyOqTUF+VzSDWi0fEo1QTpjEEY+miqwTJWm36bkuokXl2WpzC7FpDI2YSTJZZM50ZSZBMGeF6EIFV0TnLyl8dO/eIIXnsuTTevs253l4L4845vTqOqDg7dO13Lz5s1dM+/FxUUuXbpEs9nsBm9PEvQ/CR5lCn6vGfl/+S//hW/91m/lS1/6Ej/+4z/Of/7P/7lrMv8gvP7662zfvp3x8XHagoO/AXw30A3YpJQLwIIQ4s+9Tbf2nkOpVOLs2bMcOHCA3t5eLly48FgCYPdaiNyv07OWZLIjJKZpGi+++CLwYLYEwOd/d4aP//J1No3Y9PeaTM06TLdnJSu1gG/50C500yCWAaWKpJhXcd3k/jpKzVEUY90jurOa8WC3PSQjubIGTVv5b11TMMwUs8strPTKHtqh84dKClNdyUR9PwZVo0u5V1SWKhGZ9tieF64kYaqu03ACUmbCkKg1PDxfkk4bVOsu+ayKriksV0L0tEK1EdJfFCiKSrMVEWMQx7JN4wXfl2QyAt+PiSKJbqj89hs+m4wyB/fmGBu2u4Uvy7KwrJWupe/73Tnw3t5ehoaGUBSFSqXSLSJ0LDtc132q1iOPwloKboqi8PLLL/Nd3/VdfOADH+Av/+W/zNLS0iOft3pvauN+e9PXVz3lVWB9Xl883WTybwDfIaXs3q2U8oYQ4v8FfBnYSCa/CXBqsgJsiO88CC9uLfKfj09xfbHBjsGNmdINPH1ks4/3PuvQEO8N2B6Gh9FcZ2ZmuHLlCkeOHHkLvWitFLJ7qWO7d+/m+vXrNBqNboDQqTDPLbj82E8m3497dmZx3ZgzFyvsnMgwMx9QyGkceN8EAkEYSxAC1w1J2RqKErcDliSBS9ttv8cwBtpKhu2YSVklRj7QkwQ9uirIZA10U8PUW/jeyuOapqJpKmYqQ1ZZCU6zGYFhpajWve5MFEC1pWKlk4vZKQPwKDcSFcUEguVqjOMbZDMKpeWQwX4dVROE7euaRrLmTEahMq+SsQSVqk9fj0G9GdFbUKk346SjISSqqlDsz3PoUB8zM01GBgWvnarwxS/PEQQxLx4oMLE1w8svFhkasB4ZvPX09DA4OIiqqt3grdls8uqrr3bppM9KRGK90vudWbdf+IVfWPNz7ty5c69H4jTrrOxv4MGQUnLr1i2mp6fvYlw8jkfuasbFwyxEHlXw8jyPN954g5GRke7f/kFsCdeN+Ne/eJXT56rs2ZHBslReO7lMLOHwwQJBEDO8qYidTaGqgiBIlKZXnysMY+pNSaUhEBKEqhGEKmVPo1n3qfsqQeBj6zFj/Ylaagdmm80QBLKdNApKrRRb88lBjivR29UyO21RKwd0GrVhrFDssWg0a6RshVTGpFnzuueWq+yKsjmDmZmIzjR8uRoTRIJ0Ear1RNQsl1WZW1TQSQp6oJBJC+aXFKyUSqMRkMvpeF6Irrf9MJ0IXVdZLAVIqfDlsz6f++03qdRCXjlc5PnnCrz0QpFUKknkVxe+OoyKIAiIogjLshgfH2fXrl24rsvi4iKzs7PMzMxQrVafiefuk6DZbJJOp7tKwI/CY+xNPwD87nrX9TSTSX11ItmBlHJRCPHIfrIQ4s8CP0PyTX6/+YPvBv4fEip1CPx9KeVX35aVb2DNODVZYbRgM5B7ez3JvllweNXc5EYyuYF3KzqKrtPT028J2B6G+yWFUkouX75MpVLhfe97333pQ49KJjtelktLS3dRxzoKiXEcUyqVmJub48KFC5QqNl/6Y9B1gziGy1frNJ2YQ/vztFoh27emSOVszLSNEBJiiWYKBCphEOL5kuWmjpYyqdcDlDhguCckZa8Ecz0FlVjCUJ+KEyRr1HQNCei6ghNCzVOw9BVVVk1ToR13VVwDUw0IohghwLBMQKDqgr5CROfVGBrJtOciwbY1PN/DTltYikGnO5BO6ajtIaZsO/EUKLRt5chmNRpNj2ZL4ngamSzIuGPPlay9XJWYaYtWKySKBYiI/OgQMrzDYiWkt6gzNGgzt+Bx9ZbD9JzLH3x1gZYT82fe18e3vb+PkUH7ocFbp+K/detWFhYW2L9/P4uLi13lwo4ITm9v71ML3tZrCg50u6hrpeg+oOu6YYH2NiCKIs6dO0ccx7zyyit3FQbWm0y6rsvx48cZHR1l27ZtDz32YXtUrVbrsiU6gmQPSiRvTjb5p/+/NxEKDPabBGHM6RNlBvoMNo+mcNyIuSWPb3tlL7qh4XoRuq7gtQJAhyhkuaZRrqvkFZOG59NTTOaiVTOZl5aKxLB1HF+g2AZT1RivVWu/fhK7rRrddGL0TqEMk+m5FmNDCo4bo9md1yii5a8kiJalJqquSzH5TIxmqWQLFq7bIooh35ujVGrQ22sAAjdY+RxHqF1bkU53tFINaTgK6SxkMjp+EBOGMY32DGVHYbbZiukp6rhejERQdwRRJDBMlbGJIaaaDQzT49LVOp//0hy5rMrLLxQ5+kIP7z/WR8pemUNUVbVb+ArDkCAIaLVaSCkZGBig2Wx2hcZWe+52Cl9vt+fuk6Ber6/L/mY9e5MQ4s+QJJPvX++6nmYy+WDu08N/hxBCBX4O+A6SLPp+8we/D3xRSimFEAeAzwC7n3DNG1gnTk2WeWHLhr/kg7CtL01v2uD4rTJ/5ejmd3o5G9jAfaGqKmfPnkUI8ZaA7VHPWx1whWHIyZMnSafTHDt27IHBuKqqBEFw39+t7hw8iDqmKAr9/f309/fz+3+ywB++NsViqUXK9piZg5QtOHIoi+8nJtixBM/sIYoknp/MHcaRJJNR8Jo+8xWdtJ18vw70aLR8g1YsGesPaLk+mgpB+zabzSaKkcHUVdygs56VmSUn1LGMGNcP77p/VdUIUIEWhqaC1666UyCTioja34qe6yCEimhHd7msRSmwkFJg6TFuIMnlLdxGkrwZKR0IMAzB6vG+gR6DWcBo0+NyOZ0wkmTSKrOLEUI3kFISxSCEJAgFdtriStNipDfAcSNCRWDbGqoikFIwecdhx3iaMxeq/PKv3WbP9gx//juHeOVwD8WC0f3b3hu8TU1Noet61/txeHgYVVVZXl5mdnaW8+fPk06n12zdsR6stzP5OHTcsbExpqam7noImFn3iTZwFxzH4cSJE4yMjLBt27a37CdrtTUCKJfLXVGyvr6+Rx7/IJrr3Nwcb775Ji+88AKWlXTpH6TY+t//eIFPfnqSnoKOEJLrtxrU6hEvPJdHUQV3ZhyiWPL8+3diWgbIkJYjKRQSpoHvx1RdjXTaRGlTT2V7SZ4XY3cTpuSxzpaqqgqBmuXqVIvBYozZZVpIOqU9TQmIFBMpffqLCuXEQpeevIaHhaY2k/0iZxFLGNucJ2eGTJaT16YnbyKBZkkw2GcRyhiBZGBghYWSL1g4XrK4fN6g2XSpNSSaoSNlIshTLgcEkUDTkpVZpkiort3k0wfVJAxjdENNGDSKoH/nVi5+9QKzCy57d2VI2yqvnyrzB19dZMfEDP09Bn/m/f28fLiHlK11/6aGYXTnoMMwpNFosLi4SG9vL6nU3Z67i4uLT8Vz90nQbDbXJWC11r2pnUf9MvBhKWVpvet6msnkQSHE/RzbBfCoNP8ocE1KeQPgAfMHjVXHp9moAj5zzFVdZqouP7B5I5l8EIQQvLClyInby+/0UjawgfvCdV2q1Spbt25l9+7d6/qiXJ1Mtlotjh8/zrZt2x5Jv3lQ1X891DEpJf/lt+7w2d+6w505l0P780zNOOzZaaCpEVMzDVw3xjA0Fh2Vl/ZlUDWFWEqiIKIZQbGg42s6lmmSt2PcAGxDoeVDEAtmqgaK0BjOBYSRh0TBTmfxAomuCty26uHq/COMBQuOScGKko5fZ70IFusKYwUNZdX9KIoAYQBJJJjN5vECSdjmtc4ttZCiQ+tTIIgQioZtCBwfWp5CwYwotQwixcTUQrwQwkjBjVRSaSBK5garFR9FU6g7gkJBoVH3MU0VVVMJo5AYjb2HRpi/cotYJvd4c8ph+9Z0UsXvN3HcmHI1YNNoikxG45OfnuRf/txVPvztg+zbkeUDL/WRz+ndv/Ps7Czz8/O89NJLAHd1LW3bZvv27ezevRvXde+y7ujv72doaOiJg7fH6UzC2ruSAEeOHOHq1avcvHmT8fFxA/g+4K+u+6Ib6KKjSP3cc889MPlba2dyenqa69evc+TIkTXTq+9NJjtzlgsLC11bogf520op+eSnJzl+pkwmraIocPpCnXRK5ZUjeWr1kKuX60xsTaNlsuT7cgRBRCQU4jgAJJomWKwIspkk8dG1NrOgXVPz/aibTHZorFK25xolpFMqQsmhaK3uuraOmMzXk/8eHUwzU1HQ1IgwWOnv+L4H6AjFQMfvdgorLQVTXfkc+ZGCaEsAOZGGrvikTI35usqAHeGFkE1paBq02qcf6DEIhYIfKTQaLtmsQRiBapqYmorTCrBTGvW6Ty6nM7fg4QUaliYIgwjDUGm1QmxbQ0rB0PZRRodLhGHMmfNV0imVXduzqKrg6s06swsO/+zfXObo80W+5eU+Xnqhh57iSsUtCAJOnz7NgQMH6Onp6e5NrVYLIQRDQ0Pd76G303O3gziO1723rdcaZPXe1PZ1fsveJITYDPwm8NellFfWtaA2nloyKaV8EkOpUWB1Kn1fjq8Q4i8CPwEMAPcdahdC/G3gbwNdI+YNvD04PZWolG6I7zwch7cU+crFeRbrHv3Zd27IewMbuBedgC2XyzE6OrruL7bOXFFnznKtxuH3q/rXajVOnDjB3r17H0kd8/yYf/upG3zmC3cwDcGBvTmCQLJ51ELTVK7fDujvzdB0XYSisO/5LShqu0ulCBACQwNNxJi2CchulzFuJ4aCRHkQFKaXQlyZxdIkBRFhGRJFkXRop8GqeNYJwA0VpLDwVwYdCSIBCKquRd5a6cqausJSQyOrB0jAixQqrkJGT/ixdrqI05JIBEvlBrZtU2uGaPrKV6zve4QkNHpdU/DCGD9SMPXEM7OY0yg3Jdm0wkI1UVns3KthJHNKcSRRhMCLFbTeQURpjis3WuzensHQBOferDPQZ6Jrkr4eHdeNWa4ELFd9XjxY5NbtJr/3+/P85u/coZA3ePnFHjYPt5DRMseOHesG3Z3EbrX1SGfWshO8dWZ3JycnOXPmDNlsthu8rVcoIwzDdT3nUYI994OmaXziE5/gQx/6EMAl4JNSygtCiB8CkFL+ohBiCDgO5IBYCPH3gb1SyvsV3d/TuH37Nrdv3+bYsWMP9aN9lACYlJJLly7RaDR45ZVX1qXYuTpRjeOYM2fOIITg8OHDwIOFdsJI8m//4w1OX6gyecdhfEuac2/W2b09Qz6nMz3rsFjy2L0zhxsJxvduQddVmk2ffN7C1GMajRApVOL2HHsYrqhKq+3Pru8la4uiGLvdeRvq04lI5rudINk3I8UmZ/o4XkS8Sk06au9zC800w3mder3zmiXHTJVgMO0BHZaAwI81On2b5aaC1hYVbHmCwbzAj5J5TENP9qAwjChVkzlFIZIE1AsVhIDRQZNaS1LIadTc5Jz1uo+d0gj9mPl5l6arkMtr+F6IYSbKvZqWqLtGYUj/WB+lGy2atTp7dudw3RhNV3DcEBknlNr9u7P4fsRP/sxlVBU+8FI/41vTHNpnU168yMGDB7rfWQ9Tr17tudtsNpmfn39sz93u3+AxCl3r7Uyu3pva7+fP3Ls3Af8Y6AV+vr3+UEp5eD3reuo+k4+J+/013tJ5lFJ+DvicEOJbSOYnv/0+x/wSicwthw8f3uhevo04NVnBUBX2jeQeffB7GIe3JoHxidtl/uz+oXd4NRvYQILVAdvVq1fXTBdbjY6n18WLF9dlRXKvuMVq6pht2w+ljpWWPf7RT1zg/Jt1tozZFAtGmzIlqTViZudb7N6R5dqtJru354hTOVIZG1VRiGNJGMTkTJ/+fIzvW0RCI2cnSResJIa2AY32vKMQAqRAKIKFehJA5lOSrBniegGu35mxW6nCz9dVBrLQ9YRsP153FSxd6z6uCIEXCgayGi03pO4KgkhgZxQcL6bqaaRMSdOTSD2HwKfUMlFlC9NKAm3VyHWHR1q+giJiZssKvVmJF0DDTboVxZxBzRNoBoRBhGUmtLEwiLFMDdeXKAqkszatqJ8towsgY06ca7JjWwpFgZYb4QcxuYxGoxmxazyD60Vcvt5k354cgZ8Ew5/7nVssLEUMD6b4jslp9u/O8dyePHpbqfFe65FOctkJ3tLpNLt27ULTtK7f2htvvNGdcxocHOyK5TwM66W5NpvNhyYwD8JHPvIRPvKRjwBMdB5rB2qd/57jMVQS30uI45hz584RhiGvvPLKIwPth3UmgyDg5MmT5HI5jhw5su5CWafgtdraqNOl0nX9gUWuT/zKNb7wu7PYtsLYSJqWE3FwXw5FEdy83SKdVujvs2g6ITte3I0ioFYLsUyFMIzQDEG1GtLTZ+A0HUDDc0OstgKYYd0tCKbj0SH7pVMaNaeTTHbvhJtLJmMFZ5WI14o6bMNT8cOV/UjTbXAhwiASq/ZzGTO7rGC16zKaKlDESjKtCoWlZvJztSVQBCxVAyKRIW3FtDzwA0EhBVUHlhuClCEpuwbDPYLFOgz0222Wh0ToFlqY3ITrhuTyFs26RzprUq16hKGClBKzf5CM7+F5Efl80iVsOjF+BDu2ZfC8iNPnawwNWgwPWswvurx+cokv/X6M6xm87+gS7z8qef65Qjdhv3cOvKNeHYYhnuchhGBsbIxt27YRRRGlUqnruVsoFBgcHHyo524H692bIOlMrle8bNXeBPDP4C170w8CP7iuk96Dd2syOQ2s5kk9dP5ASvnHQogJIUTf/UR/NvB0cGqywr7RHKb2JE3ob37sH81jaAonbi9vJJMbeMcRxzHnz58nCIJuwPY4qohxHHPlyhVc1+Xbv/3b1/Wl2KG5roc6BnDlep0f+acXcNyIYy8UCUNJteaTzem8ebVJNqMzMpRiZsFl/54iQQyqne2qsqbTOrm0wDQsstmQajO5Z69VBT2HlJ1uJGhqojQIoJspHAcsfSXp9AJBuanTl1EQhCDB0gUtPwkybUMwVzXoTSfDSE13JfgsNXQszSOWiVoiQN1TMdUI10l+llJFU2IqdcFATgAJbTZl60RVjYg0FiESlcWyh1ATZcWGC4M5wXxVUHOS7kzLh/6c4MacoD8vWKhCf0Gw3FRo1DzslIqmq3h+gKYpSAlGJkUc5Jm+scCBPVmWyj6eE1IsGMSRRFUSiq6qCm5ONtmzI0sUSjw/Io5c5hYjtm5KU8ybfOl/zPNL/+kW+3Zl6e81eenFHo692EN/r9l9P3RElmzbvm/wNjIywpYtW5BSsrS0xPXr19cUvK03YKvX6+uq/G/g7UHHS3ZwcJCJiYk1JX8P2reazSbHjx9n+/btHWrfuqEoCs1mk2984xtdoR0hxAPZErV6wMf+6XnOXKyxacQmnzfQNJGIc7kRlarP6IjNhSsNdo5nyI6OoJoGnh9hWjqWreC0PDxPQXbO325/hEEIJKI73S5kv6AVQj5rUXOS4zp7k7bKhiyMk72q5ZuY+krB0A1Wjpmr6WSMZD/yVtUUI5Giw76wdCi3dCy1AloaGXo4sUWn99Pw1O7eV3cFea2BJwvJbUiBqkjmq4K0mRS2ojgZKZgPBcuN5CyhVOjPSlotmx5LsqQYhH6AZWndl8N1Q1qtCMvWcFoemq6j948gluc4f7nOxJakwBgEEteTLFcC9uzKEsXQciLmF1pk0jGWlaKnqHP7TpMv/JNZLFPwHR8cZOdElpcP9zA0sDKN11GvBu7qWrquSxzH5PN5+vr60DRtXZ67j5NMNpvNx1Zsf5p4tyaTbwA7hBDbgDvcn+O7HbjeFuB5ATCAdQ+NbuDxEEQxZ+9U+KtH164q9V6FqakcGM1z/Hb5nV7KBt7j6FTZ7w3Y1ptM+r7P8ePHKRaLZDKZdX8hdpLJ06dPr4k6BvD7f7LAx3/5On29BvlcmkrFZ3bBYctYmtPn6+ycyLCwFBBLSaFgE8YQGAVSmoplKGzqV8lkFBQFlhuShZpOb06j3IRCPkelBSo+UZwkOPVqFfSEVdBJMNX20gQrnUY/UhPqLEH73wS6mnQcYwwsbSVCM7SEIlbo0Wh5YffclZbC5p6Vr+RyS6E3rQKCupuktUIkM5LtV5GsrVF3JK04x1AuptoOKmfmqyD6aHmC3kxMwxOEQaKU2OlIxG0fuk1DGnfmAmbnPIIANI12Uq9g5Ivk+zyqtQYyihkdtrh0rc7uiQyOE2PoCnMLLoMDFkIVNOoBSI8785Lt27LksjqT0w6zCx5Hni/iB5K5BY/P/e4dPv4r19k0kuLbP9jPiweLbN+a7r4fHxS8dbqWq4O3er1+V/DW6Vpms9mEDrfOgO1xKv8beDKUy2VOnz79Fj/aR0HTtLfsWx2D+kOHDlEoFB57TY1G4y5l64exJWbmHP6vf3Ke5YrP0RcKRJEgCBJq6p1ZF0MXhJHg9IU6Lx7IE6aKWBmbZjMgndYJPJ/YMqjXI4q9JqItAd3xpZ3YbFJpQc5e6Th2PsedWr5gJRFcvUS/ffxsVWVLnySZ3l7Zv4SA5bqgd0jD8UMa3sqTKy2FQiqm4UqMNq3etHN4QUQYq5SaCnnTRyoGQRCSs41uYmvYOWgX0JbqgpEilOpJgWuwIGl5MF9J9lQvhKECLNWBOFlbpi0atHlIZ2YZMkaETOuUllwMU8f3AkzLII4iVN1gWRYY3xKRTqmcu1Qjm9HQdYFpqJSrIcW8jhMESBnSW8wQRInlyNWbTca3pBjsNzl1vsJvfXmO5/bkaDkRLx8u8sqRPvbuyqGpK3vTw9SrO56727dvJwiC+3ru9vb2omnaY1Hq10tzfVZ4VyaTUspQCPF3gd8jsQZ5y/wB8D8Df0MIEQAO8L/Id8oV+T2Iy3N13CDemJdcI17cWuSTX72JG0RY+kYndwPPHpVKhVOnTt03YLtfUPYgdGTxd+/eTV9fH9/4xjfWvZYoipifn2fHjh2PpI6FYcwvfuomJ89U2DRqY5kqF6820DVBb6/N1VsOR54vMjXjMrEtzZWbLfbsSNEINNIFi6F+nbEhA4lI5PRFpzsn6JF3C+hkUibVtl6FphtJTV4GBJF+13EpE+pt9UNFCOarKlt6k0Ctg444xVxVZfMqu06z7Z02W9XoS4cst0T3GU1/pbPmhgI3Sr6iHR960uCHcGe+CUY+eR1jSJmCuaqg5ihA0jF0RE/XN7TZaKCqKjfnbVRNstxIugOlRnIfQgiagcFwf8RSVeIHEscNknuVkvzwAI25GMN3uHClzt7tGUCwUPLoKRhkMjqZtEatHtBsedQakt0789iGwsyCS70ZcGBvDs+XBEGMbSm8ea3J1s1p0rbKb3xumk/8yg2e25Nj50SW9x3p4dBzBYxVdNj7Uc46wZuiKGzatImJiQnCMGRxcZHLly/TaDTo6emh0Wisi+K4kUw+W0xOTnLz5k2OHj267td9dRFMSsnNmzeZmZnhpZdeemw7ByklN27cYH5+ntHRUSzLeihb4sLlGj/18Stk0hqDAyb1RkS17pPPmbx+qsLuiQy3ppOE8oXn8gRainxfD0EQoqgKmqbiux6l5UQMS0pJNpvQNYtFEz+kW2AztJVkUqoWRCszYbYJrTYtvzMPKeVK0mhocGNBY6wnQFWg3k4abR3qCG4uamzti6iuYlDUW6ApKhB2GRQLVUFvFhp+0pXMpQ2qDlSbEaFfQbULADieQG+rYEsJnr9y3kabirvkCoaLsFBN1l5MSa7Ngqklj2UsKLelNrMphTCM2TJiMLUIhhqDInBbIYal0zOQxanApct3sCyVia1pLlyqghBs22QT+B53Zj12bMvhB5J6PaTphBzal8c0Ba+fKiNjeH5/niiWaCqcu1jlV//rNNmMyoe+dZBdO7K89MKKcjW8Vb2647nbsR7peO5qmka5XGZhYYFLly5hmibZbPahXqb3w3oFeJ4V3pXJJICU8neA37nnsdUc358CfupZr2sDCU5ObojvrAeHt/Twb//oBmenqxzd9miBkg1s4O3E1NQUN27ceGDAtlaJ/dWzjblcDinlur8Ma7UaZ8+e7RovP4w6tljy+Ne/cI16M8S2VcIIXj9VYcdEhkotQBGwf0+eejNkfGuauUWfA3ty+EJny0iBXI/FUkNhuSbpK4CqCCIJanvJbgAFG+bKCrYJvueA1EGo6FYaz4WMpXZnJyt1BxQbhZDO12cncLtdUtnSG9NJKP1VuXnNUdHViCBaSTKDSKAoertPkKDpKahK3J1t8qNVnnoCiFzqUYEeVeJHUGoI+jLJ9aotwUgxSSbnlhVGeqDSgkDJYYqYSKrY1HHJosQNIEPOirlwC4aLUKqr6IbEUHw8RxL6MXFiyYle6KVVrrBjKyAE1282mNiawfEiTF3H90IWFh0QggN7C0QxLCz7GIYgnzeJoiQ4U1TBpetNJrZmyKZVTp2rEkaSI88XiCL47388z1dfW8QwVCa2pPmWl/s4fLB4lwJjp2v5oOCtWCwyMDCQqNdWq5w5c4bTp09jWVa3a/mwYOzdGqx9syGOYy5cuIDrurzvfe97LMXdTjIZxzFnz55FSsnLL7+87m7P6jV1zrN7926uXr1KsVhkcHDwvsf/wZ8s8PkvJRRJy1J4/VSVTFqlr9fkzWsNnt+fKLfumkiTSqksOwrZ/h5aDY98T4rQ84iiGFUIVFMnnVLJpcCPExsgQ0sKP0JCzoqpV5axUjlUTcdvb9ed/cfQVpLJTtfS1JJ5aUhmwCtNQRyrmPrKnm20X/YgEgTxSjHL0qHuCBZrgq39gmY7+YylIGUozFWSn6tOQmGtexZgU1AkYSy4sxSTNWqgFdAVya0FQX8+KcIlAjrJdeYrkLYgjCWRmxTIhoowswz5NMyWYbggWa5FLFVAUUARIHQD05DoQmdp2cH3JFI12DTRT1q0uHajQRjDvp0ZFpeaTM+67J7IIQRMT7boKepsH0rj+zGnT9Yp5DR2jGdwvJg7My1GhlJcutpg1/Y0vUWDr75e4r/+txkO7svjehEvvVDk5cO97N659q6laZps27aNnTt34nkeN2/epFwu84d/+Idr9twNgmDdImTPAu/aZHID7268cavMYM5ktPD2+YF9M+PFthfn8dvLG8nkBp4Z4jjm4sWLtFqthwZsj6K5Sim5evUqS0tLvPLKK105dCHEunz55ufnuXTpEvv27ePChQvU6/UHWj+cOlfhP3xmkjCI0XXBrSmXai3kwL4880sem0ZswkiAkGQzOkEIW7dmUXSDkd40VtpECMHmPpgpJwFOIQOFbBKAGWoMseD6XHLtchNSSohq2gwVJM1ORV9XwGtTx0TS7XBdF0gSjqYTkRBoBHeWVXqyIW6wEthBEpRlUyoQdYNAgFagoquyK/pTqgtGioKqI9FVWKisWAGUay3ymaQbYBsS30kCwMaq66jKCo2182/KgDDszH5mcV0IsLFEi+uTMZDC8zz80GS4KAgjg3RKY74U4Ljg+wESgZnLI10NgiqjIzYtNyJtq2gaXLjikEkr7Nmex/VjKpWAfFbj6q0Wm0dt0hmVqTsOSyWfPTsypGyVN05XMA2VFw5kqVR9Ll9rJJ1nS8UyVSbvtPjF/3iTxdKbHD5Y5ND+PC+92MPOicxddNiHBW+GYWCaJocOHQJgaWmJCxcu4DjOXZSz1cnHRjL59NGh2w8MDLB///7Htn7pqLl+4xvfYGhoiPHx8cc+l+/7vPHGGwwODrJ582aklFiWxdzcHNeuXcM0TYaGhhgaGsIwTD7zhWm+/IcLTM002TGe48TZGoN9Jr09OpqmcPT5PLV6RK0RYNkqJy412X9kJ6En0drshJ68hqHHNLHoy0Hdh4ydiGA5LlydkgiRUFljqTCQy3N7Rqc3C5UmgMRzIZICW5fk7GTf6XQvTX0lmWzbNnJzUWHv2CoGxaqXq+EqpIyYlr8i8APgBEqXsdE5roOaIygaVSRJjJO1Y8IISlWdelggq8eIuEksc1TqHqpuoCmSOyWFvnxyHylDslRdGSPodCMrzYTa23Ri7izClkHB7XnJ5gGYXoKBHNxZjNg2YnJzLiLyA1qhTSOIKBQDtm3RmZtvMj3rs39XDtNQeO1khfEtKYp5nbl5l+lZJ1HazWrMLyWjE1s3pak3A/btzmLoCm+cKiMlHNqXJ5ISTRWcuVTlP35milxG5Tu+dZBdE1mOvdhDb/HBXcvV1iNSSjKZDMPDw+zatavruXvhwgVSqdRT8dx9mthIJjewbkgpefVGiVcmet9R89Y/TehJG4z3pzlxa2NucgPPBp25xt7e3keqGWqa9kCJ/c5so67rvPTSSw+tmj4IHerY3NxcV2hn586d3Lp1i7Nnz9LT08Pw8DB9fX0IIfjc787yh19bot4IKOQNTpyrMthvsnWzSaUWsnVzmnojopjXCWNIpXRiFAzLxLJ0vEDBrUFvIekTbh4AL4JqK6GKZjOQTwluLwp6MpKak7w2pp2j3BREUUwuJcilVsT0UwY4baqWlcrgtQAkbjtRUwhoeAaGpmKbUXd2SBFJNb7mCsYHBJXWyt8hjBQsXRJEcSJw0RDtQC3CNgQzywoD+QAnUInVLPX2Or1AAEm3z19FH1uqSzwPQLBYg55sQoNrtIV4yg1BMQtRpBDEJm4sKKYjyk0DTfhU6z4NL4WCpJDV6M9LytWIckPB90NCI4UrBSKs0FvQiCLJrakqQwMa/b0pXF9SqQakUirXbjts3WSTy2qcOlcjiuHQ/jxxHPPG6QrZrMaeiQx3ZlvcnnZ4bk8ORYDjxZSWPVpuhKErvHCgQBjG/Mqv3eLTn5ti81iK8c1p3nekhxcPFkmlVsKYe4O3qampboIphKCvr4+hoSFUVaVcLjM/P8/Fixexbbsr4tNsNtdNt/zSl77ED//wDxNFEdevX/8RKeVPrv69SD58PwN8BGgB3y+lPLmui3yToEO337t37wM7fmtFs9lkeXmZo0ePrmvW8l7U63VOnDjBrl27up6Wuq5jmmbXNqLZbDI3N8dXv3ac3/ujiBMXEhuezWMZqvWQwwfyoAhm513yWZUTZxsoArZvy3L1tseOg1vw3IBsPk1fHlAlQlHaIlyQTglQwXEkk4uSLYPJ5zpjRrSCtp0OSYZnGUAzKR6Vm8lxKVMwVwbbSJKtqrMyT3k3BNWmgiIS1sFdXrhSJDPZIu4yKAAcTyG9itrvBYJ8im6C6UcrmWe5IcinkmQ1jAT5lIIXZKEJXmRS1OvcKSWfr3ozxNJUKo2kE7pQTWYn5ypJd9L1IfRDppeSLmWplvA46q02hdeNaLRiynVBISOwDJN6XWNxSRJ7UG/UCcKAFw4UiCLJ2Ut1tmyyGew3uXazSansc/T5HmIpuTXdIghiNo2kUFVBT0FHAq+dLNNb1BkbSYEAz41QhODCuTrjW1IM9JmcPl/lc78zw3N7kq7ly4d7+MCxXnaMZxMfYe5Wr+68n27dusXExATNZhPbttmxYweapuE4DouLi3d57j6O9QjcvTf94A/+ID/yIz9y97vhbdqbNpLJDawb1xebLNY9XhrvffTBG+ji8JYiX744TxzL7gazgQ08DVSrVU6dOsXu3bsZGnq0gvCDaK6O43D8+HE2bdrE1q1bH2stq6ljR44cAZLkdWxsjLGxsa5P5dzcHGfPXuDrp0wuXhP4AaRSSSJ5cG+e5UpAJtPuQMWC3h6LUCogBKHUQFGIpYJuqmiGyp2SJIgjhnp1YglZKwmeSg0o5sHxJCAI3DqJ9R9dKlfKVJgtw2xZpT8XU2kK1IIkjARpY2U2MmUK/DB5TtpUaPmC5aZK3it3xXuS+crkmMWack8nIPFo682CoXXEKmCkB6Io+dltNsDIo6srXcflBmRtyJhwfUaQy0iCSGBoApWVzkTKkNycS6hjg4Wk+2ppkrIT0ykJpCyVchOGeg2ml3QsPcJQWnhegBvotHyDbDqmZ1DnzlxMLdAI1DzVZhMR1RkbtplZiNuiSjF+KGmVA3aOp9F0wWsnq6RslRf2ZFlYcrl+u8XIoMXokMWNySZzCx5Hny/iBzGz8w62reEHkpFBG0WBhUWPqRmHwX6TkSGLMIh57WSJ82/WmP4XlzhyqMjR54sce7GHzaMrlh5zc3NMTU11/QXDMCQIAnzfJ45jLMtiYmKC3bt3d4O3f/Ev/gW/9mu/xpYtW/jgBz/Iyy+/vCZ5/49+9KN85StfYWxsDNM0/4oQ4otSyourDvswsKP9v2PAL3Af7+z3AlzX5ciRI0/c/Z2ZmeHKlSuk0+knSiQXFha4ePEihw4dIpVKIYS4r9BOOp3Gi/r5zS/XOHuxxtiwjhAxvtfA0DSmZ0PmFpP54DevNxgbtshlDaqOypbd/QhgsM/AjSCT0ZBRxMyyYMeYSt0DRUjmFiN68x015/aFoyaQzEjX2slbJ3zI2VDrJHjtWqBtCC7eluzexF2Gequ9cOutZM9o+SsCPZAkb4s1wa5Rcdfxuirwg5WTlWpQSK+oXdecNIoiiaWg7gh0sXLsfOVurz/DzJCVSWLqhRpKWGLZ68HUAhShdRVhkZKlckSmPfpazMCteRjrS7qS40OS01dCJkYUbs5JChmFW3Mxm/sVenJpJqdjlpdCikWdWiNE12D39oTVsLQcUK4GHDlUwPclc4suuZyO5yVqubomaLQirt5osHN7Fl0TKEri99l0YhaWfA7uy2OaKtOzDguLLnt35gjDGFWBMxeq/IffmKS3x+DPf/sQe3ZlOXyg2LUe6XTmO/oFq7uWHfXqwcFBxsbGup67V65c4a//9b9OGIb82q/9Gh/60Ifo7+9/6xt6Fe7dm44cOcLHPvaxvU9jb9pIJjewbrx6IxHNfXkjmVwXDm/p4TPHp7mx1GD7wLtP2nkD3xyQUnLlyhVefPHFNUuI34/mury8zJkzZzhw4AC9vY/3We90RwcGBti8eTPwVqEdRVHo7+/HsAr819+9yh98rcTIoIrjRrh+xN6dFvVmwNioTaMVUSxYhFEiUCMUwe2ZkN0TBqoqSKc1wljBcWFTv2BqSdJsRRQLGo6fiFT0ZiULy1BszxqapoHjJkIUnSRsdUW/6iiEMSAFpTo0dIHjSSaG5F3HGauEtVSziCF83MigVa9CmwKmqUnCV3eT2cZKI9FWtE1B3O0QCDRFYbESAgZSSwJJS1/pQsZSkLYkfpB0NfKpJAnVlKQj0RHf8QPaNGTRTWKjCEpVCCNIW5L5SiKU0XCSQLQnBdWGScoy8IOInnQL32lw4WqagUKEndLQdBWCAFsrYOoq43ZEHEumZnyCULB1k43jRJxpdwKGByzOXCjTcmL2785iGQpnL1bx/ZhjzxdpuRFXb9TZuimF58WMDFk0mwGlckCtEXJgbw7LVLh+q4XrhQz0JRHmc7tzeF7Ez/y762ifvM6LB4tsGk2xe1xiaXO8730vdZNBTdPush7pBG/NZrMbvP3oj/4otm0zNTXFr//6r3Pq1Cl++Id/+KHv8ddff53t27czPj7eeeg3gO8GVgds3w18qi0S+KoQoiCEGJZSzj705N+EWEtx62GQUnL58mUqlQqvvPIKX//61x/7XDdu3GBmZoZjx451u9r3m7eMY8nnvzTLv/vVWzRbEYefL+K6MaoKui44f6mOlBHbNkFpucneHSmWmxq1wKY4mGFkyGKmLIgVnbEemJzx2DbSFpRCMFyMuTadfCY7FM9qwwcMCvksrTKkLHDalPYOVd42V5LJekdFVQMQvDkFu1bRWZ1VxJOGC3Nl2LU56fJ10DnH1JKgkF55bhDBnWXYMpAUppZrIimC5WIsQ+FmOWF/VFpgapKGs3LOlAnEspskNl2J5ycJpqHBcqNIMSMpN3XyZp1aK0veqHJr1qaQVpivQG8uWa+hJfc+WICFUoiUcGcpxtTh9lzM+BDMLwWUqz49aY++8R4qVRcZNAmDmKk7SSFLUQTbt2XxAlha9hjoN5mZ8xgaMLEtham2AvXzz+VpOhGGoaIqcPl6izCUPL8/RxTD9VtNYimZ2JZF0xSWyx65rMa5SzV2b89QLOh87ndn+I+fCXl+fx7bVjn6fB6Dm7x0bE+3CHKv5+696tWZTIZDhw5x5swZjh07xtTUFN///d/Pb/3Wbz2UKXTv3vR93/d9nD179qnsTRvJ5AbWjVdvlBjKWWzpXb+x83sZL25tz03eKm8kkxt4ahBCdDuAa8W9aq6Tk5PcunWLY8eOPZaBO9yfOvYgoZ3rtxr86D+/yMy8x/PPFZhb9NgxYeF6MbEMCMOQ6ZkadtpkqeSRzVmJYbWusWOLyo07HnsnMkgElXqMbUHdVRjtU6g2QVYjegoaDTfpUFabIKQHpFB1C9x2sNZOJuNVqq1O1wIk+TdrJkqF1+cEW/pjhOj4pq2ii6GyULPoy8dYdp56JXm8Vq1QCwqM9oQYukq5XdmfXVbI2quq+eWQpp8EtXVXYagYU3egVAddk0gEUSSYryTP6QSElUbStRzpTShotaakPwfzVdpBmeTmbMxAAe6UEhrsdAnGesHxJTIIuHFHUndiBgugIhDCZKokyGWSYxpOTN5uUgtS5FIxGVvgOT5hGDA6ZCPjCMeNuXyjxb5dWTK2wqsnytiWwtFDeco1n/Nv1sllVA7uyzG/6HNrqsXBvTmCMMYwoFL1KZUDCnmdbZvTuH7E66cqZNIqWzel0XWFeiOg3gi4dqvFQJ/B1s1pavWQ3/q9O7zWC4tlhSNfu8zH/t4uctm7u4sPC96+/OUv84EPfID/+//+v9f0Pr9z505XkbiNad5a2R8Fpu45ZhR4zyWTT4IwDDl58iTpdJpjx4499phNHMecO3eOMAw5evQo8GBbomot4Gd++Tpf+aNFhgdNNo+l8H2JbasoikKp7LF3dw7T1DAMjUYrwo9j+nsl6YJAKNDwBJsGFEw9JooSP8hO508TMfPLEa6vMlgUVFqgiJiW30k2kzVlViWTzY6SdHu5GWtlNnJ1N/L2HGwaTJK8zu9VRVJrAAiWq5KIpNhk6lBuH+OHK8wISPZLEIShRNciQEOikEvJbge15a6s5fIUjA1Iai2BQHJjHjYNJHYgC+Vkf90yIFFVwVIV4jgpEjSCDEP5iDuLKfxQUm80gTQiTma6N/cnhbxWM+DOUsxon8JMKWZiRKXuSGr1gNmliKGCR6TkcIOYlK2hZzL4rsdOMymaXr7msXM8TbMVkLI15hd8RoZMbDOZ5Y4lHD5UwPNiDF2gqHDyXI2UrXJ4f5ZqLeTNq3UG+00K+WRG9sZkg9FBm8WSz75dWQxD4RvHywgBL72YFB+u325we2qZ+SXBli9P8gN/VeFbXu676/32IPXqMAz5xje+QaVS4WMf+9gj3+Pw1r1pbGwMkn1nNd6WvWn9wy8beE8jmZdc5qXxno15yXVivC9Nb9rg69c37FA38O5Ch+YqpeTChQvMz8/zyiuvrCmRvJ8Iz8LCAidOnODQoUP09vY+VLH1d35/jh/6h2dxvJhDzxUoVwO2bkpTbUTkcwaLywqZbIZqy2S5Asu1kPOXG9TqLuevNNF1hX0TaVRDZakGhYxCpR4j45gwhJ6cwNQFi+UIIaDRChDEhCTCBs12gLbasaeTQGZWieZ1qvarGxeVhiDVzlPcVZV/x0vmK8NQwV0105jKFIHExLzZrHUf90LumlEiCuhJr3w9GyrMLidBXj618pzONZdqUExLFqvJz3GcUFznyomIhZRJ0GeqMV6QBIdSJs8TSKSU3Jr2UZWkQ7l5IPGZrDkwOR+RtgT9BY1aS2Eg71B1MowPS1zHY26+Qstt4fqJVH/TA0URPL8/6Sa+frbK6LDFc7szvHmtxtUbTXaOp9m9I8uJMxVuTbU4eiiPlDFT00nlv+VEbNucIpvRmJppceHNOlvGbHbvyOL7MVeu1wHB/JLPgb05xrekufBmlUtX6wz2gWWn2T2R5ZUjvW9JJO9FJ3CzbZuPf/zj9Pf3v2Wu6GF4gADVvQ/e78tyw8psHWi1Wnz9619neHiYffv2PZHQzquvvopt2xw4cABI2BL3SyRv3m7yv/1fZ/jvf7LECwcKmKaGbWkYlo5QFFRDZXgkSy6fxkzZVJoKqWya/v4CAyODaHoeKQQtJ6DVqPDm7YB6K0YRCVV024Dkws2QQja5dspM3hJpM+yqPHc+40Z73zG0lf0pbCekqVX7VMdrUhGSmgNv3pYU0yvFrvSqY4NIdPe41IpuDDkbbs4ne4qpr+x9d5ahVFrZtxarUG13UpdqyZ7TocOq7bd3pd5elycppFcKdVOLUKknqrKlOowUYSAnaTqJqvXmfpVWmGawEFNqGBiqx/LyEtcmHcK2FGzns7dQiXEaHjfuhBTSPqVGCseVpFIquqHhRwooBqZtEEvBxJYUlimYX/QJQhjsNxHAa6cqWJbCSy8Ucb2Ym5NNNFXh9PkaE1tTHNiT5ezFKhev1BnfmmJo0GK5GvDmtTqjgzaqKshlNEDyxqkKw4MWLx8uMrfgcfpCFU3xCUOd/btybB61OfJ88S3vuXvRUa+enJzkH/yDf8AXvvCFRz6ng2e5N210JjewLlxfbLDU2JiXfBwIIfj2PYP89rlZvDDCvP90/AY28MyhqipBEPDaa69RLBY5fPjwmoO1DkW2oxS7VuqYH8T87C/f4Pf+aIHt29LEcWL03d9vUa2HDA9YVGohuyZStFzJzm0WlqURhO05v6rHtpGI+YUKuYKFncpArHF7DibGdO4shPQUFWIhyaQEeV3QqLuEqPRkwY0Epha3xWxW7lWwEjx1xG/T5krXsmPbIWUSrC3VBTtHJQvVled3hClmy7BpVeG5c97lls2WAZNqOyjUpcPkHKQzSaZo2zbeqlmmlpskiEKsrFRGkp40LDVWfu78dq4M29pjZNUmjPYmSfOtmRhFCGotwXBP0q3cOgAXbvj0FwTTSzKxJggEM6WIvA1jAyqaonL5tk/a9Gl4abYMwOXbklzaxE5bVGoBunBxWi0CP8LQVRxHwQ8km4ZTjAzovHaqTMpSef65HK4T8dqJMpm0yoE9OW7cajC74LFrIoOiCvp7TZaWPTxP4gcxLzyXR2nPIqkKbNmURlMFW8aSgsCrJ8qoKmzfAql0lqXlgO/58Ajf9Z3DD3/zdl5LKflX/+pfcerUKT796U8/ck5yNcbGxpiamrrrIWDmnsOmgU2POGYDD0CpVOLcuXMcPHiQYvHRAfiD0Gg0OH78ODt37uzOmz3I3/bkuQr/6CcvoSjw/HN5qrWIkSGbpUpIb0Hl8o0WWzeluDbpsH1bCs8PGRow8UNBJqPTdGF6SXJwh8XVKZ+WnsUyJEs1yFkOBh6Nlg7oSJlcv1ZvADkKWROnnHzeO3OSneg+n0rYB7BSCOuEElKu7DGdTmYoYbkq256PomsFAoli6+Up2LtVoq7ScegU1qYWYOuQZLG76wh0M5vItJB0WKWysu/oKkwvJr+bXITNA5Lb88nPC1VIWSs5SsaCKIpJlLDB9SUzSzFRLOhr01pTJkSxgqHBYF7jzLUMo70hd0oaWaPFTClFfz7E1BTqXguwyGVsKs2ITQMqLS/GUCVSCtxAoKKgGSaGJag3fTIZjUJep173mZxx2LM9Qz6n8caZMlEEB/ZkcdyIvTsyxLHktZNldE3h8MECTSfk1Lkqhi7YvzODH0quXKuxZ2e+y7QwjISVEcewdSzZ16VUUVXBx354N7a1thjw8uXLfN/3fR+/+qu/ysGDB9f0HHjr3jQ9PQ1PaW/a6ExuYF34xo1lAF6e2EgmHwcffm6IhhfyJ1eW3umlbGADXXieR6lUYvPmzezatWtdVf/VXm9nzpyhXC5z9OhRVFVF07T7JpK1esDH/vlFLlyp8fy+PKahYlkKuZyB78f0FHSWygEylrx5vcWla02EUDhxvkGtHnLiQgOhaqQzaUZHe5EixWJFQtwipTWZL7n09QgUERGFkuU6hH6LphsRSZ2MLehNxyhxTLkSkdIjOuFaxloRv+gwf9Or/M87AVzKXJldmltOBHE6x3YSzqwNV+8IMlbSUejQ0wBqjZXXOJu28CIbkyYA80st7ixJNCU5keOtdCSX6kk3cXpJ0nRXgrOmIzH1lZ89f8VLLowgZydU2aF2LB7HyfqWygFBSJeu21cQzJclg0WFYl5FCIXJhQhViegvGqT0iEYzxPNjNFVhZjFkqN/AsGx6egsUClk0TcU0PHS1iaF5nL1Uo6dgsHM8zeysy5vXGuzdmWHvjgxfe73E7ILHkUMFbFtl6k6LpWWfOE46Bls32VTqAcfPVElZKnt3JhL/84suYSg5d6nGphGd7VvACyzOXqzzV/7iJr77z4489H3bgZSSn/3Zn+VP/uRP+PVf//V1JZIAR44c4erVq9y8ebOjiPx9wBfvOeyLwN8QCV4Cqu/FecnHwa1bt7h48SLHjh17okRycXGRN954g0OHDnVVox/ElvjjV5f4+f9wk4ltafbsyCFjGBwwcX3JYK9By43ZuzNNoxUxvtlkasYjZauAQsrWOH/Nx7JUtg3BxRseubRKvQVjAzr9eYXevM3Msk7LSzaYhXJASq2iazpFOyQKAnpSIcP5iP5cTF82YQ9kbYmlS7I2FNISgUxUWdsfdcugW4SyVnUakQkxFe5pQ7U3uuvTkihe2Ts6Ql+OD+6qPStrxdyaX6Hk51OdhDBBy5XdbqmUoNzT4FosR93EN21JphYkufa5FCEZKiS/U5Vkb+3LC0wNclbI+RshxSzUHB1FQD6fKMJq+Fy85jK3nPhnTs5HjParyDjpVtZqIbOLPuWKT8sJURXIpDWKBZPhAYtyJWC5ErJvZxbbUnj1ZAXLVHnphQKNZsjlaw2arYiZOY/9u3Ns22Rz43aDS1cabB2zeX5/jms3m5y/VGPf7jxRJBkZNJFI3jhdIWWr7NgGpmlxa8pD1xV+4h/ta79fHo3r16/zvd/7vfz7f//v15VIwlv3pt/4jd+Ap7Q3bXQmN7AuvHqjxHDeYnPPxrzk4+B92/vI2zq/c36Wb9/7ZLLoG9jA24GFhYWut9XIyNoC8NVQFAXXdTl58iS9vb1s27YNKeUDK/7zSx4/+8vX8byIXEZnasbF8UKyWZPp2SYH92Z5/UyN3oKOROD7MYcPZGk0Iw7uShEj2G6rNF3QTUirKumUYKkWsXkky1I5pFxTMbU6iqqgaiaRYrEcKgz32XghNFsxU23fMj+Em7MSXYkoZiFbVHB8QRCJlcq/svJvJyFMmytdA8sQ3FmU9OTB1Ffu2dITWletAb15KNeT3xmaZGoJdo5JSg1BqdwAsqCkUJG0wjQSMIRDiMXUQkhPOgSSjuVwEeaWko7lcK+k6QmmFiQjfYlsf8qAK1MxxVyiMLtUA0tNgr5qI6G8LlYFeTPg9qJkpFdwZ0nSm4WZUtLFyKUgCGOQARm9Sm9fmuuTAdkUTM4G7B43uXwrYP+ERWnZw9YFpUqM50kMTSeVMllcbpFLSxTVo5h1OXvJI51S2L8rgxCJ7P7wgMXmMZubky0WljxGhix6Csl7Z2HJRdMU5hY89u7MkstqXL/VpFzxmdiWodmK2LPdIgxdLt8AcPk/P7pjXYnkL/zCL/DlL3+Zz372s13/1PVA0zQ+8YlP8KEPfagzd/wZKeUFIcQPta/xi8DvkEjvXyPp6/yv677QewxxHHP+/HmCIOCVV165b1EKVmj2DyuA3bp1i+npaY4dO9YtcD3ofH/wtUX+8xfu0GgEaJrC8UsVDuwr8PrpGtu3pXnzeot8VqVc0xGKZCBtsX+nyXI9ptaKSac1xkd1bk65jA0a+IGkmNeoOhGmJrlyy2XTqImhQd01Gcp5zJcjpFRZqAogpDcbstzQ2TqoMLkQIgQYRqLmPD6iMLmYzEXPJbV9bFXQn1WJEd3ZxdWvRhhJbs9LnptYUYSGlRlML4TlaoRtqDi+aM9IJphZdLGNAEfmSJmJJZHe7kYGgWRmGfryEjcQKEgG8jBbTq7eaMWkTIWWlxTZZhcluzdL5ioCL0j2o2TVKncWkkRTSoX5imCsD1qtiFozIgiT+dBcWkmEdkYUbszEbB+BMxclg4WIharOSC5iuqQQOktcvmMy3Kcwuxixc6uB40SUln2q9ZCsLbAMhaYLQZyovDZaAeeuNNi7I4ttJ96SYQR7dmSwLRU/iLk91cSyNExT5dD+NDKOePVEGUWBl14o0nIiJu+02LopzZXrdXZvzxCFDZaWVcpVl+efy/NTP7b/Ljujh+H27dv8pb/0l/h3/+7f8eKLL67pOatx7970t/7W3+LMmTNPZW/aSCY3sGZIKXntRokP7OjfmJd8TOiqwnfsHeT3LszhhzGGtkEO2MA7g9Xejy+//DKvvvrqY5/nxIkT7N69+5HUsenZFv/PT1/h4pU6B/bmOXOxTiatks8Z3Jl1eX5fjqXlgAN7MmiaQrMVMdhvcPJ8DRBs25KiUo3Yvi1NLq9hGCpnLjsc2JVm84DCxes++3dY9EvJnVKGrSMKrtdCRAHNqAffa7BUNci1LUY6xfhiBsp1WKiAbcbMtIO1KBToJAbiBVtg6TBbFUgpWO3uI0gUDIuZzqRT+//bxyzVoGeVE0LWguUazJVidFPgx0lxbrYMO8dgoR0k+pFNIQULJY2qI1D1JGheLNWA5ISGKjEzUCrD9KIkn02oqrOLkLESFcX+nMRxkgCw3IBNA6AKSWNV0AiQSQlKdcmOYTh92cE2YjRZR9PTXLgWYGiSpivQVLgx5TM+qnPleoPhAZ1LN10mNhkJNa/uY5mS8a1pAjcgmzG4eqNOsaCSTUeUlhssLkt2jhuYhsLJsxXCSPL8/jyKCtdvNoljyOV0LEPhud1ZJIJXT5TRVNi/J5/4zLU8Gs2AyRnIZzX+zvdv489/59oLIp/85Cf5whe+wOc//3ksy3r0Ex6Aj3zkI3zkIx/p/PjPoBuo0f5vCXz0sS/wHsNqFeiJiYmHxhv30uxXI45jLly4gO/7jxTaAfitL8/yL3/+Gpom2Lop3d6ncly8XGfTiMXCoodlCCxLY6nss3k0xXIlIJfVsSwVTRNUawG9PSZNR4JQkDJCETFq5HPjToxlCRaWJVuGVFzHoVZ3cfwc20ZUphYlQkC1ldxLo1EFchTSkmrbY7bjX5sUrSSWnhTDIGTHiCBjJUJjq5PGDoPh4s2I8VGFzv7USRoVIZlahGImophTmWvbYatKRLWl40cG2azE8ZIEcHJeMtgrmS3FSAlZK0kmS9W4feokUZ9bihjuh5ankLUks8D1mYj+osb8crKmqUXJrs2SizeTa24dSvbBOAq5MRMx2qdQqkm2Datcm44Y7hUslGO2Dkgmp6tEsYEUJsiI2WWV8WGFc28abB6EqQXJYMHl5lTC2tg0bBCFCoEfoSmSfFbDcQPcQHL1hsOeHVlSpsJrp8oU8zo7xtM0miGnzlcp5nWGBmwsS6XZDGg0fK7eaLJlzGZ02GZuwePmZJOD+/JUawE7J9I0GnVuTUEsIz78bYP8Hz+0Y80dyenpab7ne76Hn/u5n+PYscd3EbpnbwKezt60EcluYM24ttBgqeFvWII8IT7y3BB1N+Rr1zaorht4ZxBFEadPn6Zer/Pyyy8/diC9uLjI8vIyO3fufCR17OqNBv/7PzzLxct1nt+fZ7ns89zuDBNb0/QUNI4eyuMHEsMUlMoBJ8/V8P2Ym5MuqlA4sCfLzJzP2IhFGEluTXvUmpKDO03OXm6haiqWkVSzEQpjvZIbs5JMyqKYL2AZUG3quB6UG0kgU20knKzMqtvvSuhLwfRiInwztQhXpyWVukQnxjZkYhfSRkckY2oRAn811XTlmOXaCqVLbX/z1hyFghniBCsBhrtKVr9Uh7hNI/NClZ4M6KpkpmShiiRanF6M8NykxRBGkLMkLSdu/y6hxTlOzOR8TLo9sxTHkiuTPpMLMfl00o3sz8PssmSkEPHmTY84Bl1xKDtZKk3B8IDGYJ9OqRKxY6uFaQgCz8fxIq7edtk8bDA569NXUBnu01hY8glDyeSsh+PGCEVh61iKWl0QSZOdE1kUBS5cbpHNxOzcprK07HDiTDJ8umnMpq/HwPMjqvWQMxeqjA1bvHiwSKMZcu5SFUFAqaKyf3eOH/hr60skP/WpT/Hrv/7r/OZv/ia2ba/5eRt4uqjVanz9619nYmKC7du3P7JwfT9bI6A7A24YxiOFdqSU/Npnp/jpf3udrZtSHNibJ51SOfZ8AUUo7NuVob/XZOsmiz07svT16OzfnSWMJH4osEwV142JY4WFUsjsUoRlShQihgoxpy852LZCrSkZ7dfpy0lajQbTSyqGlVj/aGpyn3050RXL0c3E/1ZtDykaWkSlPS/Z2VuKuZX7aLqS+UWfYlp2WRVCJIWy9p0yNReQMhKavtumxBbSCS11uQ6RH3Xp8inVA0Riq6TFLLSTzFiCpcXdvXKhIkmbkoWKZKGcMBzyqWR+8/p0RMoE2a7cBSGkjajbFQXwvZW/X9OVDOQlF26EjPULZkqSTQMKUwuSQlqQtgQ6AUtLZUo1k4lNGgvLEds3aZi6IAp8pATHUxBC4ssMPXmFnOVx8nyV+YUKi8sOF642kQgcNxkJeG5vDttSOH2xxvCQyc7tGRZKPhevNNixLcPYsI1lKjitkJYTMTXrcWh/gaHBJJFcXPZ4bm8BP5Bk0iqtZp0bk5DN6vwv3zPK//l3d645kZydneUv/IW/wE//9E/z/ve/f03PeaexkUxuYM3o+EtuiO88Gd63vY+spfE75zZGZjbw7OG6Lt/4xjfI5/McPHjwoT5VD8OtW7e4fPkyg4ODXaPvByWSb5wu86M/cZG+Hp2XDxeRUtLXYySKoY0Q01B542yNcsWnWouYW/R5YX+ObEZnxzabQ/uzRKHkwJ4si6WQWgu2b7G4Ne2wWI5J2QJkzNiAyo07AQohtUadwXzMjVkVVVfImRHLdZWBHhUQ6Kqk4bXtN+pJtCVEMl8JoLcbHYX0yhxSFMNMCUrlmDBaSRo7AR7AjZmYYtujrSPEA1BrSZqtGIGk5a60DVqe1k0uAZbrMfYqtqW3ai4SCcU0+KHCQCFZeywV6vWVwabZUkipmgRnYQSFlOT2XEQsodCeToijmGJGICXk08nfK2UKbCXE92MajqQ302S5kaaQVRgd0PFDwfXpgC3DGncWQgYKcOWWx5YRkygC14vYPKRy6XqTWiPCNDTuzHuMDNuoCuyeyHDpWgNVU5O/vSKYvBOxf0+OkeEcd+YSn8rRQclAb8RSyeHSlWq3Q31of46RIZs3Tpe5drPJpmFIpzOMb0nzre/r4y/9ubUnkp/+9Kf5lV/5Fb7whS+QTqfX/LwNPF3Mzs5y8uRJXnzxRQYH1zYGcr9kstls8rWvfY3Nmzd3PfYexJaIIsnP//sbfO31JfbsSNPXYzA77yKl5NT5GjPzDtNzPucuNQhCuHojoTqGoaS3YBBHMdemfBCCG9Meu7aZ9OdiNvWrnLvSwm4nEIWcBlJiqDF3ZhwWazqWAfPltr2Pk/ybTa2wGjp7UTaXWIn1tB3FBDELleSeV6tQ15oJQ2JyxsdQV801tgtfhXSivuo6wV1WRKvnK/0wplVvoisR6VXD4i0nob534PkxevsaDRcy5kp1TciYlJH8LoqT3y3XV37verI7Yw4wPe9jt49frEj89obr+smsaK2ZsC36cpJzV1wCr8FizaY3r1CqxOgqLFVi0nrI+asuQ70qi+WInZsNbFOQMSXXpmD/jjRLVQOBIJeVTN6pMToQs1jyaDkRd+Z9+npNtoylWVjyuT3t8OLBAqaldLOlOwsuy7WQg3tzqJqgXA2JpKRYMAlCia4Lmq0m16cURkdS/LX/eRMf/V8nMPS1fc/Oz8/zXd/1XfzUT/0U3/qt37qm57wbsJFMbmDNePXGMiN5i009G1XcJ4GpqXzHnkG+fHGeYNXw+gY28LRRqVR49dVX2bVrF+Pj449FV+94tJVKJY4ePcro6Cg3b97k61//OlevXqXRWMmspJR8/ndn+dRnphjoM+jtMbk97dB0Im5MOVy82sQwNE6cT6wfNE1heMDkhf1ZSpWAc5frCEXwxpkaEkG5ErBpxKLRCLl8M0lkMinB+KjO+asOLU8yMSK5dCMkl8+StjSiSBIFEXFbbCJtJ197PbmVrz/NSBIKW3O7gZfjtruWq7a7zoxkHEvuzIdYOtjGSjfTNpJq/MxCRNZOfNUgCfiqTZgvQ870u8keQCwlfdmVjuXssiRnJ4vI2nBtZiVomysns00ApWoSaPXnBaWG1T0mpQfgr8j3O46P0e40TC/GFNKSa1MBqpI8dnsu6U7W6omozo2ZkLTh0/Qz6BoUsio3ZhLbmD3jBtm0gip9pmd9ijmVq7c99u+wCPyAmXmPbEqlXI+wTIUtIxYyiinXI0qVJOAeG7ZoORHTcx47t2eJItkN0A8fzNPXl+fKTUmlGjLQB3HUwjICmi2f10+VMQ3Bjm2QzWa5M+fyLS/38X3fc5fP40Px2c9+lp/7uZ/ji1/8IplM5tFP2MBTh5SSK1eucOvWLV555RWy2bX7MHdsjTpYWlri9ddf5+DBg/T39z+ULeG6ET/7y9d4/VSZxSWPxeWAN05XGOg1Ofdmk/4+EylUHDdiy5jNlRsOmzelOX62jqomyeLIkM1gj0p/QSVjRtQbIReuOV1qqRuIzk0yVIi5cM1lsBeCSGF0QEsse/Tk8wwrqq092ZX5xkabrZBu+xD15xVimexf5XYlS1djKm3aataG65MexTR3FaastrbU3LIk8MJuIro6F19adqi7JjKW3flLSPxtPXflwFIlojezioWxqrt4ez7GWfXzzGKEv0qd2vMjMlayx6VMWCjHFFLJz/l0m10CLJQlY/0CVQFLCzl3LaA/26LipMjYKpmUQrUp///s/Xe4bXlZ54t+Rpw5rJxzTjtUJokBFAUKrKrrBW2xBbERrpZ9PHjFdLSxDY+03a3Y9rGPrW17lL5a9kWgxEYRFKpq571yznmtmePIv/PHWHvtXVpV7ILCKov1fZ79PHvOMceYY4415jvf9/d+3++Xvg6VoOqia36HVVWlkyLUpZivMrtSKuyIYgABAABJREFUpa1JY37NoLlBR9V0muvDRMJBDtPS6XUM6hbxqODw2GRrz+CeiSSOA47joSgwtVBEkiQujvksmu09A1mGXMElFlUJBCT2Doqsb0NPZ5gPvKeb732kA1m+u9/ZVCrF29/+dj760Y/y5je/+a72eaXgrJg8w13B95dM81Bf3dm85EuA75poIV+1zzwnz/BPht3dXSYnJ7n//vtPZxtfLJ6LOtbU1MTrX/96HnjgAXRdZ3Z2li984QtMTs3yH353gSf/5oBU1qBUcbl0I0cyobO1a4KAnq4wlu3x4IUEyZiKLEtIkuDqVIHNnSoTQzG2dw0mhqKsbFUJhhQm58v0doZoa1QwLY+VzSpruzbtjSqOaVCqGLTUy2ztuVgu9LdKLGzapyvDrucnMJGAdyqTnyv72+pr/MpRQpzK71cqfoZ2q1AEf4W+UAbbdJ61wn9rtb1YBXEHD/bOFf2dIwftDqGXYlmwfeiLT9REBJ7nzySpiu/b5ricJm3hAEgnRXGhAk1Jv8tYNaE+5r+fLGukyxGiJ5TWg2MDXeQAXyExGnBxXNg+8mhISHjCP/7Gng3CQQiJhtogFRO6WlSEJ+io9dCEw/xSiY2tMrGIQr7kEtBl4hGJ45RBXVIjV3CxHI/OZh3HcSlVHJY3qjTVBzjOOEwMRVlcLZIvOrQ1B5GEx9JaiZ7OMG0tQXb2DSZnC7Q2BTg3miQSjnKUllA1jc1tg9ZGj9Ymm4MjiZmFIt/3SAfv/u67LyQ/9alP8bGPfYy/+Iu/IJFI3PV+Z/j6wXEcrl27hmVZPPjggy9aBOnOzuTm5ibz8/M8+OCDRCKRF2RLpDMmP/3Lszzx6T0s2/dfLZYcHrhYQ9USPHAhSX2tTnuLzvhQjGhE4cGLcSQE952LYVouYwNBZpeKVKsOV2dKBHSZjT2L2qTK1r5NLCwhXI+hdpmZpSqWWcZxJWqSIboaBa7tILkmdRGXmrBDZwO+8qpyu0OpKpApCqIhfxyxpRYSEXHqLWkJf0EkGrhdrblOFdOGnQMDmdtx6E7F1lzBQzg24YDPmgCQcajYfjeyWPaeRT/NFz320oKmpC+mc5gRHGc9hBDoKsyu3e52CvHs+JcI+3HnFo6zDsubFqGA3y0Fn64vS4JY0GdSJE/WeWxHUCqZrO24hHWLohkmoMnUJhS2D13GelT2DgyKJYeFdZOWBv/aD3UHqJQMkjEZzzuxVgJq4iqlksHqZhVJ8kcU2lsi1CRj6IEQ2bzLcdqgs0VQLlfY2a8Q0BWm50v0d0c4NxJjZbPM5FyBuhoNy/Lo7QxTrtisbRQolmUujCf44A/28C2vu/vf2Ww2y9vf/nZ+9md/lu/8zu+86/1eKTgT4DnDXWH5qES6bJ1RXF8ivH6gnmhA5cmpfd44+NUl9mc4w91ACMHCwgKFQoHXvva1z2t9IEkSnuc9L+21XC5z9epV+vv7aWz0TQzvpI4FAgG6urro6uri4KjMv/8/l7h8o0Q8KvBQKKds7j+fpFByGR+KoekypbJLNCRzfSaP7cD50RhLaxX6OkPU1gaoVj0624LIisRofwjTEnS361yfLTHYG2bn0ObccAjHFlRNi2xRorMtiqYpFKseqixwTuaPihXoqBfsH5pkCgJFKBweefS2KQQDClVbPhXkqY1JZEv+dXCEn1xJbgE4mWGS/ERpPy1IRj1urcveaR1r24LGuMdRQUZXbydxyVgA8P3VVAWO8766akeTOJXqN23oigmKZf99UnkPISTCmmDv2AMhgyThOILtA799sXXoUZOQ2Tr0Ka0hzUNTFTZ2dXRNJxjwcF1YXC2hqjqOp6LILs01CjcXqtREBYdZmc4mmY0Dj84mGaNqs7NvEgnJ7B/b9HcEyBcd1nZMxgZCrG4a9LaprG1V2N43Ge4LgfDY2q3SVKeztF7xPdhMm96OEItrZSRkutpCGKbH5k6V0aEEnuexulHBdjwujCfQNYnp+QK27THYF0MI6O2SMA2D1U0ZELzt26C7ZZvVVZumpqav2GX87Gc/yy/90i/xmc98htra2hd87Rn+aVCtVrly5cpp3PhqcKszOTMzg2EYp2IlLyS0s75V5sO/OM3BkcmF8QSmJair9W09ShWXUFAmnbPI5i2aGkLMLBYY6Y9yaaFALKKiB1XyJYfOtjCOI07UOV0a6nQUzaG1UaNS8QjoMtPLZUYGgggBoUiE3pjM9JKBIoOqyVg2NNcK1rZtIiGbiukzFFoSOkFFUBOV2DrysCoSR2mfmt7RqLB/7NHbohAIqexlIBoJcFy4NRPtB6JyFXZ2c4SDcSqWfNrhFEKQyguqpqAuYRKP+bYmNRHBgXXC3IhJbOy7jHTLZMvSqWBOvuhSG5fZBfJlQW8bKIrg4NCnsxarCo1JWN4yicaDfkdSeCxuWHS0hXAF7O77x6qNeKe2JuWqYLBRkMndnmPPlSCgCqJBQSYPDQmV/YxEa4OC8Fx6WmB+tYKMIBKSTwXPNBVsyyZfsNnZ9xjsDrGyZXLvWIinr2ZorNcReGTyLsN9YRZWSrQ1BykWPCKRIE0NCo7jsrZZprkB9g4K9LQrRMIeT1/LAXDf+QSOI04LWce2aG4IgKTxPQ+38dA9dx9j8vk8b3/72/mJn/gJHn744bve75WEs87kGe4Kt+Ylz8R3XhoENYU3jTTyV3MHZ1TXM3zdYNs2ly9fRgjBAw888IIeeqqqPqeQBdymjp07d+4rUsdWNkp86COzPHW1RF93lFg8QnNjgMEemZ29HEepMoepCldu5rEsj8X1CsGAwoMXEyCgsV4lFFK5crPAcdpiY8dgdrlEOuuxvF7FEzKdLRrhgER7o8zqpslxpkImD/2dYda3LXaPXbpbVebXLQoVqI+DYzkcp20yBV9xNZX3fEqZEMyuWaxtG6TSFmHFIaK51EddmmIusZBMIgJ1dyhdZLK3qbypjE1L0k+OHOdOrzafblsfE5SKt1V1VBnW91wa44JkRJx6Wm4euBQqt2NBKuexn/b/HvkyNMQFO0c2uZI49YqUECRO5jMtBxIh79TnbePAI6z7haZlQ1NSorVepmzpNNf4f7fdY0EulcITIDx/TqxiQnOthGPZLKybNDVo7KcchnuCbB04VE3BUHeIatVloFPj5nwJWZHpaNaREWTzNtGwwvJmlXvGo5TLFlVDkMnbVAzB2FCMnQOD3QOD/p4IsiyYXypSk9AYG4pTqbpcvpFDkuD8WAJNldg/LFOtGKzvQFd7iB/7oT5+6sffyD333IOiKKfd8JmZGVKpFJ737Jj6N3/zN/zsz/4sn/rUp6ivr3/Oe/wM/7TIZDI888wzjI+Pf9WF5C3Mzc2hquqpD98LFZJXbmb51z8/RSyq8Zr7a/EEVKv+9+SZ61ksy2NprcLGjkFTY5jljQqjAxFMy2W4L8RQf4jWRo37J2JEgnBxJES5ZNNcKzO7WGJ332BxtcrcSoW9Iwddg6OUyWiPzOqWg6L4i1adLdop9fMo439pm+v8ItD1YPvQYf/YwRUShgWtDTJC+H61+2n//hZ4zCxXSYacZ1FVy5Yf5yUER3mdfK6MJhmkC/5+NZHbtiC64rGyZVMfsQgFbq+GSSeE24UNm4b47e/TcU5g3jHzbZjuKcV158hFVQQKHoYFTSdxMVM4WeBS3VO/XICVbYt07nZHtVJx2T70H2/uOUSDsLVnsn9soMge+xmZwQ6FTMbEtlxWtmzCQZnapMZB2o9R+aLLUJfK9EKJxlr/OhymLIZ7Azx9LcPoYISDY4tYRGGwK8DVyTydrSEOUwZN9QFCIQVXCLJ5i472COFwlNbmOOFwgKl5k0RMYqRPZv+wws3ZAuGQTDRsUZPUWdkw+X+/o403PHj3eXKpVOLhhx/mQx/6EI899thd7/dKw1ln8gx3hWfW0rQlQ7TXnM1LvlT4zokW/v8393jmxG7lDGd4KXGrk9jX10d7e/tXfP2tFf5/WHBubm6ytbV1Vx5tk7N5fuqXZgmHVV5zb5Ky4ZErWCTjAabmDYIBmcZ6nXTGpqfNQXgV2pp0olGdSzd8Fc9zIzFmFot0t/sy7DVCIp7QyOQcLoxFmFyoMD4U5cZcmYmhCLlClbq4wnFOZnHTpq8zQKXqCz7UJxWCmkCVBat7DkOdGtmyR0NSInUibnEroatLSCdiGC6yJLObEnQ2yuxs+4nScJdMSFepmAKb212wo6zNXtqjvVkhV5K5tUabLwsEsLFTJRm7XWTektc/OLZpa7r9E+x5t6hh/rUNqJworJ68QHgUTmaifI82heOMg6b4BakkSeQKNsmwRK5y4vNWck63bR26xE/mlHaOBMGQoKlGZn9fQwhBthyiNlLBczSQPJZ2BUNdGoubNt1tGmu7NjVxmfqEzPZulZqEwvXZMsO9YTZ3q7Q1aAgEqYyD43rcfy7K5EyeREwjHJJxHMH50Sizi0UQ0NsVAeExOVdksDeGrktsbJfJZG0GeiPU1eisbZY5Sll0toInBbkwFuChe2v5nnf493MoFKK7u5vu7m5c1yWVSrG7u8v09DSxWIzJyUlqa2v56Ec/ymc+85nTjvoZXl5sbW2xsbHBQw899DUp6ZbLZfb29mhtbaWvrw94fqEdgL/47B5/9YUjmhsCJwtWOUJBhcaGIFPzRcaHYmTzDj0dQeIxjarpMdATIpWxOErbnB+Jc3WySFtzgKX1Kp6ApvoAhymbieEY+6kqYwNhFtZNBntCpHM2rXUGB/kImYI/+7eX8uPJrXNsrJU5ytyiqPvPNSRlUvlbgjT+Nk/4ViCt9Qpbh/5zt2LX6rZFXcKhqSZAqSrIFv196xMSe8cShYpKfULCCwgqpoRnFwB/LrVSLgIxVnYE3U0OyahKtihOC08BlMsOiizjen7X9ChlIYS/mHiUFUR0/zMZls+wOEz7xebmrkU8HmDv0N++uGEx0nubxqzIENJux0ZVFrTWSuxnwXahLuqwfygAjaEulbU9j2LZplBxSeUE8aiEKkvsHNkM9wSwbY+mGrg6VWKgO8jyhsH4QIiq6VEoGOiaxMximbGBMMLzWFgtMz4UZXapxNhgBMcTOK5AeB6OK6EqEqGQjGEK5pdNOtqCtDYF2dguc3hs090GwqtwlFYxDIufeXyQ7/jmu48x5XKZd7zjHbz3ve/l3e9+913v90rEWWfyDF8R/rxkhod6z+YlX0q8cbCBiK7w5PTBy30qZ3iVoVQqnXYS76aQhH+siiiEYGZmhuPj49NC8lYx+Vx4+mqa3/3v63R1hGltCnDpRo6p2QItTSHWtwxGBqKcH40TCqrU1eqk80HWtkF4HjPzRWrjLhNDGo7j0t6sAxILKxVUTebqVBHLFkwtVmhp1HAcwcSAzt5BkURUZmlLpr01QEejRL7oULUERxmXpiQsrRlYjh+3bo3xxCL+T58swUH2ZLU+epuqenBC6bpFW5UkwdKWQ6lo0lp7W3AnHgbL1U4UVR0qhn8sVXZPEzrblRHe7Wt2K0nMlcGxb6/418Vhbc8lGjhRQXRdjtL+HBGAYXjUxf3/76cFnQ3+Z9w99miplYgEYX3XQZP9OaamGomlTYf2ev+zJ6MSmnJiM3LSqdzaKZEuKPS2+p89Fo2SzrpsHgoiAZu1XZNoUFCseHS1yCi43JgpEQkrLKwajPZHSOdsutuD2I7HzGKFuqTGPSNRLt/ME41o1CRVImGZ+lqdrV0D24HRwSj5os3cconx4TihkML8UhHHEdx7Pkk0ovLMtSzHaYveTkgmY8iSxL3nk/yL/1fn896/TU1NnD9/nm/+5m+mv7+fL3/5y3zgAx9A0zT+23/7b88ShzrDywfP83jta1/7NRWS6XSay5cv09raSiQSeUG2hOcJ/tv/2OSJz+yxtFoASebqZJ66mgAtzSECusxr7q1BUWQCARldk7l8M8/hsclx2uHg2OLiWIxcwWJ80Fd8HeoNcd9EjLqkythAEMtx6W3X0DUY7tYwjTLVqsVRIUJfu048IjHSrYJrUx9zqZRMepqhLnY7DT/K+vG35kQcrLlOoVAWaBrsnXQjbyk/S5Lg4IS50Fgjc5z1WNqo0pS8/blvzVWCH8/LBYv6OMTjt+eFDdcv7nTFY3XH4eDQpKuR04UrgI19m9aTZltj0u+MtpywI5qSoMm341il6nKc9YvJUlVQF7vjNwWwzdudyLq4xMa2cRpnLcvFu+M3aHc3R+gkHm7uO/S1wuqWRVONiu1AQJMpVz3O9ens7leplC22di2a6jV2D21aGnRs2wXXZm3L7zwGdcDzEJ6H63rMLha5MBrDcWB+uYSm+EJvrU1BNE1iZaPC/HKJvq4wrU1B5paKHB7b3HfeZ6rsHmnIssL73qWjM8fk5CSHh4fPy/K5hWq1yiOPPMK73/1ufuAHfuAFX/vPAWfF5Bm+Iub2C2TKFq/pO6O4vpQIagrfOtLEX80e4JxRXc/wEiISifDa176Wmpqau97nzmLyltDO3VLH/v6ZFL/+n5aZnM0jSzA5V6ChTueh+2pwHEEg4Is/XLqR4yhlYpiCaFjhgfNxopEg8ahGc1OU6UWb+ZUyjmOwvl2hv1snnTHpaNJQVZ96JUsy8ytl9o+q5EoqwWCQkR6NwyOLalWwd+zS2qgR0Tz2Uy4BXWIv5SHLcHDSAbhVVDbX3lZMNE78IVtq5VNF11uWH41JGdv1u42Fk4QMeJa8fVBXiZysssdCt7/PEd1kY9+lOeGQCN/2pJQkmF83qbvFnhUC1wNdcZEkn+ZWqPiUVk2BjV0bhdur+M4druSVqkddzO9Qbh26tNVJp9YAuYKLhECTfVrYLSuQQqGEe1LM7h+7hIOQy1t0NOm4nkRdTRjHkamNuzhGgdRxltUtk+52jdUtk/6uIAiHcFCiXHFZXDeYGI5QX6NyeapIY12AjtYgubxDoeRhmB4Vw+PCeJy1rSq7ByYjg3ECusSN6TwtTSH6eyIcp01uTOepq1Hp7wZPhJiaK/LmNzbxg+/ufoE7+DYkSWJpaYnr169z+fJlPv3pT9Pa2vqixV3O8PVBd3c3qvrVE+O2traYnZ3lgQceoLm5me3tbS5fvszm5iaGYTzrtVXD4Vd/c5H/8kcb7B9W6WiLUig63H8hQWdbCAkIBWWeuZ5jfrmEritMLZQY6IlQVxugvSXIgxfi5IsOpbJNoewwOVekarhcniwws1SiWPFO9pW4Nl2kWCqzfQCjA3EaEhL7KYe51So7Rw7pnEssrLC+azG7XGXvoEpd1GGwXSKgCjRVYNmC+oREfQK6GgXdDYKI6tAQdfBsh6AuaK6RsU5CwC2xHs+DdNaio/4f0+4rhke+LNjcqWJWK4AgHBBULL/irIm4CCRMGw72c9SfFIF1cYliWbC+bRLUQBZ+zKhW/e2u47G245yqXquSoKPhdkFfKdunNkvhoMSNuQqNNbcVbgtlj/Z6CQnY3jNZ37WpiXpoisNBVqcpKZ+8VFAu2QghWNu1GejUUGRoqoHL02Ua63w6fjKu4LoQDcvUJSSOjg0W1vyO8eZuldG+EPtHVaYXSsQiKvefT3B1Ks/ccomxQV/B2vPg4Mhka8cgGFA4PxpD0yQu38xjmIIH70mwvplnc0+mtTnMf/joOd7zrgd54xvfSFtbG8fHx/z93/89ly5dYmNjg2r1DvNgwDRNHnvsMR5++GHe9773fXVfglcYzmiuZ/iK+Pz8EcCZUMzXAd813synJve4tJ7hdf1nszxneGkgSRKBQOArv/AO3JqZrFQqXLlyhb6+vlOvtxeijn3ys3t87D8tIwQ8cE8Npukx2BchHFR45moWRZEY6I2SzlpcHI+jqhKbOwau5zG7VKJUdhnuj5DK2Iz0h0nEdbI5izbZIpczyJWgu0MjV/QYH4qSyxv0tJkEgkk623QmFytMDEU5ypiMNwboD3usbBokYyrHOY/+Tg3L8VUDS1UX23HJ52QaYzKxoEJHPZi2IFv0EAI01aeTxcMSuZKfjIXuuJQSgoNjk5pkgDsV33VVsLjpMNYnUalU4IQKGw1pHGYFM6sWvc23RXzq47C5D8WijSxrpE66EhsHHmO9HjM5/7j7KZe2BoVU2hfZaWuSsGyJyQWT9iaVw5wvrR+6g52cy9sYlp/0pfMeIz1+J9H1/EI3X5ZIZ1yScZ3Sse9NN94rcW3OYe8Yulo0tg8dzg/qTM1bdLVGmV2p0tcBq9s2HY0GuZwFkoJlSxynbe47F2V7t8rekUVnW4DGOo1rUwWaGwLomn9NO1tDbO1WyRYcLo7GKVUcpuaKjAzGCOgyS6sFTMtjpD+E41RZ2wLXrfKhH+zl3Y/cvWrr9evXef/7388TTzxxOo/3nve85673P8MrE0II5ubmKJfLPPjgg0iSRF1dHW984xspl8scHBxw9epVAJqbmwmF6/mFf7fG/FKR/p4IiZiGZXsosszCSoliyeX8WJwbMwUScZWezgjCg3vG41iOYPfQpKMlwJWpCpoKXe1hDo5Mzo34ndCRvjDhkMzGrkFjnUqh6NBcb6PrYYb7QlyfqzAxHGH72GKoO8DKtt+VS+X8KrC5XmU/5f8/GlbY3LGIRmRWNmxcD6pVjVzJo7ddP4kDMjMrJroGnfVBVMX3kr3TdiNbcElv+8XWLRExTRGnc5a66rKwKdNU59Bap7G448e4QEAHTrppssbBkUk4qiIcC9CpmILuNo/9I//Ndo9dejsUNvYsPAE1YUGpKnF4bIEQCKEgSxKrWyY97QHWD6E+AYcHICwHUEhn/WPtHRg01gZZPmGE2NU8LXVJMmlY2jRpbgxQE5OYmqsw3BNkdc+laniUyxYrxw7DvQEW1026W3UKJYfmeplC0WN7z8A0oas1yMa2wX1jUS7dyKKqEhPDUVzH5elrWdqagzTW6yyulqhUPUJBmcGeCMWyw+pGhfoajZW1MmODUQI6XLqeByTuO5/g8R/qobPNHwSVZZn6+vrTuexSqcTh4SHXr1/HdV3y+TzBYJDf+q3f4k1vehMf/OAHXzVsv7Ni8gxfEZ9fPOJ8R5KG2ItLTs/wlfEtw41EdIVPT+2dFZNneFmhKAqZTIbt7W3Onz9/qo75fNQxIQS//4lN/udn9hgbihGNqMwtFSmWHCZGE9ycLdDdEaKpIUCh5CBJguO0xc6+QUOdTkCXqa8JEdAV0jmLo5RJc2OQZ67niEUVYhGV46zrz1AuVeho8bg2XSAecbG9IJpmoemCUMA3tR8f0Fhdr9DTGaJU8ehuU4iFPVzHZW3LZqQnwNqOQ3ebytahC7jUJ/0isq9NJZV2CGiQL3g0J2USUZntY1/84lbXEiBb9ChWBKGATeUOyq9h+q+ZXbUZ6dbhZCYTSQEcQMJzdUK6Q9VSsap5IMxR1i8eFzbv8GwzHCQEAolSVTyrC6kgSEZgR4Dj+iqvbQ0ym3sGAU3BtCUiIYlI4DZVzbJcbjWV13YcuppMVrYVciWHwa4A6YLH5EKFnlaN9T2HfMlloEPh+kyJ5jqFhTWTvo4Aq9sm54eDLK64NNZKrO9YgGCoy+XqZBFJgonBKIoiuDpVoqstjKYKFBlME4plh8OUxYMXkqyul0hlbSaGEygqTM7kaajT6U5I5PIVdg4gGlH44e/v4ZG3tt31fTw1NcW//Jf/kj/90z+lv7//rvc7wysbtyxE4vE4Fy9eRAjxLLZEJBKhr6+Pvr4+DMPg+s1tfuN3J1EVGOxTsW2Xa1NlujvDHKf9Iuahe2swTI/xoRjBgMLUQpGGOp1SxaNYcjg3Gmd9q0p/d4iahEa+6BIJy+wdWqQyNv3dIeZXDGRZoq0lyPZ+lY6WEKYlE4vJTAwEOTo2iQUFlapNV7NMPKqwdaLAnIwpHKQcJAn2jv3nOps1FjZsets1tg49omH59PXhoAz4no1beyY6UFcTOKW7JiKQPpmxLBQdPA9qojqRoMTGvv98RLcolIMcpl2CmqA+KiFk5XRGEgTpgoxhQZ0u44nb3fyt3SKOq3BrrlsR7mnc29izaWvWWVzxz3WwR8X1ZJbWPBbWDOrqQ9ySy17dNpkYjjC9cFJcZ13aG++wDsmHiET8x54HQdVjZ9endGzumdTEdcplG9sWBAO+kE93m0ZAFYQ02Ng2iUYkXCFRm1QIBiT6uwJcupGnvSWEhMC2PDI5m+H+CEcpk/Uth2hIoacjhPAEN2d9r94HLiYolV1c16NUtplbrNDToRMMBvngD3SfFpLPhWg0SjQapa+vD9u2efLJJ/nIRz7C7u4ujY2NPPXUU7zuda+7q/v/lY4zmusZXhDpksnN7RzfOnQmXPD1QFBTeNNoE385c6bqeoaXF+Vymc3NTR544AGi0egLerQ5jsd//N0Vrk/mCAYlJAmeuZalUnG4OJ5AAob7I4RDCpeu59jZqxIMKCiKxL3n4rQ1Bzk4MiiVHeaWi2xsVzk/GiedsZgYijLYG6GxPsCDF5OAxLmRCMGAQnujS3dHmJZ6j+baKvFQlY4mwepWFcuWqJoC25MYbJfZ2q2yvGX4/onA4Ylioqb6P3utDQrZ4omQxUmt1lirsH3kzw6lMg75vEF7vUe+fMtgW5Au3FIodDBN51SO/jBzu+Db3vdoTHLyuttJUrYoIRwPVQEtcFvEZ28vRTzg0/Nk6aT713B71nFxwyLiO5Swn/bInSgg7h17dDTIeI5LqSJOVVoty2Vp06L2xPv9KGWebgNQpMDpLOb+sU1d3KfWHaRs4hGJaEimUrSxbI9cySMRlUllHcb7NG5MF2lvCbC67dLWHGJsIMLCukJNHJpqbY6O80zNlxjtD+F53mlSWyi5VKsu907EmV0skCs6TIzEkCSPG1M5BnsjRMOwe1Bh7wiGB6L88HteXCE5NzfHv/gX/4I/+ZM/YWho6K73O8MrG5VKhaeeeorW1lb6+/sRQqBp2vPS7ueXDf7sySqRcBhVC7G777G+ZdDdJlBki842jeH+CJdvZpmaL+B5cHUqRzKuomsybU0BHrqYxLQ8ZFmgaTJXJgts71XQdQVNhXsnosSiKkO9YSaGQwinxMRgmEoVFE1jarFCseJxmHZorNNY37FY2jBIZW2O0ybdzRKe56uf9rTpFEp+jLml7CorMkII2k5UXIUQHJ0WjRIHaZfDtItRNmlKeEgI6uK3r0csLHGQcjg+rhLSb+cWmn5i7IjgIOWytmOTy1rUhP140FgjnVLx945d7hB4pTauE1bN08e5XJH6+O057KByhy9l3iGg3hIKEtREBIcp63S7VbUQ4vYCWuq4iHTSGQ0HJSpF83S78AS1J5+tagqaksKfZ804tNZrBHVfrfswZbFzaNNQp3GccelqC6DroKowuVCirztMMOgv0ymqRLHicJTyLT0aanUOUxayLLFzYHB+NEpfV4irkzlmFwu0tQSQRRldl9jcsXjfuzvo645wt5AkiU984hO8853vZHt7mx/8wR/8inOV/5xwVkye4QXxhcVjhIBvHT4rJr9eeNu5VnIVmy+vpF7uUznDNyCEEMzOzlIul+np6XmW0M5zFZKlssNv/OdlPv25feaWCiTiOrsHBufHEtx3oYaVjTKrGyUqhj9HNNIfZajPpzHalsvGtsHN2QLtLWEEEj2dYR66twbbFoRCvmz+0loZzxNcvllgc7fK5k6FlS1BMhlnasHEcXXW9wKUKhqrOx6xsEs6U2Kw02Nzq4zjQq7o0dMewHagrUmlUBbIkk8bBYiF/Z+/RFRi58h/zqdjQkAT7B67mBbkCw6uZROPcJrQADQlZVa3LNpqPBJhD8Py942FfGrp1k6VxiSnQjxBTXCc8zhI+Qblt8Q2ADQ9TqEsock2Ub1ExRCsblskI5AIC0zrtrl3W72EYbqniZZpuazv+Ane0qZNZ6PM2raF64EqezTXSuwfOyxuWtTGbFobZGaWq/S1+cSkgA7loj+LVK76SVs2W2V5y2S0N0ix7NFQpxEJeKxs+lYh8ytVJoZCKJLH7GKFiaEIhiWh6WGCoRD1tTJ7ByVyuTLRoMPyWoVYRKGrPcjUXBHbEYwPx8jmTZbWypwfS1Aum+wfVgkGA0yMJHjbm5t55LvuvpBcXFzkXe96F3/0R3/E2NjYXe93hlc2MpkMly5dYmxs7K5o93/9d4f82/+wwOUbWXRdoVBy6O6IcP/FJFU7yOqGg2WaXJ8uoCkwMRxC1WBiOEpDbYCtnYofeyZzLK6U6GoPc5y2GB+MMj4Uw3EElu2xumVwY6aI57ncnDNI1sQplKG/J0wkBPeMhQjqEr3t6qkwV1eLzsauhRAgKxLTixVcxyGoefS2Skz0qSTCgq5G2N6pYFZM0mmTxrjLSKdM2fBjRkPN7QovFJSYXTGI6TaI20Vj7mShrGJ4zC0VSAYq1ETFqZpsW4NC5aSrWBeXmF6q0pL0iARuX9fmWpnFdYNI0H/OMD12jmRiId9e6TADZtWnP0gI1jZKRE5mJw8zLkb1dvF4lDKR7jg/y3ToafHjaVAXLK1bdDX679NSJ7O2bdLX6n9Ox3ZY2ajSUq8Q0CXmVyp0t+kIIdjcs+huUljdMqkagnhU4TjrcG4oxORsCU2VWds26G6PUJtU2d41SMY11rYqtDWH6G4PsbJeZmmtzAMXEpiGQy5vs7FToVS2GR2I0tyoYRpVVjbBdeAnPtDH/RfuXo/AdV3e97730dfXx8/8zM+gqiqve93r+KZv+qa7PsYrHWc01zO8ID6/eERjLMBYa/wrv/gMXxW+abCeWFDl01P7fPNZB/gM/4S4kzrW2dnJ0dERiUTieU3dD44MfvLfTLO2WaE2qdHRFgIkIiGFfMFmcrZCMq7S1hZG12WGBmIUChbzKyVaGgO4AhIxlf7uMIbpkS/aBIMal27kaG4M4LqQyhqcH42xtFaho1VDxkQP6Az0RChVPDqbNWqTGsGgQl2NTqnsoGoK86smAV3CsiGTLwM6ruvRUidTH5eI6BAM+AITSOC5Lj3NEuGQxLEGpYpfQAK01ius7fr/D2i+kmA07FIXvU31vyUqMbNi0tVUBpIA1MQkUlmoGAKrYhIPKxQqgrq4ROGE+povONRFJXbSEAr4xawnJDoSMqFAmMOMg+tJVEsF0ikF0Fjbdehu1dg7MMkUPAa7dNb3PVRZ0NOisrLrIgBFcvB1EyW2DhxGu28ncK6rIHl+B3V+zaC9JUBAFSysmowNhFjacpAR1NcopDIOc6sG4/0BVrfK1MRVDNPF9WSGegIcHpkEAz5tb3GtTF9nEMP051Ub6zQ6WgOsblZY2fLobReUykVWNhSScZnejhDzy0WCAYX+7iiFYpVU1qK30xc6ecdbWvj2b2666/t4dXWV7/me7+EP/uAPOHfu3F3vd4ZXNra3t1lfX+f+++9H13VkWX7eRS7PE/z+n2zw+5/YAuCBizVYtkcyriHLcG0yh+f5zxuWx/iQQFE9JucqBAMQj8ocZwT93WFMy2NsMEokorKzZ5LOmNQkNKYWitTXaAQCKq7pMjqgsXtoMDEUY27ZZKAnxJWpIrGogiTJlCqe/71artDaqJGMS2QKMpXq7dnDuoTKjfkKAN1tQbYPbEb7Q5QqNs31KrtH/vc1oAGOQ1dT4MQa6Fa30t9+lHFIZ216OoLky3B42sU0yRZ1ysfQ1+bSWitzlJd8VdMTVKr+8ZY2TEb7NKQTl8mAKjBMQW1UYNqwtecvUsVDvoDa0ppEuarT3e4Xk8vrguZafy68udZjbcsiFNSpmlATlThOW0iSAkJic8cXpdGCOtGAQRqJlU2TZG2IcuXEWmTHoLkxyOpGBU/4Vkc9rRqTCyZLGwZj/SFcx+P6XIWxgRCzy1W6WnWiIcHlySLjQxHmlssnLAnB1aniySykTX93BM8TTM0XCQZk7pmIcW06i2kKujvDNNTo3JzJsXfgd7Q9SWdsKER/d4S3vqn5ru9hz/P4wAc+QFNTE//m3/ybV82M5D/EK7YzKUnSWyRJWpQkaUWSpJ96ju3fJ0nS1Mm/pyRJOv9ynOerGbbr8XeLx3zLUOOp/9EZXnoEVIVvH23mr2YPMJ1XD+3hDK9s/EPqWFtbG11dXWxubvKFL3yBqampZxnAzy8V+OGfuE6+4HD/hSRd7WGm5wvs7FVxXKgaLvedT9DbHWF5tcjevkE6bXKctrn3XILW5iCJmEogIHF9Os/UfIF4TOfGTJGOliCKIhOPqTx0TxIJaGlScSyDzT2ZXEFmYaXMwkqJRFzj5lwRz/W4fLNAsewyv2rS3qyTKUoMdmkkowGaEhZLqxXWt8rMrZSYXan6qovrJrYjmF0xWVg3WNmy2d43qYt5JEIuXY0+reoWMnn/O1kse+zuGTSd0EWL5TuLtDDtJ7TUO6lbQnhUywaxsIR6x69tJCixuGHTUS9oTMq3Rok4TDu4d8xH1iYjNN7RhagUM+SK/va9I5u6uMTSut9FrI1JqAosrVdOrT7CQYnZxcKpuqznwS13cyF8Sf+Nk6RubqXKcLfK3HKJ+VWDkb6AX+geVKlNqKzvmHS2BKhPKBwdW9TEVda3DRxXMD4YYnqxxMpmlXPDEYI6TM6VQEjcOxFjc0+wf6ww1BukLuFxbSpPPOKhKh6WZZHNmfR0xljbqvChH+x9UYXk5uYmjz76KP/lv/wX7rnnnrve7wyvXAghmJ+fZ29vjwcffBBN016Qdl81XH7uV+f4oz/bZrg/ymvuq2Fju8zkbJ54VGN1o8Jwf5TX3l/L/pHJ/FIBISQmZys01OoM9cVprA/R3y2TK1RY36pgmCbPXMuxe1hleCCKYXrcOxGnuzNEXa1KS6OgXLHp644BMuODISIhhaHuAMM9IVRFoi6psLTu09ejYYWrUyXyOZNzAwHqkzKa6ivJAvS0B9g+sNE1ic19v6NXE1dPr8dh2iFXdFnbrmBWLGpiEk11CpmTWceOJpWKIZhdrlIT8WhM+kElGbtdNTqeYG7VoJivIlwXRRYEdW4XrDrcnKvQffL1y+b9gnd+tUpP823l65Uti4ByO04J10NV/L/LYTZIbczDtgxKFY+Q4q+g7R5U2Tuy6W2WaW1QKJY9imWPmFokHPTnDk1LUBf1WN/0Y1K56pEMuogTFetSxSWbMwmfdErLZfvUSmR2ucq5oSDZnMHhsUV7s87scoWLYxF2D0ymF8sM9EYI6BK5vAMC1rYqtLQEGRuM8cy1DLqmcM94HE2RuHwji6rKjPSBZats7VqEAjKPv7/vrgtCz/P40R/9USKRCL/6q7/6vLTsVwNekZ1JSZIU4LeBNwM7wBVJkv5CCDF3x8vWgTcKIbKSJH0n8LvAg//0Z/vqxdWNLEXT4VtHzrplX2+87XwLT1zf4e+XUrxp9O4TqTOc4atBJpNhcnKSc+fOEYv5g3WBQICWlhZaWlrwPO9ZBvDruxE+/5RHR1sI2xHML5colR16u8JEI6o/E1e02diukspYtLeGSMY1FEWiJqmxtOYrJ44MRH3KY0yhryuKaQnunYjjCYls3iYeU7l8M48kQXO9y0FKoa8zSDyuYTsCWYbDtE0yLqOqMl2tOo31OomYh6JI7OwbiCaV+TWT8cEwuymLvk6dzX2XoO6xvuu3JauGnwj1tmms7fnJSNUS7B65BDSHaEiirV6jYkocn9BR6xIK+2mbUKlKR3uIrZNjgWA/5WLZZfp7IuSKd8xIFlzSOY96yaCq3pZbvTUftbBuc65fIIRAkiTa6mXm1y2Gu3U2DgXprM1R2qWrXWE/LSgbQVrrHHZSsu/hFi3guP5xg7ogGZOZWfRYXDNoaQ4iuUVSlkJDnUSxKkhEYHbRYKAnyMaeg+u4NNUqbO77c43FgklDrcph2rcyONcf4NqsQUCX6GzVsWwPTRZUqg5zKzbjg2EqFZvLNwv0dYUwbcFRyiSbsxkfjpLOmMwsFmhvCVKpuiiywtYhTAzHmZov0NfpUSxWEZ7M6kaZ/+N/6+a19z93V/y5sLOzwzvf+U5++7d/mwceeOCr/Tqc4RUEx3G4fv06kUiEe+655x8J7fxDHKdNfvFj87iuYLA/ivDg6atZwiGZ8eE4nhD0doWRZYmnrmSIRhT6e2K4nuDieBwkian5As0NQUplmULJY3woTL5o0dnsEQpJZDJVHFdmx/R879MOiY09mebGAItrBqbp0dMZYWOnxEh/mMuTfgE1MhCmsVbFPBF7AZ9KP7dSOREJ0ykWLTqbZKJBid42hVhExjB9bkG+4O/T1qixc+j/v6NJZ3HdQFPh4miEVBZsx18cuoXDlMlh2qO/Q6FiaIBHKACb+7e6oQqTC1VqEwo9TQFm1vyY1VInUyjA5HyZ82Mx5pb9OCkEGBXrNE65Hph3UFgPMw4NMXH62lBAYnnDZ0fsHmsMdZssrJ0sSq6WGeoJ3LGvjiTfPpbreHS3qqzu+CJkSxsVuls0NvZculs1phfLtDbqaKpELm9zlLYZHwqzsmlycGDQXKczu1LBsjzuHQtz6WaBcFBmpC8MCBZXSwz2RpiaLzI2GEHGt6xqqA/S2hRgZ69CNu8wPhzFqBaZXxGAw+sfrOPn/7dhNO3uCkLP8/iJn/gJhBD8xm/8xqu6kIRXbmfyAWBFCLEmhLCATwDvuPMFQoinhBDZk4fPAHfnzH2Gu8bnFw7RFZnXn6mMft3x+v56kmGNT0/tvdyncoZXOXZ2dpiZmeH+++8nFoshy/I/WvGXZZnGxkbOnTvHQa6PL1/Dp1dm8iyuFIlGJB64mESWJKbmChRKNsWyQzKhcd/5JMGAzMxCgUzOYv/ARJYlHrq3hmBAoaczRG9XlKuTeXYPDDZ2qtyYyRONKEzNFWmslelps4lGIkQjMkgSN2aK7B4YbO4YHBwatDeHWFgtE9BlrkwVyRUcZparhEMKq9t+YnJLyEI9aQn2dIQJBSRa6wTFkk1QtcgXfXpZY43M7sncZEeTryK7vGHQEPdQT/waa2P+9amagkI6S0T336epVqZiCBwXjg6rqJKfNEXDcJz1/28YHrv7vqF4JAj76dsU2slFg65GfM+1kv/84qbFYLvEYdqnrqazNn2tMqmcx+aBTHOdTDImsbwJdbETlcN9B6Pszy+5HpTyRQolv6u5tW8z1KmyuOJv39k36e/QWFyrsrplMtSl09eusbRuUC471MYVBjt1bsyWGOgKYFr+vKkiCZbWq8RjGo11KuWKTani0tqks7lTJagJahMqlarLzl6VeEQmHlVZ26qSiKkossC2PSbnCpwfDVOp2uwdq6Do/PyPtxBUD/jCF75wV8bf+/v7vOMd7+Df//t//6pRRPxGR7Va5amnnqK5uZnBwcGvKLSzuFLk1397iVze5jhlkEpbLKwUOTcaZ3QoTrXqkkobpHMO0wslxobjDPX7IzvFks3ugcGN6TxtzUGiUYWezjD3nEuwd2izs++SrEmwuC6Rzbs4jk0ub9DVamHZEmODYZrqdPo6gzxwPkYoIDHQGyRb8AuwsYEwC6tVZpcrBHUZhMdIb4C+zgClyi1Wg8TOgYXw4OZ8mYXVKpu7FjNLFUzTZWu3QnezRM0ds9qOc1vUZn3LQHZt+loltg/8OFCfhMMTGxDHlTk4qtLXKtHepN4iJRCL+MfL5F0yOZOe5tu+j7dQLhiE7qDCbu5U6W7292usUbg5VzllY7Q3KOwd3u4YKgj622/vrMjq6TbPk9jdSSHhn2NrA6QzBsGTWc18wWJxrUxbo0J3m0Y277CwVqWnXWbv0O/y7h1ZtNcrp9diZrHCWJ/OzoHJzFKZsYEw3e0BLt/MMT4Yplx1cT0P4XkI4VNb7zsXI50xuTlXpLM9REdLgNnFAkgSg71hSsUCy+uCtpYg3/aGBn76x4cIh++u/+Z5Hh/5yEcoFot8/OMff9UXkvAK7UwCbcD2HY93eOGu4/uAv3yuDZIk/TDwwwCdnZ0v1fl9Q+DzC0c82FtLJPBKvU1ePdAUmbeM+Z6Thu0S1JSvvNMZzvAiIIRgYWGBQqHAgw/64VRRFBTlue812/b4L3+0zh//+Q4AF8YTGIbLUK/AdgyuTmbxPImRgQC65qsgep7HwnKRUsVlfCSOpkrEIgIh+TNLtiO4MJ7g2mSOREyluSGAokj0dobJFx1UFYIBm5UtFagyMRylUHI5NxJB13xJ/sZ6nZmlMromnfq1RSMqkbJgoDtIseySiKnYtqAhqVAqWoRUl/0Dg0zOpakmyOaeQ1ujynHapS5eQfVMVDmO4ylUqrcLmP0ji6gODrdFNMCfzyqWBA31ELnDMak2LrG8WWGgJ4SmKWRz/vNNtQqLGy6VqsH5oSCZ/O1O5OImLG5YjPRorO74FiJC+AVka73MXsqjagiMim/DIYSEafiiP3uuT8HSNWiphdVNh0jIo2zohIO+cm067yJJErbl0NmisbZjUzUEwrV81URDsLBeYeSkW5AvunS1yqQzJq4Hq5sGo30htnerlCsugz0hljcqDPf63ca9Q9/37t7xGE9f9z/wYE8YSfJ9RDVV4r6JOPPLRYoll7oajfF2lauTJSRJZnwoxuPv72WoL3ZybT3S6TSHh4fMz88TDodpbm6mqanp1Dv18PCQt7/97fzar/0a3/zN3/zVfynO8IpBNpvl5s2bTExMEI/7Bd8LCe08fTXNr//2Mkcp01fVlCQaagO0t4TYPzTYOzTo7QpjWlBfp9DekuAoZTG3VKK9JYhhCWqTGp1tIbIFh8WVEn3dEXb2qli24L7zScoVj/MjMQIBmYMjk4BeZXtfQwgXzytykFbo6Qgwu1xBCOjvDrN3aNDdFgQEbY0aluMxv1LBcX0GQqnkMtARJBJWWT0RzrolCd3fGWR1239OQsJ1YX6lQm1Cpb9N5ygn2Njzi8a2Ro3dk25lc51LQHFoSkrYtgH4Kjiy7M88zixX6e/U6WtVWN93TmmtmgqbexaWLRjtC7B3fEeMcz3qYoKKKVGXkNnasnFsD0XWSZyIgeWyFrKsUihYFMsegw2w68DKZpmq4dHZFqJiCCbnSvS0B6kYHi31HivrGuODKis7HuWyQToraGu0CAVCbJxck6Njg87W28FVuIJIAKyIjOsK5lfL6JpMS6NGNCTxzI08E0NRZhbLlMs2QR1cVzC9UOKe8RiLKwWKZY/Gep22Rp0rN3IoisT50Tiu43BtOs9wf5RszqRYKpLKyFwYj6FrEj/xwQHi0TuMfF8AQgh+4Rd+gf39fX7/93//G6KQhFduMflc0UM8x3NIkvQt+MXk659ruxDid/EpsNx3333PeYwz/GNspsusHpf5Fw91vdyn8g2Dt51r5RNXtvnC4hFvGW95uU/nDK8ivFjqWLZg8XO/PMfN2Tz1tRr9PVHSOYvV9TLnRhIsrLr0dkWpicssb5TI5U3aW6BYkunqCBMIqmxslsnkbAZ7o2zuVKiv1enpjFCquHS0BIhFdeaXSzTU6ximR6ns0tkKjhvk3IhOMCBzbaqAQCIeVZmcyxONyBimiorLSG+M1S2DrrYAC8slVEVied2jUHIZ7AmzsmVybijC5p7FQFeQ9T2HWEQ+7VxGwgr7KZdcWSFTjKAqLu0NFttHGiATC7vsHvnXo7FGYJr+tZIlj1Rew7QEpAyC2u0V+ErVw3FhfqXKPaN+QgkSpuknaa4HR2mLlhqJsiU9q0A1TY/aGJQNSMZlNnb9Yq8+oVATV5hZrjLSq7O87RIM+MU++N2F4R6Vw5SF7UjgeSiyR7EkOM6adDQ55CpBFld9EYu2xgCK4lPZ2pt1PAHdrTo3ZstMDEWYWzVQZUGl6tJUr3KUtikULVoaNeaWHZY3Ktw7HuWZ6znfV3Iogue5PH09R09niGrV92Rb36pwfjTG3mGVpdUiAU2ifSCC69pcvVmirTlAXW2AD/3g7UIS/K54Q0MDDQ0NJ8l3iYODA65cucLVq1dZW1vjS1/6Er/0S7/Em970ppfoG3KGlxO7u7usrKzcldCOEIL/3yd3+Ph/XQPgwXt8oR3DcHEcj6XVEpbtcf+FJK4rcE+KuOn5IqblcWE8jizB7r5BpeJyeGxSKDqMDcVQFInB3giqInFtyjemHxuOMXkzTyLm4Xo6igITwzFyRZvhXg/LqtJSJ4hEVJY3K0iShK5LTC2UEEJwfjhKMqqyuF4hGlY4PLZZWK3QWKeRzdiMDISwbZehbo1wSCKoS2iaxOq234XraQ+ytu13V8f6g9THVVZ3bRJR5bSYrJgexxmHVEbQ2RKgu1XhKOOytnPCnqhTWN7wi7SRngCGA8UydDarLK77hWWu4NCYkCmW/dp2e8+feRzqixAMSmzhx5qJIX+hCXzRnwsjOjdPBISWNkwujoW4OuXHpnzeoq1J4+AAVrcMetuhdMK+mFmqcGE0xtSC/zl3j2SGe6rsCQlJktAUh+U1k96OCOvbJodHJscZm5qEymBXkGszZSpVD0WGiO7H5unFEhfHoiwsFSiVPYb7I2RyJstrJSJhlUjEp2POLhaZGI4xu1TEcVzSGZvBnigLK0U6mkHTAtTXydi2x6/+7DmikbsrlYQQ/PIv/zLLy8v89//+3593ofbViFdqybwDdNzxuB34R/w/SZLOAf8X8A4hRPqf6Ny+IfD5BT+LOrME+afDQ7211EV0PjW1/3KfyhleRXix1LHN7Qo/8r/fIJO3uGciTltLmGeuZdnYLDM+FMf1BIO9UaJhhSuTRXJ5wYP31FCbjKFpEvl8icmZHLmCzb3n40QiCi1NQWqTGk9dzTI1VyCZCLC4VqKnM0h7U4D6pENnq8TBscT2noFpuly6niOgSzxwIQbCVxhtaw6RyTnU1ehML5Upll0k4bOzhvvDFEouzQ06K1smqiqxfZJseUgIIehq0bEdQU38dlHZ3RrAsgUVQ6AqAWqiUBODZOT22qMmV9neLdOUsGlvPCkk8WX5l9YqdDVJRIKwdeC/XyjgF2t1EZempMT24S2TcpnNfYf1XRvZu+XDJoiFJVa3LXYOHWQ8dPmWrL9AIDhK++c6v2bR166SyZosbpgMdPqFrPA8YuGTBK6sMdytc5TxH+8cqbTXO5iWwLYFR6kKnuMncDsHFm0NClu7/uPpxTIXh4PMr5TJ5h0KBZvzQyHWtqrMLJUZHQgx3Bvgmes5Rvp9MQvhCfJF/7qvbVaoS6oEA75H3spGmdqERnNjgOOMhWVZZDIVBvt8u4Uf+t4uRgdvF5L/EJIkEYvFGBgY4PWvfz3f8R3fweTkJMFgkI985CP89m//9ov5KpzhFYZbbInt7W0eeughdF3/iv62H/tPy/z+J7YYG4rx4D013JjOcWM6T12tTiZnMzIY4/4LSW7M5Lg+nSccUsjlHYb6I5wbiTG/mOfaZA5FhoAu0dsZYqg/yvZuham5AobpMbNYIhSUeOBiAse26Gp16emMU1+rM9If4fpMgc1tg0pVYXVLQhBkbUsQCXj0thgU8hWEEIwNhJmcLzG3XGJiIExA8xWlRwfCHKb8WGEYvk9uJmtz+WaeStmkr12lqc4vRALa7etQKDlMLxSJBRyE56DIgvqkwuZJt7KvM8DGrs3CSoWuJpn2BgUhBDWx28WQ5bisbJTpbZWeRSOPBGFmqUxHk0xrg3pKxU2lDUqlZ1t8FCu3xXdM06GjyT9XCcHaeomuVr+Lp8iQzfrMBfDVWGPh291GyzRpb/I3BnRY2XAZ7tEBQTTsUa76TJfBDodMzjo95s3ZAmP9IYQQ1CVk5ld8X1tVgYODCq1NAQK6xMpGmYYaFV2T2Ds0MU2PhjqVStXxjzEYw7Jc9g4NFlaL9HcIBCrL6yaRsMa/+8WJF1VI/vqv/zrXr1/nD//wD1HVV2qv7uuDV+qnvQIMSJLUA+wC7wK+984XSJLUCfw58P1CiKV/+lN8dePzC0f0NUToqrt7U9YzfG1QFZnvnGjmiWu7VCyHsP5K/Xqe4Z8LXix1DOAoZTAyGGd1o8T2nsFx2mKgN0JNUmdvv8rBscFgb4yFlRJjQzEScZXr03kMw+P8aIKjtMHYkI7nWtycLuB60NetsbZpMNATpqEuwFHaQlNBluD6TJ5IRCYUUIiGobczTNX00DRoqte5dN2X9D83Gmdts0pXm05djUZ9rUYwIFOsCLpaNRxX0Nmi01ink4x7xKMKlapHZ7PC/rFJQPFY2qhgmx6NSZVEBHRNPlVHlWXB1r5NqeKha1DfHQT8bcWyjeMG2NixGegwECKIJEnUxmQOjgQLq1XuGwsxVRAIJDqaNBbWXbYPbIa6obtZZj8jaKiRSef86xyPyMytmjTXqzTXyUzl/eeDumBn36SxRuMo6xHWPdJlh0hIplwVCMf2bQKA1W2T/k6d2aUSnhC0Nuqk8oLVjTIjvQHm10ziEYW1LZu+ziCrWxZNdTLbeyZ1CY90XqdaNgioErUJhYrhsbBaZLAnyOauSX2tyvXpAuODEWaWSgjPo1Bwqa/RmF8pc3EsQiptsbFdRVXhoYsJLl/PYDvQ3hKkpUnn8g3/A58fCZNOFzlKy2TzVX71Z8e4OJG863s5n8/z/ve/n3/9r/81jz76KKZpcnBwcNf7n+GVBdd1uXHjBsFgkPvuuw/P816QLQGQK9jUJn3RLUmSeOZaloDuz2OXys6JpYTgys080YjKxIU4ubxFKmOSiKls7frzvudGw+QLNourZVoaAxgWCCTuv5jEdXzBnlhU5dL1HMEANNSHuTl7ItyyUCQSVhjpj2LZPrXedMBxQVVV9lMy5apHRxPkszkQKoGAzPp2hVzBoTap4rkuQz1BkPxuHkAyrrJ3ZOG6HivrFdI5h9GBMLmiX3TWJ5VTCmgsonB9pkAippAImxTKCoalnM5ECiHY3DVJZR36OwOngmORkHRKo13frlKXUAgH/fM9OPb9L7d3Kgz3hU+veaXqURO3Tx/XxCXSGRtZkhFIbO1WMAyP+pog8ajM3FKJXMGhrSmIpngsrRu0NghSeQWEytJ6md7OMAcpm4WTGe72ljCxsMTknMn0QomJ4Sibu76iqywLtvdcwgGXgC4R1DxMSzA5X+TeiRjzy0U8D2YWSjx0IcbT17IIJJ/5kFS5MVMgGJAZGwxTLFpcvZmjuyNMJCyzsFygUnXp7w4jS2UWVwVg8YaH6viZHx9+UYXkf/yP/5EvfelL/Nmf/RmadneU2FcTpDtlzF9JkCTpu4D/ACjAfxVC/FtJkj4AIIT4z5Ik/V/Ao8DmyS6OEOK+FzrmfffdJ65evfp1POtXB0qmwz3/5nP8wGu7+Jm3jr7cp/MNhWfW0rzrd5/hN999kYfPt77cp/PPBa9G35qvOTDv7++ztLTEvffe+xWpY88Fy/a4ejPLly+nmJorsL7le0i2NIfQNZliySKgK8wvl9A0iXsmklSqLhvbZXq7okzO5omEFcaHo+RyBnuHJnU1sLnnJ4tjgxGO0yUa6kJEIiFuzPo/+pGwylHKoqkhQEOthqxImJbH+raJ44oTalQJXZOJxzTSWZtzozFmlio01GrkSx5CQEN9gOOMzXBflJUtX911btUgEpJwPAnLFvR3Bjg4tuhqCyHJsLDur353tqisbRkM9eikcjb5EyGbUAAMw6Gp1qNQ1ZEQVEy/C9dYoyBJEAppuJ7H3pGf2NYmFFJZl0hIorc9wGHWw7QFliWwbEEo4M8ndbcHWNlxaK9X2NjzKa5dbTpzKwZCQGuj3/Fb3TSIhGTCQZlcyaUx4XGcMSkbKvGITFerxo05P0mbGArjOIK55QqyBGODYTZ3q+SLLqoqMdqrcXPO70pGQoKOVoW5FT/x7G4LoiqC5Q1/+z3jUba2qxylLYIBmfOjUZ666mvgjQ9FUGS4MV2grkajpdFPYFc2KrQ2B2molZldKGE7Eh2tIX7sh3p56N67V20tlUq89a1v5QMf+ADvfve773q/F8J73/tePv3pT9PY2MjMzMw/2i6E4PHHH+fJJ58kHA7zB3/wB3drPfJqjEd34muOTZZlcenSJTo7O2ltbT1lS7wYD76tnQpffDrF+laZ//UFn0l1YSxBpeoSDMooisTNmTxC+AtRQvgxzbIcjlO+cNTwQJRQQMFyBI4r2N4zqFZdzo/Fff9BHXq7Y4BENKJgWIKNnSq9nRFml0oATAxHWVor09MRIh7XuDbtFzeDPWGW1io01qk01LrMr3oIZAa6VZY3/O9YV1sQRZFIxn0/yUzeZbA7xOKaTxsdHQgxt1JmbDCKHlCZOqGT9ncFWN6oIkmCcABMR2Z8MEwmLzhIu/R26KycfG+He4PMrVQY7g0RjahMLp083xNgdqlCU71GXa3Owmr19Nr2tSnspnyV2MEuncm5HEN9MbYOXOoTHtt7BhPDURxPYWHZV66tr1FJRG8zPvq7dKpV91SF9r6xMFemigghoWsS44NhrkwVAIhHFdqbdeZW/HMY7Q+xvWvQcRKXZxb8a93TEUCRPPZTjh87NQGSTG1NAE2VmF8u0tcVJp216GwLsrRaorczzMxikdGBCLbtUSg6GKaHqkBTfYB01iKkm6xueXR3hOlsD/P//f8Mkojf/Yzk7/zO7/CZz3yGJ554gmAweNf38MuEr0t8esUWk18PnBWTd4fPzhzwgT+6xp+8/yFe01f3cp/ONxRcT/CaX/kbLnYm+T+//wXXRs5wG6/G5O1rDszFYpFAIHA6H/m1zG84jsfN2TxXbmT57OcPcV2PREKnWLLpbAsT0CUu38ghBJwfS1AsOUSjCgFN5srNHOAnevtHBsm4hITJ+o7AsmUGe0MsrVX91f6hOKbpsbNXJZnwFUKjEYVgwC/UejrDWI6gUHSpSfrJVSyq4CFTNTzGh2LMr1QYG4wwv1alvTnAcc4jFpYIBTUO0vZpUQnQ2aKxuesnP2P9QdJFQTrn0dumsnSSjI33axzlJDJ5j6EujdlbCU9fgKrhsXMM9XGDo6xPOe1oVgloMo7HyeyTn0wN9+jMr5lIEtwzHOQ477F37DHUpTK36ncLRnt19o5dCicelj0tCrYLWwc+pa23TWVzz8awoDYuUxNzWVhzSMZlFEUmEZVJpS1CIZm9I5ueNp2ABkubJq7LCYVMYnW7SkCXcR2XrrYQCysVOltVVjerdDR7bB4o9LbJbO65jA1GOc7Y5HIWtiMY6Y/gei5TcyW62oN4niAZ11jdKNPfHWZjq0xtUqNQcmhpClKtmqxuVIlF/Nnb732kjfsv3H0hWS6Xefjhh/mBH/gB3vOe93zV9/A/xN/93d8RjUZ5z3ve85zF5JNPPslv/dZv8eSTT3Lp0iUef/xxLl26dDeHfjXGozvxNccmz/PI5/NEo1GA56W13i0OjgwuX8/w2b89ZHq+wPnRBFPzeXq7ItTX6iytlk7nt1NZk9amEJomsXdgcHjsC/jsH5mEQyoDvWGOjvMIZGqSUW7MFKlJaCiqTCZn09kWRJYkkgkNSZaYmvcLnfHBKFML/mtHBiLMLJQpVz36u4Isb1SoSWj0tOssbxqUq9De5LFzeHthbW6pxFBflHBIYWqxihCChjp/ZllVIBFTT7uoW3vmyayzxMae/+cY6w8xs1RhoDvke/Eu+HGquV5l/9gGBE21KvV1ARY2TJprbz0PEwMBtg4cihVBW5PG2nqR8aEoa3uCzmaZxdUSNQmV2towq+uF0+t+73iU67N+gdvdppHKmMRjAfaOLBprJA5TJu0tGlVLIZsx6WoLsbVnUl+rcXxcpbszzOJalfGBEJNzBc6NxMnkHfYPDTzP9+Bsb9ZBkljZrNDcEGT/0CQckjk3HOWZG/5cazTsUpfw2NiT8DyJieEIhuGydFKUP3gxwfJ6iVTaIhZVGOqNsrZZIZ216G4TIGkEA/4C2G/+2wvU1twhY/sV8Hu/93v8j//xP/jkJz9JKBT6qu/hf0J8XeLTGY/uDP8In184JBZUua+75uU+lW84KLLEd4438z+ubp9RXc/wNeHmzZv09vbS0tLyNSvKqarMfedruO98Df/qPT3MLhb4wlMprk5myeZtNrcr1Ndq9HZFKJVd9g8rDERiXLmZo65GY7AvRr5gUyrb1NYEWFjxRRbOjYYol02ScUFNUnBtMgfA+HAMw/Q4NxJFViRuTBeIhhU2dqocpy16OkJMzRaoSWr0dYepGC6hkIJtuYz0BPA8j+Y6hZDu+6MNdEaZXa4SDkrkcyZDXT4tdmXLLyTbmzSmFyvomsTIQPikYJRQFcH6to1lC/o6g6SyfvIlhCBf9Ng5sOjvDBAMRjnKWieCMWW2CjoIwUC3xmCXxnHGORXLiIQkppcNTEsw2BWgdFI4+sd0cW2X5jp/zmdpw0BTJbrbdHTNN+Zua9LIlwU1MY+tXZPm+gAHKYeBLo1q1SGTdwhUJUb7AmzuGBRKLm1NPjV4cs5PfJvrNRobNG7OlZheLDHUG6JS9r0mN/dk7h0PsbZdxXVhdrFAW6NEa5PO8rqJbXscHpuMDUaZWy4xNhDBcTziMZXVzQotDQFCQZls3saoWmztVBnpj2E5gh/6vi7GhuJ3fd9Vq1UeeeQRvvd7v/clLSQBvumbvomNjY3n3f7JT36S97znPUiSxEMPPUQul2N/f5+WljNxtK8Ve3t77O7ucvHixRfdkXwuNDcGefgtrTz8llZSGZO/fyaNokh4QvDMNb97/uA9NViWR64gYVouK+tVTMvjvvNJXA80TUbX4JlrOQDOjUa5MVOgvkajqyOEaQkkBFXD95pMFmxcT9DSoNHcFGRn31980jS4Pl3wO6IjEfKF21T5vSOJUtlluC+Cpgp2jwwiYZhbKuJ5EpWKxdySwUBPhGRC58a8zzAY6g0zs1gmlbEZGwxRE6kSjYaQZR0wCeoSq1v++xdLDktrFbrbg9TX6NxY9EWB+ruCLK1V2D+2ODcUZvvA58TqGsyvlKlNqNi6Qizk/y1mFktcGIufdmCzeYfedt/7USARDctcn84x3Bf1GR3CI5t3KFdcLo5EuTxVBCS29x0uDAc4ODBYWq/Q3xXCthyqhsf8UomL4zFmFvwCdXIuz4WRGNFQiIXVCn1dQSbn/M7ngxcSFEoue0LQ3KDz5atZ2luCBHQJx/ZY3arSWC8T0m3mFvLYjsRwf5hQUOHpqxk0VeLCWBzDdLlyM4csw3AvlKsqW7sWrc0yv/XL519UIfmHf/iH/PEf/zF/8Rd/8c+lkPy64SxTPcOzYLse/2vukG8bbkRTXqn6TK9ufMdYM//t6U3+bun4TNX1DF81ZmZm+PCHP0w0GuWRRx7hkUceoamp6WtO3GRZYmIkwcRIAiEEy2slvvjUMSsbZb58OUMwKNPTEcUwPS6MJ1AViaevZlAU6OnQyWSqnBuJEQhqXDmZpzs3kmBnv0JfpwDhMDPv+31NjMSYnC5QX6vR1x2hXPVQZUGx7OK4gpqkxpVJf9iwuyPM5o7B+bE4M8tl+rtCLG0YBHSZzV2/89fTEWR2uQqYjPQFGerS2Nx3CJ14nFm2oJgvUxs2Mb0IbU0B5k86kabhokge7Y0qqiazfjJ75LiC6YUyvR0BkgmVmSW/U9DVKljcsACLnlYQkkZjrYaiwMLaiZiEAlubBsO9QUxHsHIyP1UxXAa7faEK2xFUyi7SyRjT7qHNQIfE7r5JxVRxhcvEUJCFlQq27TE2EGLv0OQoZdHWHEDsG3hCsLpZZnwwzNJ6hboalcm5IhODURbXy1RKDvtHJuODEY4zFlPzZVxPMD4YxfM8ZhbLgEFXq0OxWOI4I0hlLS6M+kX/3FKJpnqd3o4QxZIvbjE6ECZfKNHRFuHg2ORj/8eEb+FwlzBNk8cee4x3vOMdvPe97/2q7tWvBbu7u3R03NYBbG9vZ3d396yYfAmQyWT42Mc+xtLSEm9+85t57LHHeOCBB14SG4X62gDf/V2tfPd3tZLL23zpcor5pSJ/+TcHWLZgfDhGLu8wPBBDkmB6IY9pCkYGIswuVWht0unuiJLK2mgqtDQHT5RdYXQwiudBQ20Yz5NYWC1TrbpIEhwdGQz3RYiEVa6n/WKyVHJY3yozOhAjHJa5MukXRooMN2aKxKIqI70xNnYMDlM2huEvYi2vl2lrsuhu0UCWOD4R4AqHJBZXStiOTJcucbxfYrA7TDSicXW65M9xJ1X2jyw2dgwURdDWIKNq6qn6M/i+t3g2jXU6NTGFmUWLXcOirzPI9n7l9HVW1aK5XmXn0EZCsLhSpK8jyMq2RWezzuS8eeLZGOf6bAG/6SWYns/S166zdeAx1B3i8o08E8NRZlfKaIpHpuzQ3qyze2iSShu0NOiYtiAZV7k+41/r8aEoruOhqpCM69yc89V4ezpDRMK+oNrOvsHEYARX86nCtg2OrTHUF2Btq0K5VGZlzaW/S+Mg5VEq2axvlRkfilGpFFlcE3iex9hQjF/4yVGaGu6eovonf/In/N7v/R6f/vSniUReGm2Rz372szz++OO4rssP/dAP8VM/9VPP2v6FL3yBd7zjHfT09ADwyCOP8PM///MvyXt/rTgrJs/wLHxpJUWuYvO2c2fzei8XHuipJRnW+OzMwVkxeYavGj/yIz/CBz7wAdbW1njiiSd47LHHUFWV7/7u7+bRRx+lra3tay4sJUlisC/G4Im1w/6hwbXJLF98OsXyWgnbVlnfqtDWEiQWcagaDrarYloSU/N+13KgN0oqY5HNO3S0xZmcLRCLKnS3y6TTeTRVor5W5tKJh+HIQJzDlMm54SiqJjPSFyYcVjhOO3R3BKmaHv2dAZIxlaEemURMZffIxrY9dk+MveuSKgsnVhntzRoIX/UwoMHmnotlq8QiNqqkcmsUxLRctvb97uPFkQg9bRrrOyaW5Sdpm7smpbKLqgh6O3QcF8CgJqawfejhuDbRUBUJmb72AOmCYGXT93KcWa4y0qNTE5PJFj26WjQm58uM9odZWDfRVMHCqsn4YIiNXYP1bRMhFAa7AxTLLosrFTpbAxymLHIFh4YalXLV97frbg8Qj0jsHxpMLZY4f0IBc11fxOKesQgHRyam5bG0VmawJ4TnehymLBzHY+tkPuo4bZLOyRRKLvU1kIw63Jjxk+axwQiaKjO76Cd8F8ejpNMFjrMKtcLjt375PO0td79yb1kW3/M938O3f/u38yM/8iNf83361eC5RoBejvN4NeLcuXP86Z/+KZVKhc9+9rP85m/+JjMzM3zLt3wLjz76KK973eteEluFZELjbW9u4W1vbuGDP9jL5esZvvBUirXNDMmEytxSkWBA4b5zIY7SJaJhjdqa4Oks8IXxOKbl+TOLusyNGb+Ddn4szuJKkcGeCHVJnanFIq4nkGWJKzdzPtV1MMrcUgnPA9f1uHStQF9XmGRCY2reP05jnX76XvefT1CsuOwfV+jv1lndtAGb7jYJ11YY6tGpVMps7ftpe0CXfcGs5RKxqEpDUqG5MXC6cNbapLO84S+EdbToREIK8aiCpvoK1J6AUMWlJny7gFJlQTIM2ZzA83wxtkLJoaEmSDKmMLtYJJMrMT4UYffg9oxlIW/QVKOgqAoyZTb3FJY3bIb7wuTyfsydXihx3/kYK+u+UrSmSTxwPsaXLmeQJIm6Gg29VqWuRiOTs8gVbLZ3DaIRhd6OIOvbVY4zHuGgzI3pAm0tQdqbAzx9NYsk+cVkf0+Yqfk80wsWo4NRdFXmMFVgZd2mu13GNIpEwxKZTIH9Y2hrCdHRGuLxH+6npfHuC8knnniCj3/843zmM58hFnt+NeoXA9d1+dCHPsTnPvc52tvbuf/++3n44YcZHX22bskb3vAGPv3pT78k7/lS4qyYPMOz8OnJfWJBlTcM1r/cp/INC1WRefNIE5+dPcByPHT1rEN8hq8OkiTR19fHT/7kT/LhD3+YnZ0dnnjiCb7v+74P13V5xzvewWOPPUZ3d/dLkii3NAV527e38LZvb8EwXWYXCly+meHG5B7zKx7JhEYirmM7vt+bOKGhCSG491wC2/bo7wkTCspMz5cAibGhMIWCSVerh67LzC8XkSSJxjqdxbkijfU6parAMD1GB2MsrpQYH45yZapAJCSDLFGpeowPhnFciWRCIRyUSPk5HImoxsxiiY5miYDusbbr/yy2Nupcmy7Q3hKgqS7AjYWyXzx3B08Fbs6P+B0KI6nQ3KCfdD3BcwXzK1XiUYXuNo31XZtc0aO5PsTypkVh3aK9voIWDXGUVenv1JlZrhINy3S36hxnbISA2eUK946FuT5bBiSmFyt0NVU5sIIYpmDvyKStUSVfgMW1KoPdvhDF3EoZ14X7xiNs7Rmsblo01Gp0tupcnfQLwMEeX9Hw6mQeWYaJoSim7XJzroiiSNw7HmNtq0qh6DCzUKS3M0R9jc7BsUlzQ4DJOV9Nsr0JtneK5EsS4RCMDYVYXi9SLMmMDET4pZ8cpqH+7hM127b53u/9Xl73utfxYz/2Yy9bAdfe3s729vbp452dHVpbzxZZX0qEw+FT1oRhGHzuc5/jv/7X/8qHPvQh3vCGN/Doo4/yxje+8SWxWYiEVb7l9Y18y+sbMS2XG1M5vnQ5zfpmnmvTJX9RZChIsWhzYTSGJEvcmPFn8kaHYkzPFRg4KR6XN0rYjiCgy3z5agZFkXjoYpJi2UHXJFqbAzx1JYumStw7ESeV8Quqg5RJvmARDsn0dIapVP2FqEBAYm2zQipj0d4SJB4JEA66eEKQykKhZJMrGMiSQnebQiIeYP5EMGdkIMr0QglwqEuqlIomw70RNE1m50TsOBhQmF+pEArKnB+OcnRsIkkSbU06U3MFBgdiLG8YZLImuwcmY0NRbAeWVksn+1t44dv0T9cVBFRBc72GIvs0WYBwUNDZGiQeFeSLDpWqw/a+vxhVKvv00nBQYbjPF+z60qUMXe0hZBkkJK5PF5BlePCeJEfH/sJdb6dvTSVJ8MCFBJm8jRAC2/K4MZ2jozVIOCQjgMs3cyRiKhPDEeaXixRLLrGIwsXxBAvLRTI5idZGf+i3oxnK1SqPvKWGuuTdx5hPfepT/Pqv/zpPPvkkyWTya7kln4XLly/T399Pb28vAO9617v45Cc/+Y+KyVcqzorJM5zCdFz+19wB3z7aTED9xjFbfSXiO8aa+dNrOzy9luaNgw0v9+mc4VUASZLo6Ojgx3/8x3n88cc5ODjgf/7P/8n73/9+SqUSDz/8MI899hgDAwMvSQIfDCiMD4epFmf5rm/uJJ5s4fpUjr/9coqFlRKOI9jardLbFaKpPsDMfIFCyeHcaJzNrQoTwzGCAZnJuQKWLRgbijO7WCQcgo5WD9Mo0tGikkjo5NarjA5EWVz1E6bdwxPfte4w04tlFBn2jiwyOYdYRKE2odLTpnOcdVha92lde0cuiZjKaF+A5U3j1NdsZ99EeIKWOoVkQqVY9meNgrrExrZJvuSSjCkUCoLhHp2y4TG/5id68YjM5ckSsgTnRyLsH/vzUzVxhd1UENcVdDUbHB5VAY1SxUORPRpqFI4zNpoqsbJRoaNF4zhjk4hYrO3q1CRkWuoVHFcws1QhFJC5ZyzE9EIZ0xLU1ah0t+lcniqgqRITQxFcx+XaZIGB7jCprG/NMrdUZGIoyvSib7Cey9n0dobYPTDY2q1QLNpMDEVRVH9uFXyhkXLFYXQgSqlis75jY1kyo4MhhGtwffpE9OKCzo+9r536utu+cl8JjuPwnve8h4sXL/LhD3/4Ze0EPvzww3z84x/nXe96F5cuXSKRSJxRXL+OCAaDvP3tb+ftb387lmXx+c9/nk984hM8/vjjvOY1r+HRRx/lW7/1W9H1u59pez4EdIUH762lPpnl4NDiX/3ABNenCnzx6RQb2xVCwRjL6yVqE/68d6HkoCggy3DpRgbPg/vOJ3Ac6GoPEQ7JPHM9ixAw1BdBlqC1KUCl6rK2WSadtRjqi5CMa1y6kQUkbNtjcaXIQE+EhroAV0/mxWuSGldu5tA1ifsuJNk79NWXu9qiLKxWWdkwqa+pYhkyvZ06CJdgQCIWVX2LIA/yRYudPZOh/giqJjO75H8nQ0FfKG2gJ8zukUO5bOO4goXFAvdfSHDphk8xnV0scf+5KIoMrgfRsMz6Zon+zjBrO1UOjnzLKFWRuO98nExWplTxaGsJMrdiEArKPHQhwZXJHK4LGzsVmuo0WhsD7ByYuK6H6wjqa3U2titMDEexHUF3RxBdlXn6agYhYHQgiiT59Ff/vIoUyw4dbUGaGwIcp6ts71U5PxIjm7cZ6ouQL9jMLRVRZInzo3EkPJ66kkGWYahXwvU0NrYtEnGdX/u5QTQ5x7Vr1/A8j6amJpqbm4nFYs8Ze/7yL/+Sj370ozz55JPU1t69iNjd4Llo9c8l+PX0009z/vx5Wltb+djHPsbY2NhLeh5fLc6KyTOc4u+WUhQNh7edP/vBfLnx+oF6wrrCZ2cOzorJM7zkkCSJlpYWPvjBD/LBD36Qo6MjPvnJT/JjP/ZjpNNp3v72t/Poo48yOjr6VSf0pVKJq1evMjIyQlNTEwDf9oZGvu0NjVSqDl++nOF/ffGIfN46/bF/zb01FMsOhuli2x6zi34x9MDFJIbhkkyotDSGWDhZMR/qVZhZKBEOCvb2S4SDEgM9EVJZm/bGAJ7r0t8VJBiQmTlJqLragicr+fDA+SirW2UsW2GoN8L0YonjjM354QieJ5HN2/R3hZlb8fdNxhX2DwwGu0LEYyrXZvyOYUujdvqaoZ4QfR0a5YrHLaaeJ6BQdDhOGYz0R5BkSJ+I+QSDYYoVm6Y6yBVcVjZKmJZMb7tCKKQyu2yQzjnUxBzCwTDgU4Jb6lV0xTdBVxRYWqtQl1RRFIlIWObyZJHh3jB7RybC9UhlbNpaAiytVxgbDIPwxUSmF0vcfz7Oynr5pINi8MD5BFu7BobpYVse03O+x1447FsBVA0/wYtFVfq7IxweV7Ftl6U1h862IMP9Ed79cJSjw01Wlqepra2lpaWF+vr6552Lc12X973vfQwMDPDTP/3TX/dC8t3vfjdf+MIXSKVStLe384u/+IvYtv83+cAHPsB3fdd38eSTT9Lf3084HOb3f//3v67nc4bb0HWdt7zlLbzlLW/BcRy++MUv8sQTT/DhD3+Ye++9l0cffZRv//ZvJxC4+4WKOyGEYHp6GsdxeO1rXoMsy5wbreVfvqub/cMql65nuXQ9Q7HkcHUqh+MIxoaimJZgYiSOBFyfzuN50N8TIZ2xmRiOYZguuwcGpbJf4A31RTFMQSpjomsyz1zLUl+rM9gXYWm9fPJZZZ66miEcUrj3XJzjtN+R6+mM8NQVnz5xbiSKJMv0dISIRpTT+OW6LjdmiiiyoKdNIhYOsrpZRZYkPAFzSyV6O4MM9QQ4yjg01+mkUhbzK2XGh8LkTzx2BYL1zSLjgyGmFysM9IR4+lqW3q4wmZyL67gUSw7zywVee1+S6QX/3Hu7Qjx9NYuqCs4NR9g9EfUJh2WuTmaJRVSa6nVM22NhpYwswf0XEiwu+16Uqgqvva+GuaXCqTelIsH4UIyd/SrprMXBkYmqwPnxBOWKy9KaTU1M4/L1LDUJjeGBKFNzecoVj0RMpbkhQF1SY265iBCC2aUi48MxqpUia1sC27Foawnyaz87TndnBKijr68Py7I4PDxkYWGBSqVCfX09zc3N1NbWIssyf/3Xf83P/dzP8ZnPfIb6+peeuXc3tPp77rmHzc1NotEoTz75JO985ztZXl5+yc/lq8GZNcgZTvH4J27wxaVjrvzMm87Ed14B+NAfX+fSWoZLP/1tKPLZrM4L4NV4cV62wJzJZPjkJz/Jn//5n7O7u8tb3/pWHn30Uc6dO3fXAhmZTIbJyUnuueceEonEC742lTb5X188Yn65wN9+KQX4vnCu618Cy/LY2qtimh49nREEkIxrBAIy23smhymTof4oS2sV6mshk5cQQmJ0IMTCqoGq+KIcDfU6FUNwcGxjmB6RsIxl2jiuxPhQjGzBYffQ79hFwwqZnG8w3tkaJFtwKZZcLNsvwBrrfX/LWESlvzvIxq5JJu/S1Rpgc8+fWepu01Fkiarlq+FunzxfE1eQJUFNUmdjz6ImJnOccVBViXtGw1ya9IU0ElGBjI1AIlfSGOhUWVwzGB+Kki26HBwaOI4gEVPo7w5xbdpPMNtbdOJRmYXVCo4LE4NhqobD0loVWYb7z/kqu47rU111Habni2iqzFBfBITLzdmib2Ey4SdwCytlohGFUEDGMD16u8Ioik9LAxgdDJHJlojHokTCKr/2s2MEA34l7Xke6XSag4MDUqkUsViM5uZmmpqaTs29Pc/jX/2rf0VtbS2/8iu/8pIIsbyMeDXGozvxssUm13X58pe/zBNPPMHf/u3fMj4+zmOPPcZb3vIWwuHwXR3DcRyuXbtGMplkcHDwBRctHFewsFxkai7Ply5nmFkoMDIQY3G1RF2NRk9nmKOUxfpWhboaHSTfwiMYlHFdWFzxv5P3XUji2ILN3QrNDQEWV/0O4r3nEngCNrYrRCMqqYyFYXr090TQZJvjjIVAx7IFpbJLS2MA2xE0NQQIhxUW1yqUyi4j/aFTobCeNg9d19k/lmhvDTK35Iv+dLcHScRUFk5YE7GwRDZnMz4cx/PE6Rzn6GCUctlhc9dXh70wFsM0PeaW/c9cLjt4QjA6EKNQslnfNk9irM7hkd8NDYdVrk3lkSSJ8yMx0lmLSFghnbeoVlw8TzDQEwUEN6b9ufjz43HKFZf5pRKKAoO9URRFwrI8ggGZqXn/c1wc9893a9cgHFZOKcQj/VFc12Nqzv8c955P4jiCo2MDISyyeYhEVAZ7Y3zwB3vp7Xp+0RzXdUmlUhwcHPC7v/u7LC4usra2xl/91V8xMDBwV/fZi8XTTz/NL/zCL/BXf/VXAPzKr/wKAB/5yEeed5/u7m6uXr36YovbM5/JrxVnxeTzw7Bd7v3o53j7+VZ+9dFzL/fpnAH4i8k9fuxPbvCnH3gN93e/tJSKVxlejcnbKyIw5/N5PvWpT/Hnf/7nrK2t8R3f8R089thj3Hvvvc+b8O/t7bG8vMwDDzzwouTSbynD/v0zaZ78m4NT/7fjtElrc5BISOEgZbF3YNLTGWZ338CyPS6OJ0jnbBJxlWhYI192sC2LzT1/HqmvU2Z1y///xLDfXagYHqpcZWvfL3gmhsLMLZcY7o8SCKrcmLllSB45XYW/OBrF9QR7Rxa1SZ3VTQMhBF3tAbZ2DQZ7QgSC6uncZHerztqWgSTBfeeiLG1YlCoeo31BZpb8Yz5wPsb8qkG56lFfo5BOW3S1BciVPGoTKiubVWRZMNSjMLdsAzIIwWCvjmHKbO2ZDPUGmVsuM9If4ShloesS+0cWbU0BapMK0/O+ifrEcBTLclhcq9DREqRq+PNERymTjtYg0wu+t9zRsUlDnc7GdploVOPgyKSlUaerPcLyRol0xubcSJyp+QItjQE6WnSmFwtUDYm+7jC/9UsTRCPPbfgthKBQKHBwcMDh4SGpVIrJyUm2t7dJJBL8u3/37/65F5Lw6oxHd+IVEZs8z+Py5cv82Z/9GZ/73OcYHBzk0Ucf5a1vfevziqIYhsGVK1fo6uqis7PzRb9nJmfy5ctZ/vrvj8gXbPYODKqGx1BflHhMYW6pSKXqMtwXZXuvSm9XBE2XuXaiOD3YG0EIQSioUKk67B9ZlCsuTQ06tTU6uipznLEwDYt0ziMYkOjpjKDrClXDpWp47B6YPu1TkigUbMaGY6iqzMZOFVWVKJd9241ISNBYK8gWNfIlj87WIJs7VRrrdXq7wqcWKHU1fvdw/8hnPEwMR9nerdDUEOQ4Y1Gt+nYfvZ0h6msDXLrhC96MDISZX67Q0xmkpTHMzdkCVcPj/GiMm7N5OttCtDQGuT6Tx3H8BbrOtgACifnlIueGYyytlRnojVCtOqQyNpmcTUdbkPaWEPPLJXJ5m3OjMbZ2KnS1h3E9wcJSEdsR1CY1Otp83+Hl1SIDPVHml4v0dkVobtC5MZP3F/7qIBBQqauJkCva/ML/PkJ/T/Su/+Zf/OIX+cmf/EkeeOABnn76ab7/+7+fxx9//EXfO18JjuMwODjI3/zN39DW1sb999/PH//xHz+LxnpwcHCqyH758mUee+wxNjc3XyyL46yY/FpxVkw+P/5yep8f+b+v80fve5DXD5yJ77wSUDRs7v3oX/P9r+ni5972z2MI+2XCqzF5e8UF5mKxyJNPPsmf//mfMz8/z5ve9CYeffRRXnNCE/M8j9XVVY6Pj7n//vtPu05fDTxP+N2AS2k+/6VjdE0iX3QolhwmRuJomkSlKhAIVjcreB5cGEswOed31DrbQti2R1NDgFzBYvvAIRLyqBoSjgvhoEdbcxDbVckXXSzToWp6JOMqpuXR2hQkEdNY3TYoVTx6O4Ksbvo01uG+MI4LmqYgyzC/6j8/0B1iaa3CcF+YYEBmetEvKlsaNXYPTSJhv4O4tFbFsn17gFhUxrI9OlvDOLbL8obfDRgdCFOpltncg6CuEAxAKCAjkIgEXRbXfRPy/k6JTF4mk/eL5fPDEcpVl5VNg3BQJqgLWhoCTC2U6GwLIoTAsT12D036u0OEAzI3Z/2V/PvOJ0hlDNa3qsiSYHwojiRLbGxX6O4Ic/NEsv/Be5JUDY/1rQr1tSob21UUWea+C0k+/MEBGuvvnnq4s7PDj/7oj3Lz5k0aGxt55zvf+YIr8f9M8GqMR3fiFRebPM/jxo0b/Nmf/Rmf/exn6erq4pFHHuHhhx8+FUkpFApcv36dsbExGhq+9tGRo5TBX33hmC8+dUyhYLN3aBAISFwYryGbtVheL3FuNMHkbJ6O1hBtzSH2jqps7VTp7giTyTvU1+rUJjUKJYflNb/7HwkJFAXq6yIgYGq+iCzDQG+Urd0qPZ1h4lGNje0KuYJDY32AnX0DTYXxkRjVqsfCaonRgRhzSyUUGQZ7YfdQUCzLtDap7B9aDPZGyORsomGF1c0K4ZDCxHCcK5NZPM+3LbowmiBbsFndKHNhLMHNmTwNdTpdHTpr6yUyBRgb8t9H1yQujifIlxyWVks01gUoln3GRW9nBNNymTvxrLzvXALL9tjerRIKKpQqDjUJnXhMQQDTJ3H8gYtJymWHlfUSdTU62bxNbdL3zDUtj/ll/3gXJxIns6I2kbDC7EIRTZPoaQdJVtnccdA0hf/4S+dOlcfvBpcvX+b9738/n/zkJ+nu7gZ8pemXYm73ufDkk0/y4z/+47iuy3vf+15+5md+hv/8n/8z4FPvP/7xj/M7v/M7qKpKKBTiN37jN3jta1/7Yt/mrJj8WnFWTD4/PvR/X+eZtTSXfvrbUM8orq8YvPcPrrB0WOTv/x/27ju+6vJs/PjnPnvlZO9JyGCDDAH3FrcCttqnalvbap9q7XjaaveufTr91S77WLu1LaBowa2Ii70hhAAhO2Svk7PP/fvjJGlERgIJWdf79eKlISffc50Ebr7Xua/7ur50qbSlP7Hx+I0Z1Quz1+vlxRdfZMWKFezcuZOLLrqI6upqLrroIj73uc8N6e6S1tFSszc3NrNrXzsVVd20tgdJT7Hi9WvcMWay0m10dIWpqPFSMMnJrp5B1zOnxLB7fyf5uQ5Sk61s2tmO1orMlCDV9dFdyYXnxNLpiVB2pJupBa6+Id2Tcx1UVHspyHPgcka7IWqijYXaOkJYLYrMVCt2u4nS8m5SEy3UNkTPO03OtuGwG6mqD5KVbuk7Tzmj0B5ti28xEuM0sbs0+lyTsm1EwhqlDLS0BQmGQ3h9kJVmJTXJzJZd0deTkWIhMc5EyeFuQiGYnBUt8zKZNVobaW2LEO7ZhYxEwj3zIWHmVBfNLcGem07F7Gku9pV20OWJkJdtJy7GxO6SdoIhzZQCJ263hU3boue1phe5CIU1JqPC6w9TVeMjGNIkJZixW/3Y7S4qa3w88r1ZTCsa+I1aJBLhoYceoqWlhd/97nd0dnaybds2Lr300jP/QzOyxuN61N+oXpsikQh79uxh5cqV/Pvf/yY9PZ1Zs2bx7rvvsnr1atxu95A+n9aaXfs6eP7VemqP+ti2qw2A+bPjCAYjeH0RzGbYf9BDOKyZPSMWhcIXiOD3hWjtCNHeEaIgz4FReWntUDS1Riia7GJ/WRdZGTZyMhzUN/o4UtXNtJ5GZADnzIiWyTY0Rbs195aqzpsVSyikOXikm+REC1W1XrTWFOfb6Oz0UX00Gvv0IjtGo6knmTTg9UZwOY3Ex5kxKNjTczZzwZxY/P4IFdVeYt0Gaur8hCOKGVNiMJsUrR3Rc+5dnjCe7jBpyVYyUm00twaoqOlmymQXpYe6KMp3Ees2sXlHG5EIZKXbiHFFz3lX1nSTmmTjcGU3hZOcxLqNbN3ZRjCoyc2243aZCYUiVFR3k55q53CFp2ddt/U1b5tWFC2pTUux0trWQXOrwtMd3cX832/OYErBwH/227Zt4yMf+QirVq2ioKBg6P7AjDxJJs+UJJPH1x0IMfe7L7N8Xhbfu3nmSIcj+vnH5kq+vHI3/77/AmZknvzs2QQ2Hm/exszC3NrayrXXXovWms7OTi688EKWL1/OxRdffEa7kydS3+Dj7U1N7CvrYt07zcTGmPD5I3R2hcjJsGGxGnE5TITCmn1l0WSqIM9BWXkXLqdmymQ3ZUf8dHrCpCUr6hsjgKIgz4zdFk1Q7XYj+3pKUWdNdbGrpAuzWTF3ppvm1hCHKrzMmhL9fYC5M2LwBiLsP+SlINdO2eHo1+Zm2oiNNbH/cLTDod8Xxh+IYDFD8WQXLe0h6hsDpCdbqTkaPVNZnBehpd1IUzsU59spOdDF9CInR5uDmA1Qe9RParKFrDQrW3f/Zwj69CIrew74iEQUmSkRPN3gdlupqPExKcvG0UY/udkOGpr8eL1h3C4TZpPCaFRUVHsoyHXS0uYnOcnGrn0dZKXbSEuxcrC8i9a2IInxlujMz0QrgWCQtnYvjS3RNw2+8YVirrwoZcA/Q6013/zmN6moqOAPf/jDkMwUhFEz9Hs8rkf9jZm1SWvNz372Mx555BGys7NxuVwsXbqUW265heTk5CF/gzYQjLBpWws797az5pV6Ojqj3akPlnvIybIT5zZTWeOjrsFPQZ6TxhY/Gak2zGZFbV0HTa0KswmmFcaAgqZWPwlxVnb3nBecOzMWfyCCUgqLWbG9p6pg5pQYOjpDuF0mfIEwhyu9hMOa5EQL2ek2Kmu9NDYHmFoQTeqmFcWADrGnp3oiNgZys2xU1oRo6wgxe1oM1bVesjIchELhvu7bqUlmTMYgCQkxeLrDtHeGaWkLEuMykpxoxeU04fWHCQUjlFdGrx3teqs5Uu0lI81GyYFOYlwmiie76OwKsv+gB7NZRUuCTQq/P4LNpti1twOH3ciMqTF0dYXZd6ATi1kxOc+FyaTw+8M47AZ27I3u3C6YE4/fH6ayxgsECQQNmM1GCiY5+cR/5TGteOD3T7t27eLDH/4w//rXvyguLh7SPyOjgCSTZ0qSyeN7bmct9z+5nac+uYhF+YkjHY7op7nLz4Lvv8KnLy3gC1eNu0VtqIzHm7cxszCvWLECj8fDXXfdRTAY5PXXX2fFihW88847LFy4kGXLlnHFFVcMS2mQzx9m59521m9oZtvuNgKBCA1NgWizGJuRuFgzdpuRo01eGppCmE3RZjxNLQGKC11YzNGbEbNJ4bJDS7vGYSc6BDzJjsVk4FClF483wqRsO+VV0Ruk6UVOlDKwr6wLl8NEOBLB0x0mJ9NGQpyFnfuiSeaUyXZKDnpISbQweZKzp/W+Ymaxq6+hxMK5bhpbQpRX+chK1X2z4eZMc9HcGqSqLppkzix2EIlEh3/Hx5oJhsLkZdk5eMRL4SQ7O/d1kpZijZ6DbPTS1hHtrDg1X1NRq+j2gdNhID/bTktbkOo6PwV5DswmaO8IRlvsT3Pj94dBKXz+MA2NfvyB6PxOu83ArpIOfL4ImWmatg4Tk/NcLF6QwB3LB37+TGvND37wA/bu3cuf//znIZkhCNGmGUVFRe8Z+v3kk0++Z07bunXr+MlPfjLcQ7/H43rU35hZm7q7u7n//vv5xS9+gcvl4uDBg6xcuZJnn30Wu93OLbfcwtKlS0lPTx/yxDIU1uzb3867W1vYsLUVu9XA7v3RGa/zZscSCUNzW5BAMExXpx9/QDGlMAaH3cjWna2EwjB7eiw1dV4y0+3Y7UY2bW9Fa8WsaW72lXZSkO/E7TSxY287gaAmNckCSpGWYuNokxe71UR5ZTdKwaK5cTQ0BzhY7iE/10lNbTeTcp1oHcHTHaS6NoDBoJky2Ui3z8SRqgD5uQ7qjvpIS7HhtEdoavFR3wgupxF3jBk0pKbYMBii3W0NSlE42cXRBj+5WXasVsXGbW0opSgucIHWGI0Gmlr8hCPQ3BIgO8NGZpqN0kMeWtuDzJoaTWSzM+34fNHuuJ1dIdJTreRkOqip91Jd62PO9FgOlncxKdcZ7da9P3pmMyEOXE4TCXFO2jqCPPiZYmZMGfiO5L59+7jtttt48sknR83YjSEmyeSZkmTy+O75yxa2V7bx7kPSNXQ0uu2xd2nxBHjpcxePdCij1Xj8QzvmF+ZQKMSbb77JihUrWL9+Peeccw7Lli3j6quvxmYb+BD7gYpENHtLO1n3ThPllR4272gDYHKuhaq6AMWTozdqG7dHb25mT3Ozc18HcW4z04pjaGwKcKiim6J8BwfKvYAmOUHR1gGFk6IdCntb8iclWKg96ic5wUJBnoNNO9rQKKYXOdm1r4PiyU7sNiO7e8pMkxPMtLQFSUywkJoUbdjT0TNQuzcRTUuCuFgTh6s04bAmJ8NKZa2P6UUulIKdPaW7k7JtuBxGdpb0JqwONFDac3ZzWoEDBVTUekmINVNZ48VqUaQkhgkGoaanxG3hOXHU1vuorPH2nE+Kp6XVz4FDXeRk2olooueU2vwYDIojVV7MJsjLimA0xXCkqpvLL0rlwftP3hGzP601P/7xj9m0aRNPPvnkkO5cD6QboiSTQ2LMr01aayoqKli5ciWrV68G4Oabb2bZsmXk5OQMy5GShiY/b29qZs/+dl5/u4lAIEJGmpVg0EdKooPW9jA2m5nDFR6cDgOzpsXR1OLnYLmHmVPd7NrXQYzLxIwpMbS0hyg73EVWhp3GpgBms4GCSQ58/gglB6IzY2cUxxAMRTAYFGYjfW9ezZjqxmxSlB7sJBiMkJftpMsTJjXFisGg2bYrutuZnQFmEwRCZjq7QqA17Z0wKcdBcpKVxiY/ldXdTJ7k4sChLtwuI9OnxNLcGuTgkS5mTnWzc0876ak2cjLtVNR4OdoYfaMvOcFCjNNEe1cAp93E3tLoGclF8+Lp7ApReqiL5ITomcukBAsxLhPhiGbv/uhrWDAnjmBI09wawGE3cOhINyajIidDYzSaqawNEdGKn317JjOnDnxHsrS0lFtvvZW//OUvzJ49e8j/DIwSkkyeKUkm36/TF2Te917hQ+fm8K0bx+W7MGPeE2+X8+3n9vHqFy5mcvLAu5BNIOPx5m1cLczhcJh33nmHVatW8eqrrzJt2rS+zosDbek/GL0NfF56/RCvvdONpxtmTo1h1952UpKsFExyUl3no6rOx7SimL5GDnOmuwkGNQajwmI1sr1n9EVuRnR3z25TzJrqorw6QGNzkGmFTvaWdpKWbCUtJdry3+uLYDBARoqVGJepr2x2/8FoYjm9yMmRqm4m5zqxWo1s6WmhX5Br4mBFiNgYE9OLXGzd3Y4/oElLtvQ0BbKyp7SLmcUu9pRGZ6cdqerGajJwtMnPtCIXVquR7bujjXKiowvs7C2NxjRrqovKmm5SEg20tPlp79D4A4rCfBsJcTY2bmsDot8nkwHKK7vxdIfIyXLQ7Q2TEGvE6+vkUEW0tPXS85P5xv9MwWwa2PlYrTWPPPIIr7/+Ov/617+GfKe6t/nK//3f/wHwl7/8hY0bN/Loo4/2PWbdunUsW7aMrKys4Rz6PR7Xo/7G1dqktaa2tpZVq1bx9NNP4/f7ufHGG1m+fDn5+fnDkli2tgd44dUqXnq9irIjCofdQGqyDaNRYbMaMJkUO/ZE1565Pecfu71htNZU1ngJBjX5OU7i4kw0tQRpaPKTlmzlSFU3k3IcZKTa2LyjlUBQM7UohsYmP1kZdjyeEE0tAVrbgzgdBqYXx9LaEaDskIfZ02PZXdLO5DwXsTFGjlR5aWoJ4HaB1RLGaTeiMWEymzl0JFqhMXu6m0gEgsHo+I7eZl69Zzlb2wMEA9EjCN2+MFMLY3A5TWzbHT0LOXuam/pGP+kpNlCanXujO7c5WXYSYi10e8NUVHeRk+nkUIWHyblOkpMs7CnppKMrxJQCF20dQVKTo2ck2zoUHZ2aGJeJH39zBjOmDDyRPHToELfccgtPPPEE8+bNG/Kf+SgyLOvT0NSXiDHr+d31BEIRbpidPtKhiBNYMiON7/x7H8/trOWzVxSNdDhCDJrRaOTCCy/kwgsvJBKJsHnzZlasWMH3vvc9CgoKWLZsGddff/2QNcdQCoy6iisvMPDZe89jx+52Xn+7kSOVnp4ysrZo+WZxDFYz5OfYCQQ1JWVd+AMR8nMc7DvQSVaajYxUO1V1XiBAcoKRDVs7UGiK8s34fNEZZ0ebfNisBmJdJvJzLBgNuq/UdVqhC293iGmFTsJhzZ6ed9e7vSF27usgPlaTk2mnqi7akdXpNPLutjacDiOFk2y0dYSoPRqkuTXI/Jluao9Gz0Pt2NPOnOkxeH0R6ht9tLcH6ejqZta0GA4f8ZCcaGbzjuh1Fs+NZV9ZJ20dIZQyY7XYKC4wU1ntIRT0s3Gbj+REAxmpViqru2lpC2KzGpg5Ndp1sbbei8UY5kiNgYxUG/PnxPPZewoGlUj+5je/4eWXX2bVqlXDUvI81od+i5GhlCIzM5P777+f++67j4aGBp5++mk+9alP0d7ezg033MDy5cspLi4essRSh7tIT6ji//1gHh1dJt7a2MzTz9dSXtndU8IaPdfocpnYuacNf0CTl+PA5wszrciN3x+iuTXI4UoPJiPMmBqL1hAfaybWbebtzS3YbQYWzYqntT3QN4tRKYiLNZOTZSeiNZu2R5tszZ8d3enLy3YAEXaXdBMMRSiebCESDtDYaqWuMUxKkoqWoKZDXJyF0oOd+Pya2dNjOXA4uhtptSh27esgEIye2XTHmElNsVF3tJtAULNxWyt2m4EFs+Npag3Q2OQnLtbMoSMecrMcJMSbaW0LsmNvO2YTFBfEYDAoJuc5cdgNvLO5FYMhWkkRCEYINgeorOogrA2AgXmzXHz09txBJZIVFRUsXbqU3//+9+M9kRw2sjM5wS399du0e4O88vmLpVvoKHb7Yxuobfey7n8ukZ/T+43Hb8iEWJgjkQg7d+5kxYoVrF27luzsbJYtW8aNN95IfHz8aV9z+/bt2O12pk6d+p6/L6FQhO2723jj3SZ27W2nvTNEc2sAd4yJ+HgrMU4TRiO0tYeoqvOREGcmGNR0ekIUTXYS4zRRdrgbnz9MQpyB+sYQaUma5CQru/cHUUpRlO+gqSVAdoad9o4gDc1Bur1hXA4j7hgj8XEWwmFNS1uQxpYgNgs4nWbaOkJMKXBiMhn6GvvMLHZytMFPXJyZ1o4QHe0B/IEIM6fEoJRm+57/NOAIR3Rf6/05M9zosKbmqA+7zUj9UT+hcIQZU9wYjbCtd6D4tBh8/mgS6+n209AYiJbYZhqJibGxe183EQ15WRqz2YHNZsblNPK9B6djtQ68ac7jjz/OP//5T5555plBzR4djLM49PtUxuN61N+EWJsAmpqaWL16NatWreLo0aNcd911LF++nBkzZpz2v8NHjx5l//7975vD29u1+pX1Dbz2ViNpKTb27O/AajEwa3osPl+YkgMdOF1mbBYDoZAmK8OOyajYsrMNgDkzYvF0h7BZjYTCEQ6We6K7mLkO4mMttLQFqKrtJj/XxcHyLvJznaQkWdhd0klnz05fS1uQ9BQbXR4PjS0hOjrBbjP0jdSoq+8mJdnGnv2dGI0wOUcTjpipa4iQnmKjqtaH1WqgMD86l3fX3naUguLJMfj8Ydwx5r41CGDGlGiy6PNFaG2PJr2NzQEm5zlISbRSdsRDU3OAOdNjOVThIS/bgdVqYF9pB93eCPFuiIkxkRAfPSP5P58qZM6MuAH/PKqrq7n++ut59NFHueCCC07rZzrGSJnrmZJk8r3KjnZy5c/X89Vrp/KJi/JHOhxxEv/cUsWXVuxi5afOY17u6d1kj2Pj8eZt4izMPbTW72npn5KSwtKlS7n55psHfLMfCoXYsmULycnJTJ48+aSPjUQ0+w508OaGZg5XdrNhaytmE2SmO6io7iY/10FSgpUj1d00NQfIy3FwuKIbkzH6Tn5DU4BDFR5mTolhT2kX8W5FvDtMS7uRtk6N3WYgOdGK3WbEZIw+X0lPqevUAiflVV3RsRyxjv+c45waw469HRRNduJyGNnWU2ZrMkbLT482Bqg96mdKgZPq2m4m5TgpPdRJRqqNwxXdTClw4XQa2bIjer3EeAvpKRYiESgr7yIv2xGdAZdkpTDfxf6yTppbo00wwhFISbLS1OzDbFaUV/qw2zQZKSH8QTs19SHmzIjlf78xE7tt4Inkn/70J/785z/z3HPPDUtJc6+zOPT7VMbjetTfhFubANra2nj22WdZuXIllZWVXHPNNSxfvpw5c+YMeBRSVVUVFRUVnHvuuSfdnY9ENLtL2ln3ThNlh7vYX9aJzx89Y5mSZMPvD1NR7SE700npwS5Sky1MznNRUd1NTZ2PKQUuKmq85GbZsVmNNLX4qa71YbUoCvNjMBkV7Z0BYlwmdu3r6YZ6Tjx+X4QjNd2YDGF8/ghKmSjIc2AyGdi+u41QGGZNddPSHiQpwYLJAFt6ksKMFAUqgt1morNbYVBG6hv8JMSZKZrsoqklwKEjHmZNi2XXvnYm5ThISrBQVeOlrudxMTFm3C4TgUAYo9HAvgO9TcqinVobmgK4XEbKK7oxGBU56WAyG6moDhMOw4+/NZO5M+MG/DOtq6vjuuuu42c/+xmXXHLJgL9ujJNk8kxJMvle3/v3Pv74zhE2fOVyklwDHzQtzr5OX5D533uFW+fL+JbjGI83bxNnYT4OrTWlpaWsXLmS5557jpiYmL6W/r3JwLECgQCbNm0iNzeX7OzsQT9ndZ2XbbvaeHl9I7v2tjOtOKavJHXBnOjMuMpaH9kZdnbujd5AnTMjFo3m4BEPZpMBo0HR1hEgO11hNIQ5VGUAFLOmxnDgUBcFk5zYbIotOzsAxbRCF/vKushIi3Y03F/WRVd3BKfDgNWiSE600tUdJiHOzK59HRgMMG9WHFXV3dQ1+NFaM3dmLOGw5sDhLjLT7VRUekhLsZGYYKGzM8ShCk9frBENHZ1BHD2DvZWK7mYoYN+BDsJhTV6OE78/gtttpLurg8NV0Rvl4nz48M1G8vIySUtLG9AO45NPPsnvfvc7/v3vf+NyDf9577M09PtUxuN61N+EXpsAOjo6WLNmDStXrqSsrIyrrrqK5cuXs2DBghMmlgcPHqSpqYn58+cPqoNx9E2vTt54t5Gde9vZV9qJzarIy3FhNCoi4eh5xd4qhXmz4ghHNC2tAYLBCD5/hI6uEFMLXTidJvbt76DTE2b2tFgqa7rJybRjthjYsaeNUAhSkwyYzZCYEENLix9lVFRWe3HYDcyaGkunJ8ShI10UTY5h174OUpOtTMq209Ie5MAhD+4YAxYzmIzRc5YWi4WSg75obD2zN/3+CFpHqKj24Q9EmF4cg91upKbWS2Ozn4JJrp439Jy4Y0zs2NOO1xeJjhPxhEhOtNLa1k57h6K9U+N0GHn4azM4ZxCJZO9O88MPP8wVV1wx4K8bBySZPFOSTP5HIBRh0Q9fZeGkBH7zYakRHwvuf3I7b5Y1sukrV2AZ4FmlCWI83rxNnIX5FLTWHD58mBUrVvDss89isVj6WvpnZmailKK7u5vNmzczZcoUUlNTz/g529oDvLOllfXvNuH1hdnW09SmeLKTSFhjsRpo7wjR1hGkyxPG7TJSmO+iqzvMgUNdTO9JRN0uIzmZUHc0RHObIifDTHV9AJczOmetpS3E4crowHCn3UinJ0zRJCcGg2LHvujN4fQiF5GIpqs7TFt7EKvFQEtbkGlFMVgtsHl7GwAFk5y4nCaaWvw0NPrJynBQVdNNwSQncbFmtuxoJRiCKYUxtLUHSE2x4ekO0dISoKUtiMNuYMYUN12eMAcOd5KZqqmoUeRk2ZlW5Obz9xaC9lNXV0d9fT2RSITU1FTS09OJiYl53/dwxYoV/OIXv2DNmjXExk6oGbnjcT3qT9amfrq7u1m7di0rV65k7969XHbZZSxdupTzzz8fo9FIJBJh3759+P1+zjnnnAHvYh6P1prSQ11s2dHKmlfqqarxMmuam9KDXUzOcxLjMrFnf0fPmKLomz3xcRY83SECgQiVNV6MRpg3Mx5/MDqTMTvDzq59HbicRrIzIBCAiuowDocJt8uEUoqkBAtGE2zZ8Z830bz+MGaTgWAwzJEqLz5/hLxsO4kJVjo6g5RXepiUbaes3EtqoiYxwUh9o6KlLUzhJCdNLQEy0+0opWlpDVJT74ue/+w569jaHiDWHd05NZkU82bF4fdHKK/0ACFQBgzKSH6ukw8vz2bBOQkD/j42NTVx7bXX8u1vf5trrrnmtH8eY5Qkk2dKksn/WLu7jv/+2zb++NEFXFI88GHTYuS8vr+Bj/5xM7+7Yx5XT08b6XBGk/F48zZxFuZB0FpTVVXFypUreeaZZ4hEIlxwwQW88MILvPDCC0OSSB6ryxPirY3NbNjawoatzXR5wsS6TbhdZuJizfj8YZTBQNlhD1pr5s2K7hS2todwOY2UlHWhNRROsuL3ddHYaiQcNhAXa6KhKURulp2MVCvb97T3NLNws7ukg6mFMRgMcOCQB38ggtkEM6e68XSHKT3UxaypbnbubadwkhOn00RVTTfNrcH3NOSIDh6P7qTabQZmT4vuLJQe7Ow5u6SwmA2kJFkwGBRbe0rWJmVprDYnBqMRq8XAj742A4fjvbspgUCA+vp66urq8Hq9pKSkEB8fT0pKCmvWrOGHP/wha9asISFh4Dd548R4XI/6k7XpBHw+Hy+99BIrV65k27ZtXHDBBX1dQu+9994hLafWWlNe6WHdO0288U4TLoeJnfvaMZsU58yMJRjUlJV3YTYZsNuNeH3RBNNuNbJxeytaR+dYtncEiXWb6WjvoKZBEwhAWqqNtGQrgUCEimoPOVlOSg50kppsZXKeg9p6P0equimc5KSm3kdmuh2X00hHZ7BnTAdMKXKjFAQDEaxWAzt7Or3m50SbHnV6jIRCYDRG35grzHfidpnYvb+DLk+YOTNiqarxkpUe7XK7t7QDf0AT54b4WBNut5OmFj9fuLeQc+cOfI1paWnhuuuu46GHHuLGG28csp/HGCLJ5JmSZPI/7vzDJg4e7eTNL18msyXHiFA4ups8PzeB394hu8n9jMc/wBNnYT5NWmvWrFnDvffey5QpU/B4PH0t/QsKCoalUVVbe5B170TLYF9e34DWML04htp6H7nZDiwWA5u2RTskFuY78frCJCXYaGn10trmo9OjMJsV04uddHT4qagNkpdp4FBFtFTtnJmxHG0KcLiim/hYC0pFiHFFzxGBZnfPrLjeUrbqWi+oaCmc3x9hcl50gPfmHW1oHR110t4ZHTcSCEU4VN6NPxAhLcVKWooNfyDM4QoPk3Nd7DvQSXqqFbfTS2e3jdr6ANOLY/jZd2bhdJy8LC8UCtHQ0MA///lPfvGLXxAKhfjFL37BTTfdNKSzJMeI8bge9Sdr0wC0t7ezZMkSjEYjbW1tLF68mOXLl3PZZZcNy9+Jqtpu3niniX2lHWzc1oo/ECElyUJKkhWDwUBtfTeJCVZKD3bhchqZNTWW5rYAB8u7SE8xcLQxQmqyjbQUK93eCPsOdGI2QUF+DFprTEaF2WJge88bTnOmx6KJdqVu7wigtaKxOUDBJCdJCVYOV3TR0BRgzoxYSg92kp/rxG4zcOBwFx2dYeLcBmzWCHYbBIIG7HYrB8u9fZ1avb4IlTXdJCdaKa/wYLMZSU+OoJSRw5VBQPHDr81g0byBJ5Lt7e1cd911fPazn2X58uVD/jMYIySZPFOSTEbVtHm54Eevcf9lhXz+Shk1MZZ8+7m9/G1DJZu/egWxjgl3k3Yi4/HmbeIszKdJa81///d/89BDD5GTk0NDQwPPPPMMK1eupLW1lRtuuIFly5a9r6PrUGlq8bNhawvPv3qUXfva+waLpyRZmZTt4GiTjyNVXlxOA2ZTmPg4Bw67CYMh2jofYO7MWPyBEO3tPnz+MB1dEAjCpGw7yck2DhyMjvOYNc1N2eEuCia5sJgVO/a2Ew5DUoKF1GQrJqOB6rpuUpJslJR1RmdVTnHT2OznULmHvBwHdUd9pCRZSYy34PWHKTnQhVIwY4qbcESjIxG83i6OVEe/V+ctSODrn59CjGvg68wrr7zCQw89xIMPPsgbb7xBKBTi17/+9ZB/70e58bge9Sdr0wCsWrWK1tZW7r77boLBIOvXr2fFihW89dZbzJs3j+XLl3PllVditQ59v4r6Bh9vvNPI9j3tvL2pGatFkZ3hIByBGKcBs9nY1wE2L0thNJqwWm20dwbw+XRfU66MNDtHG6O7kHOmx7KrZw5lfJyJ8opuGpsDpCZbsJiNxMWaCQajnaH3H4x2le4d39HU4sdpN3K4ohuIVlgYDFB6sAuvP0xWmpmm1iAJseCOsbD3QACtoXiyi0AwgjvGTGNjO90+A20dEWJcJr7zpamDKm3t6uriuuuu49577+X2228fsu/1Cy+8wAMPPEA4HObjH/84Dz744Hs+r7XmgQceYO3atTgcDv74xz8yd+7cIXv+0yDJ5JmSZDLqF68c4JFXy1j/xUvJThi+7npi6O2ubueGR9/i+7fM4L8W5o50OKPFeLx5mzgL8zBobm5m9erVPP3009TW1nLttdeyfPlyZs6ceUZnlk6kocnHG+808dpbjXR0BmlsDtDtDZOXbcVk8NHaYaG5NcisaW72l3VRmO/E6TCxY08bgaAmPdWG2ayIjTHS1NxNOByhoTl67QVz3Pj8cLiii8x0B+UVHlwuE5NznQRCEXbtjTbmmVIQQyAYwWk3YjL9p2R1alEMZpMiENQ0NvuwWozU1vvIyrBF51vWeKmq9ZGboalpMDA5z0lmmo0vfrqYGNfAG4WsW7eOL3zhC/z73/8mPX1o5haPwRs1GJ/rUX+yNp2BcDjMW2+9xcqVK1m3bh0zZ85k+fLlLFmyZFjG5jS3Bti4rZmX1jWwfXcb04ujb3rlZNpx2Ly0tBtpaAqTkWojFNYkJlgwGhThcISSsmhSOG9WHKGwpssTwmJWHDjsIRyOluSbTAYqq7vp6AySnemgps7LpBwHsW4z23e34fNrphS46OgMkZwULZ1taPLR3BrEalVML3ITjkBVTXe0udm+DmxWyEnXhCJmqmpD2O1gMBiw2yykp9r44M2ZnL9g4ON8eqtW7rrrLu68884h+96Gw2GKiop4+eWXycrKYsGCBTz55JNMmzat7zFr167ll7/8JWvXrmXjxo088MADbNy4cchiOA2STJ4pSSYhHNFc9L+vk5/s5C93LxzpcMQgaa258ufribObWfGpIe9COFaNx5u3ibMwD7O2tjaee+45Vq1aRXl5OUuWLGH58uXMnTt3WBLL6K5AE6+ur6WxuZvGlugfz3PnRlvvV9Z0k55qY//BTmxWI9OKYwgFNbv3t2M0KHKyHHi6wyQlmIAgu0v8AEzKNmE2m7FazTS3+QkFoaHJT1KCmYJJLhqbAxyu8DBrWvRmMS/bQXKSlbp6H1W1XtwxJhLiLDgcRpTSmAwGdvbskE7OjWC3xdDt01jMBn723Vm4B7Ej+dZbb3H//ffz3HPPkZWVNSTfxzF6owbjcz3qT9amIRKJRNiwYQMrV67k5ZdfZsqUKSxbtoxrr732uE2tzlR7e4C3N7fw+tsN1B9t5Ug1aA2zprkxGRWNzX6aWwOkJNmoqvUyOS86HmnP/g46OkNML3ZTezTatAcN1fVeWlqD2GwGivJdGAyKow1ekpNs7NrXgdmkmDc7jm5vtJze6TASDGm0hrwsB2azgS07WonoaNlsa0eQeLeZcM/MzWBQE+vWuJ0RTCYLTa2arzwwhQsXJQ/4NXu9Xm6++WZuvfVWPv7xjw/p93Mgs23vueceLrnkkr7d0OLiYtatWzdkb7idhmFZnwb+tuNZppRaAjwCGIH/01o/fMznpwBPAHOBr2qtf3L2oxx73j7YRE2bl4eunTLSoYjToJTilnMy+fGLpVQ2d5OTKDvLQpxMXFwcd9xxB3fccQednZ2sWbOG//3f/2X//v1ceeWVLFu2jEWLFg1ZYpmWYuPiRSbSE3zk5c/l7c3tHCzv4sXXG4DokG6vL8LMqbF4ugIcLPfQ1h4kPtZEwSQXXZ4wjU0eUpNi2bG3i/QUGzmZNmrqPZRXeYlxdmOxGIlzW0hLiUEBG7ZGz2nOmxVHIBShaLKLUDjCrr3t+PwRivKdxLot1DX42FfayYwpbvYd6KQw34GKeKhrNNHp8VCY7+Jn35k5qERy06ZN3HfffaxevXrIEsne6xYUFJCfH52BfNttt7F69er3JJOrV6/mzjvvRCnFokWLaGtro66ubiRv1IQYMIPBwHnnncd5551HJBJh27ZtrFixgh/+8IdMmjSJpUuXcuONNw5ZN+TYWAtXXJRAjLWMtPR8jtRY2bS9hU3bWmluDeB2mcjJcmCzGtE6gsVi4J3NLRgMsGhePD5fBINStLQF6OgMEQppZs9wYzUb+6osZk+P5WijjznTYzEYYdP2ViIRSE+1Eh9rwWxS1DX46OoOU3a4HafdwKwZsbS1hait92I1Gyiv8pCUYMXtDBAMKQ5XhjEaw3z8Nich7x62bYslPT2d5OTkk45Z8fv9LF++nJtuuom77757SL6H/dXU1LxnDFVWVtb73sw63mNqamrG3Ro1KpNJpZQR+BVwJVANbFZKPau13tfvYS3AZ4Cbz36EY9dTmyuJd5i5ctrQdz0UZ8fNPcnk09treOCKwpEOR4gxIyYmhttuu43bbrsNr9fLCy+8wK9+9SvuueceLr30UpYtW8YFF1yA0Wg87eeoqanh8OHDLFq0CIvFQk6WG4BPfHgS72xu5tU3Gzlc0UlGqg2PN0x8rJm8bAeRsGbzjjYAzpkZSyAQYVpRDKDZtrudYEhTMCk6d62xyUt5pY+0FC91DYq8LCsZaQ5KD3lobg0wOc9JS1uQgkkuUNDVFWTzjmjCOXdmdN5kRpoVn9dDVZ3CYIhw8eIkvnRfEe6YgSeS27Zt4xOf+ASrVq0iN3doy+7lRk1MJAaDgfnz5zN//nx+8IMfsHv3blauXMlll11GRkYGt9xyCzfffPMZdUf2+/1s3LiRoqIi0tLSKCyAKy9OwecLs3F7Kzt2t7H21Xq83jDTit3U1nmZPT0Wi/k/SWFOlh2L2UBigpWWFj9t7SEqqjqwWhSL5sbT1R2mozNIQpyF/SWdxMdayM914vOH2bM/uluZk+UgFIowe7obq9nAu5uja9O0ohiUgqJ8F3VHO2nwGWhtD5OabOXz9xZy/rmJaK1pa2ujtraW0tJSHA4H6enppKWlvaexUSAQ4NZbb+XKK6/kU5/61LCcmz9eZeexzzOQx4wHozKZBM4FDmqtDwMopZ4CbgL6kkmtdQPQoJS6bmRCHHsON3bxwp56PnFhPlbT6d8siZGVGWdncX4iK7dVc99lBdKNV4jTYLfbueWWW7jlllvw+/28/PLLPPHEE9x3331ccMEFLFu2jIsvvnhQnRcrKyupqqpi0aJF7/u6tBQbS6/LZOl1mTS1+Hl7UzSxLDsc7dBaXhkdIJ6ZYae8wkN9g5+pRS4qqrzRxjtWA80tAQ6Wt2M2wfQp0db7VosfgwrwzpZoOezMqXZMJhOe7hBVtd04HSYam/1MLXQRH2tm576eOXQZms5uM7OnOXA4THzx00XEugf+Wnfu3MlHPvIR/vWvfzF58uQBf91AyY2amKgMBgOzZ89m9uzZfPvb36akpISVK1eyZMkS4uPjWbZsGTfffDMpKQMf6+b1etm0aRPTpk0jOfm9ZaI2m5GLFydx8eIkPvXRfHbsbuO1txqpqukGDZt3tOOOMTGlMIbu7jAlZR3YbUYS4iyEe5JCi8XAhp5O1jOnuQn4I9G5tV1BDpZ30doeJDnRQl62k46uYLQkf2osm3a0kZVhJyvNRn1jtGmZ2wUWi4GEeAc5WUZuvSGD889NBKJ/v+Pj44mPj0drTWdnJ3V1dbz77ruYzWa6urrIz8/nS1/6EhdccAEPPPDAsK0JWVlZVFVV9X1cXV1NRkbGoB8zHozWyeeZQFW/j6t7fm/QlFKfVEptUUptaWxsHJLgxqpHXzuIxWTg4xfmj3Qo4gzdsTiXypZuXthTP9KhiAnmX//6F9OnT8dgMDBezqBbrVauv/56/vjHP7J161Zuvvlm/vGPf3DOOedw99138/zzzxMIBE56jfLycmpqali4cOEpE9CkBCs3Lcng/31/Nn//7bl88KYsFs1LIDHBwrubW6hv8LNgThw2i5GEODPNrX6qqrupO+pjaqGLebPjqazpZte+DmLdNhpajMyc6mbmFDsHD3vZvrudjk4/ifFGkhMtpCZH50i+s6UVry9MYZ4mJsaFQtHpCfOVzxYTFzvwRHLv3r3ccccdPPXUUxQXFw/46wZDbtTEYI3HtUkpxbRp0/j617/Oxo0befTRR2lubuamm27i8ssv51e/+hV1dXXHfWOlV3d3Nxs3bmTGjBnvSySPZTEbOHduAg9+pphn/ryYj96ewy3XZpCX7WRPSQd79neQmGClaLILp9NIQ5OPSAQ2b28jNdnK4vkJdHaFKD3URVNLgNaOEAnxFmZPc5OeamPzjlZKD3YxZ0YsobBmWlEMLqeBrbvbOFLlJTPNQHqqiRiXjYPlXSy/IZNLzj9+0qyUwu12U1xczEUXXcTs2bMpKyvjmmuuYevWrSilqKioOKPv/8ksWLCAsrIyysvLCQQCPPXUU++bXXnjjTfy5z//Ga01GzZsIDY2dlxWTozKBjxKqVuBq7XWH+/5+A7gXK31/cd57LeAroGcmZzIDXjKmzxc/tN1fOz8SXzt+mmn/gIxqoUjmit+9gYuq4ln7zt/or8bPx5f/OhbmHuUlJRgMBi45557+MlPfsL8+fNHOqRhEwqFWL9+PStXrmT9+vWcc845LF++nKuuugqbzdb3uIMHD9Lc3Mz8+fPPqES2syvEu1ua2bmnjZfeaMTrC5OWYsVuM+KOMdPZFcBoNFB22INSsHBuAl5fmOpaL/FxZqpqonPaphTGEImEKDngIRDU5GYZ6OwykJFqw+vt4nCVQmvIz3Xyi+/OIiHeMuAYS0tLufXWW/nrX//KrFmzTvu1nkooFKKoqIhXX32VzMxMFixYwN///nemT5/e95g1a9bw6KOP9jXg+cxnPsOmTZuGLaYBGo/rUX+yNo0CWmuOHDnCypUrWb16NQaDgZtvvplly5aRnZ3dd0/Q1dXFli1bmD17NvHx8af9fJGIZm9pB2+800hJWRc790a7Rc+a5iYU0hgMCoOC3fs7omM9Clw4bEY6u0JU13WTme7g0BEPuVl2MtPtHDri4Wijn8J8J3VHfWRnOgj4PXi6ob4xgtEA3/7S1BMmkscTDof56Ec/Sm5uLvfddx/PPfccTqdzSEeBHGvt2rV89rOfJRwO87GPfYyvfvWr/Pa3vwXg3nvvRWvNfffdxwsvvIDD4eCJJ54Y6T+XE6ebq1JqMfAtrfXVPR8/BKC1/uFxHvstJJk8pS/8cyf/3lXLm1++lJQY26m/QIx6T26q5KFVu/nr3Qu5oHDgbbLHofF48zb6FuZjXHLJJeP+hq2/cDjM22+/zapVq3j11VeZMWMGS5cu5c033+S8887jAx/4wJB2h+32hnl3SzNbdrTyypuNRMIRsjMdtLQFyEqz4XCY+hrvFExyEglr3G4zbe1+AgGoPerDalHMmRFHZ1eA8goPCXEhao+acLkMzJ0Vx/98qpj4uIEnkocOHWLp0qU88cQTZ2UExxi8UYPxuR71J2vTKKO1pqamhlWrVvH0008TCAS48cYbKS4uZs2aNfz0pz/F7XYP6fMdONTF1p2t/PvleiprvMyc6qb0YBf5uQ4cdiO1DT7qj/qxWRWTclyYzQqfL4zDbmDH3mhp/7xZcUS0prHZT1ubD4vFQHunpnCSkw8ty+ayCwaeSEYiEe655x7i4+N5+OGHh6VT9zgxoZJJE3AAuByoATYDH9Ja7z3OY7+FJJMnVdHs4bKfvsFdi/P4xg2yKzle+IJhLvzf1ylOjeGvH5/QY17G483b6FuYjzHRbtj6i0QifaMoWltbmT17NsuWLeO6664b0pu2Xv5AhB172nh1fQPrNzRRkOdix952YmNMTC2KoaMzxP6DnbhdJux2EwYFyYkWTGYDW3qa+uRkakwmOw67iW6vn9tvCON2GUhLSyMjI+OUM+4qKiq46aabeOyxxzj33HOH/DWOI+NxPepP1qZRTGvN0aNHeeSRR3jssceYPn06V199NcuXL6eoqGhYqpgOV3ax/p1m1r3TiM8fpr0jhKc7RPHkGGLdJkoPRs9Mzpkey4HDXeTnOrFaFaVlXXR1h3E5Id5tJCHBRUdnkDtuzeGqSwbeJDISiXD//fdjsVj46U9/KonkyU2c0SBa65BS6j7gRaKjQf6gtd6rlLq35/O/VUqlAVsANxBRSn0WmKa17hipuEerR187iMmguPdiOSs5ntjMRu6+YBIPP7+f3dXtzMwamvbhQlxxxRXU17//PO73v/99brrpphGIaHQxGAzs3r2bhQsX8vOf/5xdu3axYsUKfvSjH5Gbm8uyZcu48cYbiYuLG5Lns1oMLJybwMK5CfxPMMLOPW3kvdvEkaputu1qJxCMkJFqIzXFis8X5tCRLuLjLOzY20ZyooV4tx9fwMbhCh85mXb+3w/mkZRgxev1Ul9fz/bt2wmHw6SlpZGeno7L5XrP81dXV3PzzTfzq1/9ShJJMaJkbTo5pRQ2m41XXnmFrVu34nK5WL16NZ/73OdoaGjg+uuvZ/ny5UyfPn3IEsv8HBf5OS4+clsuVbXdvLmhmTc3NOHpDvdVTyycF4/fF8bhMOIPhDlwyIsyQOEkE0aD5kiNprq+na99bsqgE8kvfOELAJJIjqBRuTM5XCbizmRlczeX/nQddyzK5Vs3Tj/1F4gxpdMX5LyHX+OiwmR+9V/DX3Y2So3HnYBRvzBP5Hf/Idp63mw2v+eGTGvNnj17WLFiBWvWrCE1NZWlS5dy0003kZQ09KXo4bBmz/521r3TSMmBLvbsj76X2nuOSesInu4uqmqjZyRnTHHz3S9PIznJetzXU19fT11dHT6fj9TUVHw+H8nJydxwww387Gc/45JLLhny1zAOjcf1qD9Zm8aAQCCAxfLeEvbW1laeffZZVq5cSVVVFddeey3Lly9n9uzZw5KEHW30sf7dJsrKu3jhtaNEIlCY7yQY1MTFmjna0EEgqGhujc60/Opni7n8wsGVtj744IO0tLTw2GOPSSI5MBNnZ1IMnV+vO4jRoPjUJUPful2MvBibmQ8vyuW3bxyivMnDpCTnSIckxIRw7I0aRHcFZs6cycyZM/nWt77F/v37WblyJddddx2xsbEsXbqUW265hZSUlCHZFTAaFbOnxzF7ehxaa/aXdbJ1Vxv/fqme6jov2emao00GigtcJMSZ+eKni0hOfH8i2ft6cnJyyMnJIRgMUl9fz/3338+OHTu49NJLsdlsRCIRuWETYgw43voUHx/PXXfdxV133UVHRwf//ve/+d73vsfBgwe56qqrWL58OQsWLBiyv+OpyTZuvTELgHvvzOetzU28taGZjdtaaWzuxmY1YLVaOGeGlWsuTxtUIqm15pvf/Cb19fU88cQTsi6NMNmZHMeqWrq59Cfr+K+FOXz7phkjHY4YJg2dPi740essm5vFD5fOHOlwRsJ43AkYtQvz008/zf33309jYyNxcXHMmTOHF198caTDGtW01hw6dIiVK1fy7LPPYrFYWLp0KUuXLiUjI2PIzzF1d3ez+t+baOlMZeN2D/5AmEd/OOeEieTxNDU1ce211/K1r30Ng8HAqlWr+PznP8+MGfJvySmMx/WoP1mbxhmPx8PatWtZtWoVe/fu5fLLL2fp0qWcd955Z9Sd+ni01mzasps9+/2UHbGzeUcrn7u3gOuvHPi4DK013//+99m7dy9/+ctfMJlkX2wQJk4DnuEy0ZLJe/+ylddLG1j3xUtIjz15cwUxtn3l6d2s2FLNW1++lBT3hOvWOx5v3ibOwjzBaK2prKxk5cqVPPPMM2it+1r65+bmnnFi6fV62bhxI7NmzSIhIQGAYDCC2Tzwd+5bWlq47rrr+MpXvsINN9xwRvGc7Dk++MEPcuTIEfLy8vjnP/953NEFeXl5xMTEYDQaMZlMY2F+4Hhcj/qTtWkc8/l8vPTSS6xYsYLt27dz0UUXsXz5ci688MIzTtq01uzbt49QKMSsWbNQSg16bdJa8+Mf/5iNGzfy1FNPnXKmr3gfSSbP1ERKJl/bf5SP/XELX7y6mE9fWjDS4YhhdqTJw2U/Xcft5+bw/Vsm3O7keLx5mzgL8wSmtaauro5Vq1axatUqvF4vN910E8uXL2fy5MmDTix7E8mZM2eSmJh4WjG1tbVx/fXX87nPfY5ly5ad1jUG4ktf+hIJCQk8+OCDPPzww7S2tvKjH/3ofY/Ly8tjy5Ytw3LmdJiMx/WoP1mbJohAIMCrr77KihUr2LhxI+eddx7Lly/n0ksvHXQSd7xEcrC01jzyyCO89tprrFix4rilvOKUhmV9kiLjccgbCPON1XspSHHxiQulg+tEkJfk5CPnTeLvmyrZUdU20uEIMWReeOEFiouLKSgo4OGHHx7pcIaUUoqMjAzuu+8+XnvtNZ555hni4+P59Kc/zcKFC/nud79LSUkJA3nT1+fznXEi2dnZyU033cR99903rIkkwOrVq7nrrrsAuOuuu3jmmWeG9fmEGGrjeW2C6LnLa665hscff5zt27fzgQ98gFWrVjF37lw++tGPsmbNGvx+/ymvo7WmpKSEYDB4Ronkb37zG15++WX++c9/SiI5ysjO5Dj0vy/s59frDvHUJxexKP/0birE2NPlD3H5T9eR5LKy+tPnYzJOmPeKxuNOwMRZmE8iHA5TVFTEyy+/TFZWFgsWLODJJ59k2rTxPy+3ubmZZ555hqeffpq6ujquu+46li9fzowZM97XbMLn87Fhw4YzSiQ9Hg833ngjd911F3feeedQvISTiouLo62tre/j+Ph4Wltb3/e4SZMmER8fj1KKe+65h09+8pPDHtsZGo/rUX+yNjGx16ZQKMRbb73FypUrWbduHbNnz2b58uVcffXV75tX25tIBgIBZs+efdpl/I8//jj//Oc/eeaZZ045E1eclHRzFadWdrST3795mKVzMyWRnGBcVhPfuH46n/77Nv6yoYKPnj9ppEMS4oxs2rSJgoIC8vOjFRa33XYbq1evnhA3bImJidx9993cfffdtLW18eyzz/KNb3yDI0eOcM0117B8+XLOOeccqqqq2Lt3L+eee+5pJ5Jer5elS5fyoQ99aEgTyZPNBByot99+m4yMDBoaGrjyyiuZMmUKF1100ZDFKMTpmMhrk8lk4pJLLuGSSy4hHA6zYcMGVq1axTe+8Q2mTp3K0qVLue6663A4HLz44oukp6efUSL5pz/9ib///e88++yzkkiOUpJMjiNaa776zB4cFhNfuXbqSIcjRsC1M9O4qCiZn750gGtnppM68ZrxiHGkpqaG7Ozsvo+zsrLYuHHjCEY0MuLi4rjzzju588476ezsZM2aNTz88MPs2bMHr9fLl770JZYsWXJa1/b7/Sxfvpybb76Zj33sY0Ma9yuvvHLCz6WmplJXV0d6ejp1dXWkpBx/LEBGRgYAKSkp3HLLLWzatEmSSTHiZG2KMhqNnH/++Zx//vlEIhG2bt3KypUr+cEPfoDVaiU+Pp5//OMfp51IPvnkk/zhD39gzZo1OJ0y+my0mjB1cBPBym01bCpv4ctLppDkGngLeDF+KKX4zo3TCYQjfPff+0Y6HCHOyPGOYQz1GI2xJiYmhttuu41HH30Uh8PBRz/6Ud566y3mzJnDAw88wBtvvEE4HB7QtQKBALfeeitXXXUV995771n93t5444386U9/AqI7DzfddNP7HuPxeOjs7Oz7/5deeklGk4hRQdam9zMYDCxYsIAf/vCH3HjjjWRkZLBgwQIuv/xybrjhBp544glaWloGfL0VK1bw6KOPsnr1alwu15DH29LSwpVXXklhYSFXXnnlccvsIdoEbObMmcyZM4f58+cPeRzjgSST40RVSzffW7OPc3LiuG1B9qm/QIxbeUlO/vuSyfx7Vx1vljWOdDhCnLasrCyqqqr6Pq6uru7bqZro6uvr+fGPf8w3v/lN/v73v7Np0yauuOIK/vCHPzBnzhz++7//m1dffZVQKHTcrw8Gg9x+++1ceOGFfOYznznrN8IPPvggL7/8MoWFhbz88ss8+OCDANTW1nLttdcCcPToUS644AJmz57Nueeey3XXXXfaO7BCDCVZm04sEomQlpbGqlWr+N73vseWLVt4+OGHqaqqYsmSJSxZsoTf//73NDae+P7k2Wef5Sc/+QnPPfcccXFxwxLnww8/zOWXX05ZWRmXX375SZsovf766+zYsWMsjCYaEdKAZxzo8odY9ut3qGv3svq+C5iUJKUAE50vGGbJL9ajgWfvu4BY+7iexTQe3w6eOAvzSYRCIYqKinj11VfJzMxkwYIF/P3vf2f69OkjHdqoFggE+trnb9iwgUWLFrF8+XIuu+wyLBYLoVCIO+64gxkzZvCVr3xlwu+oDLHx/s2UtQlZm06X1pqysjJWrFjBc889h9PpZOnSpdxyyy2kpaWhlOL555/nm9/8JmvXrh3WkUDFxcWsW7eur9T+kksuobS09H2PG4PjiU5G5kyeqfGYTEYimnv/upVXSo7yp4+dy4WFySMdkhglNpW38F//t4EFeQn88aPnYjGN20KE8XjzNnEW5lNYu3Ytn/3sZwmHw3zsYx/jq1/96kiHNKaEQiHeeOMNVq5cyZtvvsk555xDXV0d5513Ht/61rckkRx64/0bKmtTD1mbzozWmvLyclauXMmzzz6LwWBg+vTpvPvuu7zwwgukpqYO6/OP447SJyPJ5Jkaj8nkz14q5f+9dpBvXD+Nj10g3TvFe63cWs0X/rWT5fOy+PHy05vvNAaMxxc1cRZmcdaEw2Fee+01/v73v/P444+/b8SIGBLjcT3qT9YmMeS01tTU1PD1r3+dL3zhC0N2NvpkHaXvuuuuASWTtbW17+ko/ctf/nIsNwGT0SDivdbsquP/vXaQD8zP4qPn5410OGIUWjYvi6rWbn7xShk5CQ4+c3nhSIckhBghRqORK6+8kiuvvHKkQxFCiD5KKbKysnjiiSeG9LrSUfrskLclx6gtR1r4n3/tZF5uPN+9ecZ43XESQ+CBywtZOjeTn718gFXbqkc6HCHGjI997GOkpKRIB1EhxKgia9OZk47SQ0eSyTHGHwrzoxf284HfvUtSjIXffngeVpNxpMMSo5hSioeXzmJxfiJfXrmLV0uOjnRIQowJH/nIR3jhhRdGOoxR71//+hfTp0/HYDCctNvhCy+8QHFxMQUFBSftnCiEODlZm86cdJQeOnJmcgzZVd3G//xrJweOdvHB+dl89fqpuG3jukunGELt3iC3PbaBkroOPrwoh4eumYrTOi4q3cfjtvzEWZhHuSNHjnD99dezZ8+ekQ5l1CopKcFgMHDPPffwk5/85Liz2MLhMEVFRbz88stkZWWxYMECnnzySaZNmzYCEQ+r8bge9Sdr0ygha5M4DXJmcqJq7w7yu/WH+N36wyS5LDzx0QVcWnz82m4hTiTWbubp/z6Pn7xYyuNvl/NmWRM/uXU2C/ISRjo0IcQYNnXq1FM+ZtOmTRQUFJCfnw/AbbfdxurVq8djMimEEBOKJJOjWF27l8ffLOfJTZV4AmGWzs3km9dPJ9Yhu5Hi9NjMRr52/TSumJbKF1fs5AO/e5e7z5/EfZcVEOewjHR4Qohxqqamhuzs7L6Ps7Ky2Lhx4whGJIQQYihIMjkKlTd5+NXrB1m9o4aIhutnpXPPRZOZluEe6dDEOLEoP5HnH7iI768p4f/eKudvGyv54IJs7r5gEtkJjpEOTwgxypysxf7xGlcc63hHaqRxnBBCjH2STI4iHb4gv3y1jD++cwSjQfFfC3Pl5l4MG5fVxA+XzuQj5+Xx2PrD/HVDBX/ZUMF1M9P5xIX5zMyKHekQhRCjxMla7A9EVlYWVVVVfR9XV1f3tdwXQggxdkk311EgEtH8Y3Mll/1kHf/3VjlLz8nizS9dxrdunC6JpBh2xWkx/PQDs3nzy5dy9wWTeG1/Azc8+hbLfvMOz+6sJRiOjHSIQoyI22+/ncWLF1NaWkpWVhaPP/74SIc0Zi1YsICysjLKy8sJBAI89dRT3HjjjSMdlhBjkqxNYjSRbq4jKBLRvLq/gUdePcCemg7m5cbzrRumy46QGFEdviD/2lLNn989QkVzNykxVv5rYS43n5NBbqJzpMM7nvFYKzdxFmYx5j399NPcf//9NDY2EhcXx5w5c3jxxRepra3l4x//OGvXrgVg7dq1fPaznyUcDvOxj32Mr371qyMc+bAYj+tRf7I2CTF2Dcv6JMnkCAiEIqzeUcPv1h/mYEMXmXF2vnh1MTfNyZAzJGLUiEQ0bxxo5I/vHOGNA40ATM9wc+3MdK6ZkUZ+smuEI+wzHv/STJyFWYjxZTyuR/3J2iTE2DWxkkml1BLgEcAI/J/W+uFjPq96Pn8t0A18RGu97WTXHKlkUmtNfYeP3dXt7KpuZ+W2aurafUxJi+Heiydz3ax0zEapOBajV3VrNy/sqWft7jq2VbYBMCnJyeysWGZlxTE7O5bpGbHYzMaRCG883ryNzoVZCHEq43E96k/WJiHGromTTCqljMAB4EqgGtgM3K613tfvMdcC9xNNJhcCj2itF57susOVTGqt6fSHaOr0c7TDT32Hl7p2H/XtPipbutlT005TVwAAg4KFkxK55+J8Li5Klp1IMebUtXt5YU897xxqZmdVGw2dfgCMBkVugoP8ZCf5yS7yk5zkJTlJj7WR6rYNZ6I5Hv8Sjb6FWZxVVVVV3HnnndTX12MwGPjkJz/JAw88MNJhiVMbj+tRf7I2CVmfxq4JlUwuBr6ltb665+OHALTWP+z3mN8B67TWT/Z8XApcorWuO9F1B5pMrt1dx87qNiIRTURDOKKJaI0/GKE7GMYbCOENhunyhWjqCtDY5ScQen+Tkli7mYw4O9PS3czKimVGZizT0t3YLSOyeyPEsKhv97Gzuo3d1e0cbOjicFMXR5q73/d3Is5hJs1tI9ZuxmEx4rCacJiN2C1GDEphUAqjAQxKUZQaw7J5WQMNYTzevI2+hVmcVXV1ddTV1TF37lw6OzuZN28ezzzzDNOmTRvp0MTJjcf1qD9Zm4SsT2PXhEomlwNLtNYf7/n4DmCh1vq+fo/5N/Cw1vqtno9fBb6std5yzLU+CXyy58NioHQAISQBTWf8QkbeeHkdIK9lNBotr6NJa71kpIMQYjgppVYDj2qtXx7pWIQQoj9Znya20Tpn8niZ87FZ70Aeg9b6MeCxQT25Ulu01vMH8zWj0Xh5HSCvZTQaL69DiNFOKZUHnANsHOFQhBDiPWR9EqO160s1kN3v4yyg9jQeI4QQQoxZSikXsBL4rNa6Y6TjEUKIXrI+CRi9yeRmoFApNUkpZQFuA5495jHPAneqqEVA+8nOSwohhBBjiVLKTPRG7W9a61UjHY8QQvSS9Un0GpVlrlrrkFLqPuBFoqNB/qC13quUurfn878F1hLt5HqQ6GiQjw5hCIMqix3FxsvrAHkto9F4eR1CjDo9468eB0q01j8b6XiEEKKXrE+iv1HZgEcIIYSYyJRSFwBvAruB3tbIX9Farx25qIQQQtYn8V6STAohhBBCCCGEGLTRemZSCCGEEEIIIcQoJsnkCSilfqyU2q+U2qWUelopFTfSMZ0OpdStSqm9SqmIUmrMjXFQSi1RSpUqpQ4qpR4c6XjOhFLqD0qpBqXUnpGO5UwopbKVUq8rpUp6/mw9MNIxCSGEEEKIs0+SyRN7GZihtZ4FHAAeGuF4TtceYCmwfqQDGSyllBH4FXANMA24XSk1bWSjOiN/BJaMdBBDIAR8QWs9FVgEfHqM/1yEEEIIIcRpkGTyBLTWL2mtQz0fbiA6x3LM0VqXaK1LRzqO03QucFBrfVhrHQCeAm4a4ZhOm9Z6PdAy0nGcKa11ndZ6W8//dwIlQObIRiWEEEIIIc42SSYH5mPA8yMdxASUCVT1+7gaSVpGFaVUHnAOsHGEQxFCCCGEEGfZqJwzebYopV4B0o7zqa9qrVf3POarRMv6/nY2YxuMgbyOMUod5/ek/fAooZRyER1Y/FmtdcdIxyOEEEIIIc6uCZ1Maq2vONnnlVJ3AdcDl+tRPEPlVK9jDKsGsvt9nAXUjlAsoh+llJloIvk3rfWqkY5HCCGEEEKcfVLmegJKqSXAl4EbtdbdIx3PBLUZKFRKTVJKWYDbgGdHOKYJTymlgMeBEq31z0Y6HiGEEEIIMTIkmTyxR4EY4GWl1A6l1G9HOqDToZS6RSlVDSwG1iilXhzpmAaqpwHSfcCLRJu8/FNrvXdkozp9SqkngXeBYqVUtVLq7pGO6TSdD9wBXNbzd2OHUurakQ5KCCGEEEKcXWoUV28KIYQQQgghhBilZGdSCCGEEEIIIcSgSTIphBBCCCGEEGLQJJkUQgghhBBCCDFokkwKIYQQQgghhBg0SSaFEEIIIYQQQgyaJJNiTFFKfUYpVaKU+tsgv+4+pdRBpZRWSiUNV3xCCCGEEEJMFDIaRIwpSqn9wDVa6/JBft05QCuwDpivtW4ahvCEEEIIIYSYMGRnUowZSqnfAvnAs0qpLyul3lFKbe/5b3HPY4xKqZ8opXYrpXYppe4H0Fpv11ofGcHwhRBCCCGEGFdkZ1KMKUqpI8B8IAB0a61DSqkrgE9prZcppT4FXAF8sOdzCVrrlmO/XnYmhRBCCCGEODOmkQ5AiNMUC/xJKVUIaMDc8/tXAL/VWocA+ieSQgghhBBCiKEjZa5irPou8LrWegZwA2Dr+X1FNLkUQgghhBBCDCNJJsVYFQvU9Pz/R/r9/kvAvUopE4BSKuEsxyWEEEIIIcSEIMmkGKv+F/ihUuptwNjv9/8PqAR2KaV2Ah+CvpEi1UBWz+f+72wHLIQQQgghxHgiDXiEEEIIIYQQQgya7EwKIYQQQgghhBg0SSaFEEIIIYQQQgyaJJNCCCGEEEIIIQZNkkkhhBBCCCGEEIMmyaQQQgghhBBCiEGTZFIIIYQQQgghxKBJMimEEEIIIYQQYtAkmRRCCCGEEEIIMWiSTAohhBBCCCGEGDRJJoUQQgghhBBCDJokk0IIIYQQQgghBk2SSSGEEEIIIYQQgybJpBBCCCGEEEKIQZNkUgghhBBCCCHEoEkyKYQQQgghhBBi0CSZFEIIIYQQQggxaJJMCiGEEEIIIYQYNNNIB3A2LVmyRL/wwgsjHYYQYmipkQ7gTMnaJMS4NebXp2PokQ5ACHHahmU9mlA7k01NTSMdghBCvI+sTUIIIYQYiyZUMimEEEIIIYQQYmhIMimEEEIIIYQQYtAkmRRCCCGEEEIIMWiSTAohhBBCCCGEGDRJJoUQQgghhBBCDJokk0IIIYQQQgghBk2SSSGEGCCl1B+UUg1KqT0n+LxSSv0/pdRBpdQupdTcsx2jEEIIIcTZMiqTyQHcsF2ilGpXSu3o+fWNsx2jEGJC+iOw5CSfvwYo7Pn1SeA3ZyEmIYQQQogRMSqTSU59wwbwptZ6Ts+v75yFmIQQE5zWej3QcpKH3AT8WUdtAOKUUulnJzox2mit8fhD1LV78QbCIx2OEEIIMeRMIx3A8Wit1yul8kY6DiGEGKRMoKrfx9U9v1d37AOVUp8kuntJTk7OWQlODL+GDh+f+MtWjjR56PKHCEc0AOmxNtZ+5kLinZYRjlAIIYQYOqN1Z3IgFiuldiqlnldKTT/Rg5RSn1RKbVFKbWlsbDyb8QkhJh51nN/Tx3ug1voxrfV8rfX85OTkYQ5LnC0/eqGUktoObpqTwacunsxD10zha9dNpbHTzw+fLxnp8IQQQoghNSp3JgdgG5Crte5SSl0LPEP0jNL7aK0fAx4DmD9//nFv6oQQYohUA9n9Ps4CakcoFnGW7apuY+W2au69eDIPXjPlPZ9r6grw2zcOccs5WSyenDhCEQohhBBDa0zuTGqtO7TWXT3/vxYwK6WSRjgsIYR4Frizp6vrIqBda/2+Elcx/mit+c5z+0hyWfn0pZPf9/kHLi8kJ8HBV5/ejS8o5yeFEEKMD2MymVRKpSmlVM//n0v0dTSPbFRCiPFOKfUk8C5QrJSqVkrdrZS6Vyl1b89D1gKHgYPA74H/HqFQxVn23K46tlS08sWri4ixmd/3ebvFyPdvmcHhJg+/XndoBCIUQgghht6oLHPtuWG7BEhSSlUD3wTMAFrr3wLLgU8ppUKAF7hNay0lrEKIYaW1vv0Un9fAp89SOGKU8AXDPLy2hOkZbpbPyz7h4y4sTObmORn8Zt1BbpydTkFKzFmMUgghhBh6ozKZHMAN26PAo2cpHCGEEOKEHlt/mNp2Hz//4ByMhuP1YPqPr10/jXUHGnlo1W7+8cnFGE7xeCGEEGI0G5NlrkIIIcRoUN/u4zfrDnHtzDQW5p+6sU6Sy8pXrp3K5iOtrNxWfRYiFEKMdVprwuEwXq+XQCBAOBxGCvLEaCHJpBBCCHGafvpSKWGteeiaqQP+mlvnZTEzM5ZfrzvUN4dSCCGOR2tNKBQiFAoBEIlE8Pl8eDyevuQyEolIcilGjCSTQgghxGlo7PTzzI4aPnRuDtkJjgF/nVKKey+eTHmTh5f21g9jhEKIsSwSiRAMBlFKYTKZMJlM2Gw2nE4nDocDk8lEJBKhu7u7L7kMBoOSXIqzSpJJIYQQ4jQ8uamSYFhz5+LcQX/tkhlp5CY6+O0bh+SmTwjxHv13I41GIybT+1ucGAwGzGbz+5LLUCh03ORSiOEiyaQQQggxSIFQhL9uqODiomTyk12D/nqjQfGJC/PZWd3OhsMtwxChEGIs6k0ktdaYzWaMRiMQrWg4EaVUX3Jpt9tPmFz6fD5JLsWQk2RSCCGEGKQX9tbT0OnnI+flnfY1ls/LIsll4bdvyNxJIcT7y1pPlkCezPGSS5vNhsFgIBQKUVJSQldXlySXYkhIMimEEEIM0p/eOUJeooOLi5JP+xo2s5GPnJfHGwca2VfbMYTRCSHGkv5lrb1nI083kTwepRRGoxGLxYLdbqepqek9yaXsXIozIcmkEEIIMQi7q9vZWtHKnYvzznhO5B2L8nBajPxuvexOCjERaa0JBoN9Za0Gw9m5Ne+fXB67c3lscinnusXJSDIphBBCDMIf3zmCw2Jk+fysM75WrMPM7efm8O9ddVS1dA9BdEKIsSIcDhMIBPqa7AzlbuSp9E8Qj925PDa59Hg8fcll73lOIXpJMimEEEIMUFOXn+d21rJsbhZum3lIrnn3hZNQwONvlQ/J9YQQo1vvbmQ4HO5rsnM2E8lTPdfJkstAINCXXPr9fkkuhSSTQgghxEA9tamSQDjCXecNfhzIiaTH2rlpTiZPba6kvTs4ZNcVQow+/ZvsDLasdaSStv7JpcPh6Esugb7ksquri66uLkkuJyBJJoUQQogBCIYj/HVDJRcWJlGQEjOk1/7o+Xn4ghFW76wZ0usKIUYHrTXhcJhgMDgiZa3Hi+d09SaXVqu1L7ns7u6mrKysL7ns7u6WncsJQpJJIYQQYgDWH2ikvsPHnYvzhvzaMzJjmZbu5h+bq4b82kKIkdXbrTUcDmOxWPpmR46UoU5ie5NLk8nUl1xaLBYASS4nAEkmhRBCiAF4paQBl9V0RuNATua2c7PZW9vBnpr2Ybm+EOLsC4fDNDY29pW1juRu5HA6tqGPyWR6z86lJJfjlySTQgghxClorXl9fwMXFiZhMQ3PP503zc7EYjLw1ObKYbm+EOLs6T87sqSkZMTLWs+GE72+wSSX4XBYkssxRpJJIYQQ4hT21XVQ3+Hjsikpw/YcsQ4z185IY/WOWryB8LA9jxBiePWfHWmxWEZlcjSSMZ0sufT5fH3JZSAQkORyDJBkUgghhDiF10oaALikePiSSYAPLsih0xfi+T11w/o8QojhMZqa7JzIcMSktT7t6/ZPLp1OZ19yGYlEaGpqorKyEq/XK8nlKCXJpBBCCHEKr+5vYHZ2HMkx1mF9nkX5CeQmOnhKGvEIMab0b7JjMpmGfHak1hqPxzMhEqne5NJmsxGJRPB6vZhMJiKRSN/OpSSXo4dppAMQQgghRrOmLj87q9v47OVFw/5cSik+MD+bH79YyuHGLvKTXcP+nEKIMxOJRAiFQsPWZCcYDLJ9+3YCgQDBYBCXy0VSUhLJyck4nc7Ter6hTsCGK6HTWmMwGDCbzZjNZiD6/Q6Hw327wFprjEZj3y+DwTAqd4THK0kmhRBCiJNYV9qI1nD51OEtce21fF4WP3v5AP/cUs2D10w5K88phBg8rXVfItm7GznUWltb2blzJ4WFhSQnJ2M2m+nq6qKxsZF9+/bh8XiIjY3tSy7tdvsprzlcidbZKp81GAx9CSZIcjnSJJkUQgghTuL1/Q2kxFiZnuE+K8+X6rZxaXEyK7ZW84WrijAb5USKEKNNb1lrb5OdoU5WtNaUl5dTXV3NggULcDgcBINBlFLExMQQExNDfn4+Wmva29tpbGxkx44d+P1+4uPjSU5OJikpqa+xzXAbrp3JSCRyyu/tQJPL/uXHklwOHUkmhRBCiBMIhiOsP9DIdbPSz+rNxwcX5PBKyRZe39/AVdPTztrzCiFOrXc30mAwDEuTnd6yVpvNxvnnn4/RaDxhsqaUIi4ujri4OAoLC4lEIrS2ttLY2Mjhw4cJh8MkJiaSnJxMYmIiJtPw3fqPlsY+J0ouQ6EQfr8fQJLLISTJpBBCCHECm4+00OkPcekwjgQ5nkuLk0mOsbJqW40kk0KMElprwuEwkUgEk8mEwTD0VQO9Za1FRUVkZGQM+usNBgOJiYkkJiYCEAqFaG5upqmpidLSUgwGA93d3TQ1NZGSkjIspblDqffM5Jnon1xqrft2lTdt2sTs2bMB+hLL3rJYMXCSTAohhBAn8FpJAxajgQsKks7q85qMBq6ensrKrTX4gmFs5tF9wyfEeNebgADD0mSnt6y1pqaGBQsW4HQ6j/uYwTKZTKSmppKamgpAIBDg7bffpr6+ntLSUiwWS19JbFxc3Gm/rjMZDXI2r9u7C2kymQiHwzidzr6fbe/OpVLqfWcuxYlJMimEEEKcwGulDSzMT8BpPfv/XF41LY2/bqjkzbImrpyWetafXwgR1Xv+zmAwDPnID3hvWet55503rLuFFosFq9XK9OnTsVgseL1empqaKC8vp729HYfD0ZdcxsTEjHj5ZyQSGZbvRyQS6WvMo5TqO1va21Spf1msJJcnJ8mkEEIIcRzlTR4ON3q4c1HuiDz/ovxEYmwmXtpbL8mkECNgKMtaT7TDdqZlrWcSD4Ddbic7O5vs7Oy+WZa9JbFdXV243e6+TrEOh+Ok1xsLO5O9epPJY/VPHHufX5LLk5NkUgghhDiO1/Y3AHDZlJFJ5CwmA5dNSeGVkqOEwhFM0tVViLNmKGdHGgyG9yVFWmsOHz5MbW3tCctah8uJXotSCpfLhcvlIi8vD601HR0dNDY2smvXLnw+H3FxcX3JpdVqHfZYz3YyeazBJpfD0ZBptJNkUgghhDiO1/c3UJDiIifxxO/GD7erp6exekctWypaWZSfOGJxCDFRHDs7cihmFCql3pO8nM2y1jOhlCI2NpbY2FgKCgqIRCK0tbXR2NhIRUUFoVCIhIQEkpOT+86TDrWhaMBzPANNJo91suQyGAzi9/v7SqLtdvuwlEWPNqMymVRK/QG4HmjQWs84zucV8AhwLdANfERrve3sRimEEGK8CoUjbKlo4bYFOSMax8VFyVhMBl7ae1SSSSGGWf/ZkWazeciSmN6dSRi5stZjnU4zH4PBQEJCAgkJCRQXFxMOh/s6xdbV1fWdLU1OTiYhIWFIkuSR3pk8lf7JpcViQWtNdXU1nZ2d5OXl9T1P/7LY8ZZcjspkEvgj8Cjw5xN8/hqgsOfXQuA3Pf8VQgghzljp0U58wQjn5MSNaBxOq4kLC5J4cW89X79+6ri7CRFitAiFQni9Xux2+5CXKiqlCIfDVFZWjkhZ63AxGo2kpKSQkpJCbGwsHR0dxMXFUV9fz759+zCZTH0lsXFxcaeVvI32ZPJYvbFaLBYcDkffudtwOEwgEBiXyeWoTCa11uuVUnknechNwJ919G2VDUqpOKVUuta67uxEKIQQYjzbWdUOwOysuJENBLhqeiqv7m9gX10H0zNiRzocIcaV3pt9j8dDSUkJixYtGpbn2b59Oy6Xa1SUtQ5X8mIymUhPTyc9PR0An89HU1MTFRUV7Ny5E7vd3tcp1u12DyiOSCQyppJJiHb/7f0Z944hMZmiKdd4TC5HZTI5AJlAVb+Pq3t+T5LJCSwS0TR2+alr91HX5qW23UeLx09+kos5OXFMSnRiMIytv6BCiJGxo6qVOIeZ3BE8L9nriqmpGNRuXtx7VJJJIYZQ/9mRvSWKQ621tZXW1lamT59OXl7eaV+nN8EYrp264WCz2cjKyiIrKwugr1NsWVkZnZ2dxMTEvKdT7PFe11jbmYRoMmk2m4/7ufGYXI7VZPJ439XjrgBKqU8CnwTIyRnZsy9ieFQ0e/j9m4dZubUGbzD8ns8pBb3/NsTYTMzOimNOdhw3zcmgMDVmBKIVQowFO6vamZ11+gO8h1Kiy8r83ARe2lvP568sGulwhBgXepvs9N649/7eUOnfrbW3Sc1oMtSJ80CSPqfTidPpJDc3F601nZ2dNDY2smfPHrq7u9/TKdZmsw34uqdjOJPJwczGHExyOVQNoYbaWE0mq4Hsfh9nAbXHe6DW+jHgMYD58+cP/VtOYsTsqWnnt28cYu3uOkwGAzfOyWB2VizpsXbS42xkxNpx280cauxiR1UbO6va2Fndxm/eOMSjrx9kcX4idy7O5cppqdJyXwjRp8sf4kBDJ0tmpI10KH2ump7K99aUUNncPaLdZYUY6040O9JgMBAOh0/x1QMTCATYsWMHdrud8847j+3btw9ponqmRkMyopTC7XbjdruZPHkykUiE9vZ2Ghsb2bZtG4FAgISEBLq7u0lMHPrmY8NVPgv0dXM9HSdLLn0+X193295zvaNhFMlYTSafBe5TSj1FtPFOu5yXnDjKjnbynX/v482yJmKsJj5xUT4fO38SqW7bcR9flBpDUWoMH5gfff+hxRPgH5ur+OuGCj71t22kuW18aGEOt52bTUrM8a8hhJg4dle3ozXMyY4b6VD6XD09je+tKeGlffV8/ML8kQ5HiDFJa00wGDzu7EiDwTAkCd/xurX27+Y6Xp3pDqLBYCA+Pp74+HiKiooIh8O0tLSwb98+SkpKOHDgAImJiX2dYnuTrdM1mN3Dwep/ZvJM9U8urVZrX3IZCoV46KGHuPrqq1myZMmQPNfpGpXJpFLqSeASIEkpVQ18EzADaK1/C6wlOhbkINHRIB8dmUjF2RQMR3hs/WEeeaUMp9XIl5dM4b8W5eC2Hb8u/UQSnBY+dclkPnlRPq/tb+DP7x7hZy8f4JevlXHF1FQuLU7hoqJk0mIlsRTvp5RaQnQ0kRH4P631w8d8Phb4K5BDdI39idb6ibMeqDhtO6raAJg9ipLJ7AQHU9PdvLT3qCSTQpyG3hvwE5UKnunuTv+y1mO7tfbOmRQDZzQa+7rAZmdnExMTQ3NzMw0NDZSUlPR1ik1KSiI+Pn7QO4HDvTM5XIlq/+TS6/WOiq7AozKZ1FrfforPa+DTZykcMQpsr2zloVW72V/fyTUz0vjOTTNIjrGe0TWNBsWV01K5cloqhxu7+PO7FazZXcfze+oBKEp1cWlxCpdNSWFebryUwgqUUkbgV8CVRMvtNyulntVa7+v3sE8D+7TWNyilkoFSpdTftNaBEQhZnIadVW3kJDhIcFpGOpT3uGpaKv/vtTKauvwkuc5s/RNiohiu2ZH9BQIBtm/fjsPhOG631tG4MzkcZyaHQ++Op9lsJi0tjbS06PEDv99PU1MT1dXV7N69G6vV2tcpNjY29pSJ4nCfmRyua/fX1dUlyaQQp9LlD/GTF0v507tHSI2x8bs75nH19KE/x5Sf7OJbN07nmzdMY399J+sPNPLGgUb+8HY5v1t/GLfNxMXFKVw2JZkrpqYSM8jdUDFunAsc1FofBugptb8J6J9MaiBGRf8lcwEtQOhsBypO346qNs6dlDDSYbzPZVNSeOTVMt491MwNs0du2LkQY0X/JjvDdbbseGWtxxptO5PDtSM3HNc9Ufms1WolMzOTzMxMALq7u2lqauLQoUN0dHTgdDr7kkuXy/W+a5yt0SDDyePxEBMz8s0kJZkUo9Zr+4/ytaf3UNfh485FufzP1cXDnsQppZia7mZqupt7Lp5Mpy/IW2VNvLa/gddLG3huZy12s5FrZ6bzwQXZLMiLH/GDz+KsOt5YooXHPOZRoue6a4EY4INa69FzFyFOqr7dR32Hb1SVuPaanuHGZTWxsVySSSFORmtNJBLpu6kfjhv7k5W1HmuodiZH8/3GcO5MDiTpczgc5OTkkJOTg9aarq4uGhsbKSkpwePxEBsb29cp1m63D/i6p+NsJZNdXV24XK5hf55TkWRSjDpNXX6+/dw+nttZS2GKixX3nse83PgRiSXGZuaamelcMzOdSESzvaqNFVureG5nHSu3VTMpycmt87NYPjeLlBM0ABLjykDGEl0N7AAuAyYDLyul3tRad7znQjK2aFTqPS85mprv9DIZDSzIi2fD4ZaRDkWIUevYstbhSMD6l7Wef/75p0xKRtvOJAxP8nc2dyZPFUdMTAwxMTHk5+ejte7rFLtjxw78fj9GoxG3243f78dqHdpjA8PZ3Kc/2ZkU4hiVzd2s2FbNn989Qrc/zOeuKOJTl0zGYhodZxUNBsW83Hjm5cbz9eunsXZ3Pf/cUsX/vlDKT186wOL8RC4sTOKCwiSmprkxGEbvO4jitA1kLNFHgYd7znYfVEqVA1OATf0fJGOLRqed1W2YDIrpGe6RDuW4FuUn8vrz+2ns9J/xuXEhxpvRUtZ6rNF2ZnI073AeayjmTCqliIuLIy4ujsLCQiKRCHv27MHr9bJ582bC4XBfp9jExMQz7hR7tnYmvV4vdrt92J/nVCSZFCOqqcvPml11PLOjhu2VbSgFlxQl89XrplKQMvLvtpyIw2Ji+bwsls/LorzJwz+3VPHKvqP88Pn98DwkOi0syEtgfl48c3PjmZERO2qSYnFGNgOFSqlJQA1wG/ChYx5TCVwOvKmUSgWKgcNnNUpx2nZUtjE13Y3NPPw3AqdjYX503trG8maunyWlrkLAiWdHnu61jpe8DKas9VijcWdyqA1F0nc8w9F11WAwYLfbSUxMJDMzk1AoRHNzM01NTZSWlmIwGPqSy/j4+EEnhmcyZ3IwhrNUdzAkmRRnXSSieW1/A3/ZUMFbB5sIRzRT0mL48pIp3DA7naz4sTWQe1KSky8vmcKXl0zhaIePt8qaePtgE5srWnhhb7QzrNVkYHZWHPnJTtJj7aTH2ciItZMWa8NpNWIyGDAZFCajwmQwYDO/v225GHla65BS6j7gRaKjQf6gtd6rlLq35/O/Bb4L/FEptZtoWeyXtdZNIxa0GLBwRLO7pp2bzxm9SdqMDDdOi5ENhyWZFAJOPjtysIxG43FLFAdb1nqs0bYzCcN3xnGoDWeS2vtzNJlMpKamkpqaCkR/3k1NTdTU1LBnzx4sFktfM5+4uLgR7RTbazT9/CSZFGeNLxhm5bZqHn+rnMONHtJjbdxzUT43zcmkOG307kIORqrbxrJ5WSyblwVAQ4ePLRWtbK1oZXtlK6+UNNDU5T/ldWxmA6luW9+vNLeV8wqSuKgwGaOUz44orfVaorNu+//eb/v9fy1w1dmOS5y5Q41ddPlDzMkemTPaA2EyGlgwKYGNcm5SCMLhcF9J4fFmRw6WwWB4XzLZ0tLCrl27KC4uJj09/bSuO1Q7k8FgcNjKd8/UcO2SnY1k8lgWi4WMjIy+Mmav10tTUxPl5eW0t7fjcDj6ksuYmJjjxnc2fkZKqVHxZ0GSSTHsatq8/GNzFX/dUEGLJ8DMzFgeuW0O185MxzzOZzemuG1cOzOda2f+5x8gfyjM0XY/te1e6tt9eINhQuEIoYgmHNEEwhFaPQHqO/wc7fCxu7qNl9p9/P7NcjLj7HxgfjYfWJBFeuzI18kLMZ78p/lO7MgGcgqL8hN5+Pn9Mm9STFhDWdban8FgIBwOYzabz6is9XjXPdOdpKqqKg4cOIDBYMDlcpGcnExycvJpxTUaEpCBGq4kdTC7h3a7nezsbLKzs9Fa4/F4+kpiu7q6cLvdfZ1iHY6zU103msqmJZkUQyoUjnC4ycOOyja2V7WxvbKV/fWdKAWXT0nlExdO4txJCWNqIRtqVpORnEQHOYkDX3ACoQivlBzlyU2V/PyVAzzy6gHOL0jiM5cXsiBv9M3DE2Is2lHVRozVRH7SyLdaP5mFPTMwNx5u4bpZp7dTIsRY1dtkZyjKWo/VuzN5pmWtxzqTnclwOMyePXsIBoMsXrwYq9WKx+OhsbGR3bt34/V6SUhI6EsuzeaRmYM9nKNBzvbO5MkopXC5XLhcLvLy8tBa09HRQWNjI7t27cLr9eL1eqmuriY5OXnIO8X2Gi3Nd0CSSXEGOnxBtlW0UlrfGf11tJOyhi4CoeiC6baZmJMTzw2zM7hxdgbZCWPrLORoYjEZ+nY4K5u7+ceWSlZtq+H2xzbw9euncefi3AmdoAsxFHZWtTErO3bUd2KekRnbd25SkkkxUWit8fl8BAIBXC7XsHTLNBqNtLa2UlZWdkZlrcc63Z1Jr9fLli1byMjIID8/v+9sqNvtxu12M3nyZCKRCC0tLTQ2NnLo0CEAkpKSSElJIT4+/oQJ03geDTIQQ3WuUSlFbGwssbGxFBQUEIlEeO211/B4PFRUVBAKhfqS/cTExCFL9ru6us5ot3woSTIpBizS05xi/YFG1pc1sq2yjXAkuhiluq0Up7k5b3IiU9LczMmJY1Kic8RvysIRTVt3gBbPf361eYMYDQqryYDFaMBiMmAzGylIcZE6BmZF5iQ6+OLVU7jn4sl8/h87+Oaze9lT0853b54xajtQCjHaeQNh9td3cu/F+SMdyimZjQbm5yWwsbx5pEMR4qzonR3Z2NhId3c3U6ZMGZbn8Hg8lJWVce655w5puaJSinA4PKivaWxsZM+ePcyaNYvExMQTPs5gMJCUlERSUhLwn+YxVVVV7Nq1q+98X3JyMi6Xa9jO2Q3XzuRwdHPtve5wlM/2jqUpLi6muLiYcDjc1ym2rKwMoK9TbEJCwmm/KSLJpBhTAqEIv3/zMI+/VU6LJwDAzMxY7rkonwsKkpiW4SbOYRnRGLXWlDd5/rNDerSL0qOdlDd5+hLegUiOsTIjw83MzFhmZsVxQUESdsvoTNDcNjOP3TGfX7xaxv97tYwDDV389sNz5SylEKdhb2074YhmdlbcSIcyIIvyE/nRC3JuUox//WdHWq1Wurq6hvw5estaw+Ews2fPHvJzbwaDgVAoNKDHaq0pKyujsbGRxYsXY7MN7k3uY5vHeDweGhoaKCkpwePxEBcXR3d3N4FA4ITXOJMS0KE2Gs5MDva6/b8PRqORlJQUUlJSgGgTpaamJurr69m7dy9ms7nvvGVcXNyAY+rs7JRkUowN7x5q5uur93CwoYvLp6Rww+wMLihMGhU3L01dft4+2MSbZU28WdbI0Y5ol1SlIDfBQWFqDFdNSyXVbSPeaSHRaSHeYSHOYSaiNf5QhEDPL08gRGl9J7tr2tlT084bBxqJaHBZTVw3M51b52cxLzd+1JWSGgyKz19ZxPQMN5//xw5u+OXb/P7OeZyTM3q7UQoxGv2n+U7ciMYxUAvzo+cmN5W3vKfBlxDjxfGa7JhMpkHv8J1K/26tjY2NQ3rtXgM9MxkMBtm2bRtOp5PFixcPSbLjdDqZNGkSkyZNIhKJ0NbWxs6dO9mzZw8QLYm1lh2h7cl/07mrhEBTCzqiKPr6feR/9hNn/PxnarSXuR6rt7vwiZjNZtLT0/tKqH0+H01NTVRUVLBz507sdntfp1i3233C197V1YXLNTrO90syKY6rsdPPD9eWsGp7DdkJdp74yAIunZIyYvGEwhH213eytXfMRlUrVS1eAOIcZs4vSOKCgiRmZMRSkOI6rd3E8yYn9f1/dyDEjso2Vm2v4bldtfxjSxWZcXaunJbKjXMyOCf71HOGzqarp6fxzKfP5+4/beGuP2zimU+fT37y6FhkhBgL9tS0k+q2kjIGSt0hWh3i6Dk3KcmkGG96y1qB9zTZMRqNQ5ZMaq05dOgQdXV1fWWtLS0tw9Ils7exz8l0dHSwbds2CgsLyczMHPIYeuNISEjA7XZTWFiIGcWOj96PZ3cJut0DgMmh8DcG2P+Vn9K+bTdz/vTIgO53hivpG87y2eHamRxM6arNZiMrK4usrOhIud5OsWVlZXR2dr6nc6/D4ej7Hns8Hkkmxej1wp56vrhiJ/5ghPsvK+DTlxac9bN4WmsOHO3i9dIG3ixrZHtlG92B6D8gqW4r83Lj+dC5uZw3OZEZmbFDPnvRYTFxXkES5xUk8e0bp7N2dx0v7q3n75sq+eM7R8hPdrJsbhY3n5NJZtzoKCstTI3hbx9fyI2PvsUn/ryFZz59PjG2kenqJsRYs7umnZmZo3skSH995yZl3qQYZ3pnRxoMBoxG4/tKBocimewta3U6ne/p1to7GmSoKaVOmhRVV1dz6NAh5s2bR0zMieduD1WyppQi0NDAztvuJtDYAsHo7xusBgwWhTnBRLAlRMOaV9jxnR8w5UufH9HOoWNtZ/JMrut0OnE6neTm5qK1prOzs+/8bHd3N3FxcQSDQSoqKgZd5qqU+gNwPdCgtZ5xnM9fAqwGynt+a5XW+junuq4kk+I9/vzuEb757F5mZ8Xx0w/MZvJZ3N0KhCKsP9DIa6UNrNvfQG27D4ApaTHcOi+LubnxzM9LICPWdlZ3BZ1WE7fOz+bW+dl0+oKs3V3Hym01/PjFUn7yUimL8xP54IJslsxIw2oa2fOV2QkOfv1f8/jw4xv57FM7+P2d80e8CZIQo53HH+Jwk4frZ2WMdCiDsnBSAj9+sZTmLj+Jo+DogRBnYiCzI41G44DPHp5I/7LWY7u1DmQH8XSc6LqRSIQ9e/bg9/s577zzztpYj4jHQ9nn/odgUysGo4GQL5pAG3qe3mQ3Yp7kRikfnU+vZutF5xFSisTERFJSUkhMTMRkem8KMVw7k8NlpMpcB+N4nXvb29t59tln+fWvf01zczMtLS0sXbqUyy67bCCX/CPwKPDnkzzmTa319YOJU5JJAUQXgZ+8VMqvXj/EFVNT+eXt55y1xjP17T7+vqmSJzdV0tjpx2kxckFhdIbiJcUppMUObdlZlz/UN75Ea40GjEoR5zj1vKoYm5kPLsjhgwtyqGrpZtW2GlZuq+aBp3aQ6LRw6/xs/mthzoiOQVk8OZFv3jCNb6zey09fLuWLVw991zshxpN9dR1ozZjamYRoEx6Inpu8RkpdxRg20NmRZ7Izebyy1uNdfziSyePtTHq9XrZu3UpaWhozZ848a4lY2O8n8K1vE2rr7gnuP58zxjgIe6JHiCz2ICGfhlCQpBdfovD736O5uZnGxkb279+PyWTqK7+Mi4s7K7EPpbGQTB7LYDAQHx/PXXfdRWdnJ6FQiDlz5uD1egf09Vrr9UqpvKGOS5JJQTAc4aFVu1mxtZrbz83huzdNx2Qc+r9g/Wmt2XC4hb9sOMKLe48S0ZpLipK5Y3EuFxQkYzGd+fNHIppDjV3sq+tgf30nJXUd7K/rpL7Dd9zHp7qtzM9L4Ny8BBbkJVCcFnPS8tnsBAcPXFHI/ZcV8NbBJv66oYLH1h/id+sPcXFRMrefm8NlU1IwD/P38njuWJTLvtoOfvX6Iaakublh9tjacRHibNpd3Q7AzKyxlUzOyorFbo6em5RkUoxFWuu+RLJ3N/JkSdXpJpMnKms91nCVuR67M9nU1MTu3buZOXNm30iPs+XQN76Kbm/HHOvCYo9gMCp8rUGCneG+RBLAZDVicjnwNXXQ/OrrxEz9M5l3fbSvK6nP56OxsZHy8nLa29vRWpOQkEB8fPyQd8MdDsN5ZnI4rnssj8dDWloal1xyyVBferFSaidQC/yP1nrvqb5AkskJzhcM8+m/bePV/Q189opCHri8cFjfHfMFwzy7o5Y/vF3O/vpO4hxm7r5gEh9emEtO4pktPl3+EDur2vqa9GyrbKXT13OA36iYnOzivMmJFKbG4OjZdVUq+qacPxRhV3U7m4+0sGZXHQBum4nrZ2dwx6Jcpqa7T/i8BoPioqJkLipKpq7dy1ObqnhqcyX3/GUryTFWPjA/i9sWnN3dSqUU37lpBgcbuvjyyl2cNzlRyuCEOIE9Ne0kx1jHxJzZ/sxGA/Ny49l0pHWkQxFi0Hqb7GitMZvNA7oBP51ksqWlhZ07dzJlypT3lbUeazjLXLXWaK05ePAgDQ0NLFq06KyfQ2x98w3a3n4be3o8kY5OsEbvhRzJVgw5TtoPN0LPBqrRYkRZoz+TsNdP1e8fxzllKnELFwHRxjHZ2dlkZ2ejtWbPnj0Eg0F27dqFz+cjPj6elJQUkpKSzlr57mAMV1nucO5M9jdMcya3Abla6y6l1LXAM0Dhqb5IkskJrLq1m//+2zZ29wy8v2NR7rA919EOH3/dUMHfNlbS4gkwJS2GHy2byU1zMk+ruY/Wmpo2b1/iuLWilZK6DiI6miAWpcRw/awM5ubEMSMzlsnJrgHvdla3drP5SAtvHmhi5dZq/r6xkvm58dyxOPeU5yLTY+187soi7r+sgHWljTy1uZLfrDvEr9cd4oKCJD68KJcrpqYOecOg47GYDDy8bBZX/vwN/vjOEb5wVfGwP6cQY9Ge2rHVfKe/c3Li+NXrB+kOhHBY5J90MTb0nx1pMpkGfFM/mJv//mWtCxcuHNBumcFgIBgMDvg5BkopRTgcZvPmzdjt9iEb+zEYYa+Xqp//L9YYKzrgIwIoiwXdM2/S5DDhTHbgaejGFGNHGRQEgxjMBiLBCM7UGCp/8A3cK9ZgOCY5VEphsVhITEwkIyODSCRCS0sLDQ0NlJWVoZTqK4mNj48/66/9bDqbyeTJmjWdDq11R7//X6uU+rVSKklr3XSyr5N/eSaot8qauP/JbYTCmsfumM+V01KH5Xnq23388rUy/rmlilBEc/mUVD52QR6L8xMH/Y/CwYYuNpa3sKm8hc1HWqjradDjsBiZkx3Hpy8tYF5uPOfkxBNrP/13wbLiHWTFO7jlnCy+ccM0Vmyt5q8bKnjgqR0kuSx87IJJ3LU4D6f1xH99TEYDV0xL5YppqdS1e/nn5uq+3crMODt3LM7lg/OziXdaTjvOgShIcbFkehp/fPsIH78gn1jH6Ht3UIiR1B0IcbChiyXT00Y6lNMyJzuOiI6W6i7sOUMpxGjVv8mO0WgctpvugZa1HstoNOL3+4c8Hq/XS319PbNmzTrjsR+nOyqj5pEfogihdYRIOLr7arRbCfUkkyoSwpFow9fux2y3ANHHONIS8Ld2YIwECIXC1D3+GzLv/cxxn6P3vs5gMJCUlNRXwhsIBGhqaqKqqopdu3bhcDj6kkuXyzWmGvecymBHg5yu4RgNopRKA45qrbVS6lzAADSf6uskmZxgtNb85o1D/OTFUgpSXPz2w/OGZR5hqyfAb944xJ/eOUJEaz64IJtPXJhPbuLAt+TbvUFe2XeUl/cdZdORFlo80QUvJcbKuZOi5xrn5cYzJS1mQGc8wxFNWUP07GQwpEGBQSkUYDIqZmfFkZf03vjiHBY+fmE+Hzt/Em8dbOLxt8r53xdKefzNcj51yWQ+vCj3lDur6bF2HriikE9fOplXSo7yx3eO8PDz+/n5ywe4eU4mdyzOZcYw7orcf1khz++p54l3yvnsFUXD9jxCjEW9FQ3D+XdwOM3JjgNgR1WbJJNiVDvR7MihNpiy1mMNx5nJmpoaSktLiY+PH7b5kafi2b0D787NaH8ADUSCPd1b1X8SUxUJo5QiJs1BSJuA6D2XgTDOxGg5rjk2htaXnyfjnvsH9fOzWCxkZGSQkZGB1hqPx0NjYyMlJSV4PB7i4uL6SmKt1rF9JGc0l7kqpZ4ELgGSlFLVwDcBM4DW+rfAcuBTSqkQ4AVu0wN490KSyQmk0xfkf/61kxf3HuX6Wen8aNmsk+6unY7uQIjfry/n928exhMIccs5mXzuiqIBnxds7w7y4r56nt9dx1sHmwiGNemxNi4tTmHhpATOnZRAbqJjQIuYxx/irYNNbK9sY0dVK7ur2/EETv6PRE6Cg4uKkri4KIULC5P6EsX+5yK3VrTy85cP8L01JTy2/jCfvrSA28/NOWUZrcloYMmMdJbMSGd/fQd/eqeCp7dX848tVczIdHPbghyWzs0c8lK1aRlurpqWyh/eKudjF0zCLbMnhegzVpvv9Ep0WclOsLOjqm2kQxHihPqXtR47O3KonE5Z67GG8sxkJBJh7969eL1e5s6dy8GDB4fkuoOltebo739OJBRGh8MY7XZC3mgpb8TXbxe250dicVowaUXQ0/P1kQhmlxkdiqAiIbTfR9OqJ0le9qH3Pc9Afq5KKVwuFy6Xi0mTJhGJRGhra+tr5hOJRPpGkCQkJAzJ9+BsOtM5kwPl8XgGXeaqtb79FJ9/lOjokEGRZHKCaOryc+fjmyg92snXrpvK3RdMGvLFvLS+k//+21YONXq4enoqX7iqmKLUgf1Br2zu5jdvHGTl1hoC4QiZcXY+cl4e185MZ0523IBj9YfCrCtt5NmdtbxachRfMILZqJia7mbZvCzmZMcxMzMWu8VI73stEa3xBsNsKm9h/YFGVm2r4a8bKomxmfjEhfl84sL894xJmZcbz18/vpANh5v52UsH+Oaze/nbxgp+uHQW83LjBxTnlDQ3P1w6kwevmcLqHTX8fWMlX3tmD798rYz/uaqYZXOzhnQ+5P2XFfLSvqM8u6OWDw/j2Vghxpo9tR0kuSykjbHmO/3NyY5ny5GWkQ5DiPcZyOzI071u//uC0y1rPdZQjQbx+Xxs2bKF1NRUZsyYQXd397A09hmI9hefIXi0HmW2ogx+LA4jGGIhGCDQGT0uZDAZUP1mhNhj7QQ90UTTZDVittsIdHYT8QdQRgNNK5/CvegCrJk5ZxyfwWAgISGBhIQEiouLCQaDNDc3U1dXx969e/F4PBw8eJDk5GTcbveoL4kNh8NnpeHQcJS5ni5JJieA2jYvH/6/jdS2e/nDRxZwcVHykD/HP7dU8Y3Ve3BZzfzt4ws5v2Bgra4PNXbxq9cPsnpHLUaD4tb5Wdw6P5vZWbEDXjDau4O8faiJ1/Y38OLeejp9IRKcFpbPy+K6mRmckxM3oCY/U9Lc3Lk4j0AowsbyZv66oYKfvXyAJzdV8qUlxdw0O/M9Cd6i/ET+cc8iXi1p4Bur97D8t+/w4YW5fGlJMTED3P2LtZu5c3EedyzKZfORVr6/toQvrtjF2t11/PJDc3EN0c7xjEw3SS4r2ypbJZkUop89Ne1Mzxj4ejMazcmO47mdtRzt8I25jrRiYhjKstbehK+3lPBMylqPNRRlrscb+9HbzfVs01rT/soaAIw2E640N8pgwGwOYzBZCcbYaK9uxdDvHslgMmJxWlAmIzoUxmw1YbJbCHRG51KaLAaCnV3U//w75Pz4930/16F6fWazmbS0NNLSoufYX3vtNcxmM2VlZXR2duJ2u0lOTiYlJQWbbfStd2P5zOTpkmRynDvc2MUdj2+iwxvkr3cvZH7e0JYMdAdCfP2ZvazcVs3i/EQeuX0OKTGn/std3drNw8/vZ83uOqwmAx85L49PXpQ/oBuhYDg6xmP9gUbWlzWys6qNiIYYm4mrpqVxw+x0zi9IOu35jhaTgQsLk7mwMJmNh5v53pqS/8/eeYdJUpX7/3OqqvPkPLMzm3POGVgUQRFBxQQIKqCioFev1585e69es6gXREUEBEQJAhIk7QKbZ/PMptk0YSfnzt1VdX5/VHfPzE4Om/vzPPPMTHVV9ema6erzPe/7fl+++Lc9PLCpkm+9e1aPayiE4IrZ+ayaks3P/32YBzYd5+X9DXzvujlcNQxDDyEEyydl8dRnVvPQlkq+/9x+PnTvZu7/+DIK0kd/sxRCsGh8Brur2kd9riRJLhRCUYOKRh9XzDo9BmRninjd5K6qdt459/w0EkpyYSKEQNPGdqoZbw+iKApHjhyhoaFhxGmtpzKaNNd4mm19fX2vth9CiLMSmez451+JtrfhyMuGoB9QkEIBDISqYPfYSS1MR5c2CFl5rarTgVAEznQXwRYfqkNDYCJUBWmYIBRSC1NQCdNy/6/Iue2LPV7nWKMoChMmTGDChAmWOO7ooKmpiR07dhCNRsnJySE3N5fs7Owx/18bCWcqzTUYDJ4zYvrsX/Ukp40DdZ3c/KetSAmPfmrlmBtMHG/286kHSznS5OPzb7d6VA7W8kJKyWPbq/nvfx3AlJJPXzqF2y+ZRM4APRB1w2TfyQ62HGtly7EWSk+04o8YKALmF2dw19umcem0HBaWZAzJiGc4rJiczT/vXMOTu07y05cO8oF7N3P94mK+dc0sMtxdTqweh8a33zOb6xYW8ZUn9vLph3bw3oVF/OC9c4ccpQSrNvNjqycyIdvNnX/dyXt/t5H7P76M2UX997kcKgtLMnh5fwPtgUiPsSdJcrFyoK4Tw5TnrflOnDlFadhUwe7qpJhMcuGjqirBYJCdO3eSkpLC6tWrx2zyPlIxGY1G2b17Nw6Ho8/xnI3IpBmN4t/8KnaHQHXaiAZBIpHx1ieqArqBM82JLuyE6mNi0u0EJI4UB8EWH5rHgRBgz0gl3NKBIzsDm1NFGgbhsm3obS1omdmn5fWdek4hBBkZGWRkZDBt2jR0XU+0IDl48CCapiVcYjMy+i+ROl09JuHMGfAA50yLlaSYvEDZU93OzX/aiseh8dBtK5iaN7ah8LKTHXzs/m1I4MFbl3PJtMFTZxs6Q3z5H3t543ATqyZn85MPzO/XmMcwJRuPNPPUrpO8vL8BX9hygJuen8L1S4pZOTmb1VOyhyyKKlv8PL+vnk1Hm9lZ2YYprQikQ1Owawpuu8qaqTnctGI8U/N61nkqiuADS4q5el4Bv33tCPe9cYwNhxv53rVzeff8nik1C0oyePZza7ln/VF+/WoFO6va+e2Ni5hfnDGkccZZNyOPv9+xmtv+sp0P3ruJ3960mMtn5A3rHKeyaLw1ht3V7awb5bmSJLkQKDt5fpvvxHHaVGYXprG7uu1sDyVJktOOruuUlpYyZ86cRCrkWDGSmkmv18vOnTuZMmUKxcXFfe5zNiKT3ucftdJXNRUMS0AqDheGbolGodmQupXS68ryEGpoBgmKTQOiaA4VR1Y6ChIQaJpCGLB7HKjCRA9FEC4nHU89QPatX0q8zrFkMNGnaRp5eXnk5VlzmlAolDDy6ejoICUlJZES2z1ybZrmaRNiZ0JMnk4xPBKSYvICxBfW+exfd5LmsvHYp1ZSnDn61I/ulNd2cNMft+Kxqzx0+wqmDKG1SHltB7c+sJ3OoM4PrpvDTSsm9GkwU90a4O87avhHaTW1HSHSnBrvnlfIpdNzWTE5a8AI5qlIKdl8tIX7Nx7n1YONSAkz8lN5/+JinDaFiG4S1k0iuklrIMJft1Tx4OZKbloxni9eMb1XD0i3XeP/vXMm18wv4qtP7uXOR3ZyqH4qX3zH9B5vapuq8Pm3T2P1lGz+47Hd3HDfFh68bcWQzXnizC5K4+k71/CJP2/nrr/u5M2vvI2sUfSlnFNkTZgPN3iTYjJJEmDfyQ6yPHaKxiCV/GyzsCSDf+yowTDloBkiSZKcj0gpOXLkCF6vl4ULF465kIThRyZPnjxJRUUFixcvJi2t/wyisYpMDkdAhPZtB8NaiJexOlDRPXurW22oYho4M1MItfpQMBLPlVqcDUEfsZOgOmzW4zEhJoQgeqQcw9952iKTwxF9TqeTkpISSkpKkFLi9Xppampiz549hMNhMjMzycvLIz09/bSJyTNVM3kuCcpzVkwKId4J/BpQgT9KKX98yuPrgH8Cx2ObnpRSfv9MjvFc5X9fOEhtR5B/3LF6zIXkoXovN/9pGx67yt8+vWpILT+2HGvhtge2k+ay8dSdq5lZ0PuG6w1F+elLh3hoSyUAa6fm8PV3z+Ids/NxaMN7UwYjBk/vPskDG09wqMFLlsfO5y6fyo0rJgxYf9jqj/DrVw7z8NYq/rm7li9cMY2bV07olTo7uyiNJz6zmm8+Vcbdrx2hpj3Ij98/v1drkKUTs3jqs6v58H1b+Pj923j49hUsiNU2DZX8NCe//shCrvrVGzyw6QT/+Y6R94mMm/kEBmmPkiTJxcK+k53MKTr33QGHwsLxGfxlcyUVjd4+77FJkpzPRCIRdu7cSWpqKoWFhafNLXOoBjymabJ//378fj9r1qwZdDxnOjIZPLgHEQkiw5YjqxnR4wOxvisike4qVBWBxJmVSqjVZwlOwxqrzakSDXa9BndO7H5pWr26jXAEgSTw8hMwbfkZj0wOhBCCtLQ00tLSmDJlCoZh0NbWRmNjI4cOHSIQCHDw4EFyc3PJzMwcM3F5JmomDcM4pz63zkkxKYRQgd8B7wBqgO1CiGeklPtP2fVNKeU1Z3yA5zBbj7Xw0JZKPrFm4rAjYYNxpNHHTX/cgqYIHvnkyiEJye0nWrn1ge2My3Dx0G0r+hRzL5XX851/ltPgDXHLygl88tLJIxLBJ9uDPLS5kse2V9EeiDKrMI2fXD+faxcWDcnNNctj53vXzeWmlRP4wXP7+d6z+3l+Xx2//sgiijJcPfa1qQo/vn4eRRkufvnKYdoDUf7vpsW9nicvzckjn1zBh36/mZv/tJVHPjn82tVp+amsmpLNc3tr+eIV00Z8A1EVgU0VhPWzY0+eJMm5RChqUNHg5fIZk8/2UMaEhSXW/X5XVXtSTCa5oIi7tc6aNYuCggLKy8tH7bjaH0OJTIZCIXbs2EFeXh5z5swZcm/FM1kzGX7rBQQSaZhIAWZUR/W4ETHRqzrsicikEuttrWkKrnF5oEcSolPVFAy7HTMSAcDmcVhCMnYOIxRB2DVC+3fD5CVj/jrGMvqmqio5OTnk5OQwadIkdu/eTWpqKtXV1ezduxe3251IifV4PCN+3jOR5hoIBMbEcGqsOCfFJLAcOCKlPAYghHgMuA44VUwm6UYoavDVJ/dRkuXiy1fNGNNzH2/2c+MftgCWkJyY4xn0mF1VbXziz9spSHPy10+u6OXyWt8R4jvPlPFSeQMzC1K59+YlCVfCwZBScqIlwI7KNnZUtrKjso3DDT4UAVfNKeDjqyeyfFLWiG4G0/NTefDW5fxzdy3feGofV9/9Jj/7wAKumN3T8VEIwX9cMY3sFDvffLqMTz5Yyn03L+3RkxKgMN3FI7ev5CP3beGmP27l4dtWDLtG651zC/nW02VUNPqG3LuzL5yaSiiajEwmSXKo3otuSuad5+Y7cSZmu8lw29hd1c4Ny0ff+y1JkrNNPK31VLdWTdNOm5iMO8X2R0tLC3v37mXu3Lnk5g69zdqZjCKZQR967YlEL22b24kjI91yZAVstmwiUsVstXrTKt0cUN0ZTqLt0cTvik1FS08j0tQMgD0zk0iLdZzqdGCEIigpaZhBPyn7N0Ph+8f2tZjmabl28b6n48aNY9y4cUgp8fv9NDU1UV5eTiAQICMjg7y8PHJycnA4hl5idSbSXH0+Hx7P4PPwM8W5KibHAdXdfq8BVvSx3yohxB6gFvgvKWX5qTsIIT4FfApg/PgL+wP2ly8f5nizn0duX4HbPnZ/2qNNPm78wxZ0U/LoJ1cOycyn7GQHt9y/jewUO498cmUvIfnqgQa+8NhuIobJV981k9vWTuq3lYdpSqpaA+yv66S8toOyk52UneygxW+tlKU6NRaPz+TaBUW8d9G4MUntFULw3kXjWFCSwZ1/3cntD5Zy29pJfPVdM3uN86MrJ+DQFL7yxF4+9udtPPCJZb2uf0mWm8c+ZQnKG/+4hb/evmJYpjxXzc7n2/8s44V99aMSkw6bkoxMJkmCVS8JnPdOrnGEECwozmB3dfvZHkqSJKMmHA6za9cuUlNTe7mjDib4RkN/EUQpJceOHaOurq5X248zhZSSqqoqAoEABQUFZGVl9ZlOGXrredCjCJsNR2EBiowiozpoNohE0Rw27B4PPp8XMxLtUUepOR2YrghG0EqPFaqCpmlEAKGpCAwUpwMzFLaOtWk4M9woSJTm6nMqzXUgTjXgEUKQkpJCSkoKkyZNwjRN2tvbaWxs5Pjx45immWhBkpWVNaBYPBORSZ/Pd870mIRzV0z29Z9z6rt7JzBBSukTQlwNPA1M63WQlPcB9wEsXbr0zHeMPUO8VdHMfW8e44bl41k9NWfMzruvpoOP/3kbQsCjn1zJjILBhUyjN8TtfyklzWnjkU+u7JXauuFwE3c8vINZhWn85oZFTMjuvbpimJJNR7vcXL0hK99fUwRT81K4fGYei8dnsmRCJtPyUvo08xkLJuV4ePKzq/nR8wf401vH2VvTzr0fXUL2KUZAH1xagl1T+OLfdvOVJ/Zx90cW9roBlmS5+dunLUF56wPb+eddaxmXMbQPpLw0JwtLMlh/uJH/uKLXv/mQcds1/DFn3CRJLmbKTnaQ7rJRnHnmJ4Wni4UlGdxdUYEvrCdqpJMkOd+IR//iaa2ncrrF5Knous7u3bux2WysWrXqjLV96I5hGOzduxcpJfn5+dTW1lJWVobL5Uq4mcYjVdFjB0AI7BlpEA5iCjsyqiMUJTGRVhSBKz8bf3U9QlO7pbzasKWnYQSbEKqCEAKBgVBVNLcLIQSq044ZCoNp4irIRpEmaCo2xcQ4ug9yLh+z1z1cA56hMpibq6IoZGVlkZVl9RWPRqM0NzdTV1dHeXk5DocjkRKbmpra4//mTNRMer3eZGRyCNQAJd1+L8aKPiaQUnZ2+/l5IcT/CSFypJTNZ2iM5wyN3hBf+Ntupuam8K1rZo3ZeTcdbeZTD+4g3WXjoduWM3kIrq0R3eTOv+6kPRjhyc+s6SWWdlS2csdDO5ial8pDt60g3dWzaL3sZAdP7zrJM3tqafSGSXVqXDWngKUTMplTlM60/JQh1T+OJU6byveum8uSiVn8v3/s4Zb7t/Hop1aSdkr/yOsWjuNke5CfvHiIBcXp3H5J71qs4kw3D3xiGe/73SZu/0sp/7hjFZ4hTvqWT8ri/reOE4oaI74GWR47Lb7IiI5NkuRCoqy2g3nj0s8pE4PRsnB8BlLC3pp2Vk8Zu0XFJEnOBP2ltZ6KqqpEo9E+Hxtr4m0/Jk+eTElJyeAHnAaCwSClpaUUFxdTXFyMEIJx48YBVoSqsbGRffv2EQqFKIm0keltx5aXA7FrJGPxGYFIiElpmmh2DXtWOkLpEpPC4cBm0wgBSkqXSLJlZsQNXFHikUxVxeZxIcMR6+ymie3YblgxtmLyTEQmB8Nms1FYWEhhodUOLhAI0NTUxOHDh+ns7CQ9PZ28vDxyc3NPa9uROH6/PxmZHALbgWlCiEnASeAjwI3ddxBCFAANUkophFgOKEDLGR/pWUZKydefLMMXjvLIJ8cuvfXFsno+/+guJua4efDWvo1z+hrL157cx/YTbfz6IwuZXdTTBGJ/bScf//N2CtKdPHjr8h5C0huK8t1n9vPEzhpsquDyGXm8b9E4Lp+Zd8bFY39cu6CINKfGJx8s5fYHSnnwtuW9xvaZy6awp7qdH71wkLnj0lk5ObvXeabmpfKbGxdx6wPb+eLfdnPvR5cMKbK6ZHwmvzeOUXayg6UTs0b0GnJSHNS0BUZ0bJIkFwph3eBQvZfb1l4Y5jtxFsZS53dXJ8VkkvOLgdJaT0VVVUKh0GkfU21tLYcPH2bRokWkp5+ddPi4+dC8efPIyclB13tmFsVTMydPnoxhGPge+wXSYUNRwIxGkFIiw5Ydq5SxEhdNg5jJkD0rnWh7ZyIdUCgKipDYcnJiZj3WflqK2zLmie+nqaipaQhiaYOmiTDCiEAnpq73qMMcDeeKmDwVt9vNhAkTmDBhAlJKOjo6aGxsZMeOHfh8PsrLy8nNzSU7OxttjK5Fd861msnTK51HiJRSB+4CXgIOAI9LKcuFEHcIIe6I7fYBoCxWM3k38BF5Jq2yzhFeLKvnlQMNfOkdM0ZVS9edJ3fW8Nm/7mDOuDQe//SqIQlJgB+/eJAndtbwxSumc93CcT0eO97s55b7t5Li0Hj49hXkpnaliZaeaOXqu9/kqV013HX5VLZ/4wruu2Up75pXeM4IyTjrZuTxiw8tZHtlK3f+dSdRo2f9oRCCn31wAROy3dz1yE7qOoL9nueb757Nv/c38MtXDg/puRfH3HlLK0femDwnxZ6oNU2S5GLlQJ2XqCFZMEwjrHOdTI+didludle1n+2hJEkyZFpaWti0aRMTJ05kzpw5g07yT2eaK1gCpry8nOrqatasWXPWhGRlZSVlZWWsWLGCnJwhLA6FfCghP6qmgBKbO6m2hHCUeiyVtZuZjOawY+9mJCSktY8tzY3Sbf6lSD1RWymEQE3PQEuJiZm4OFUU0CMYB7eN+DWfyuk04Bmr6KEQgoyMDKZPn86aNWvweDzk5ubS1NTExo0b2bhxI4cPH6atrW3MHH2TNZNDREr5PPD8Kdvu7fbzb4HfnulxnUt0hqJ855ly5hSl8Yk1E8fknE/vOsmX/r6H1VOy+cMtS4cc6fzjm8f4/YZj3LxyAp9/+9Qej9V3hPjoH7diSnjothWJ1FfDlNz9agW/ea2CcZku/n7HKgIb6E8AAQAASURBVJZMGFnErTtSSvwRg1ZfhNZAhDZ/hNb4VyBCQ2cIm6Lgsqs4bAoOVcFpV5lVkMai8RlkuO0Dnv89C4roCEb55tNl/L9/7OXnH1zQI7KY6rRx381LuO63G/nMwzt5/NOrevWgBPjEmokcrO/kN68dYd64dK6cM3AD5pwUB5NyPJSeaIPLRnZtclIctPojmKY8bXWmSZKc6+yJmdQMt+/r+cDCkgw2HW05pxpaJ0nSF0NNaz2V0ykmQ6EQfr8fm83G8uVj3zdxKJimSVlZGdFolNWrVw85shXdtQHF6UBGw8iYmBQOB/j9MaFnRTWF3QahWFqrzYamKkTB2kdKEAJNBd0UELvMQlVQHXZkyDLmUW0KqmKJVMXtxuzsBCGQEvTjZdjmrh6Ta3E6I5On628rhCA/P5/8fKsDQCgUoqmpiWPHjtHR0UFqamoiJXak7T2SYjLJmPHLlw/T5Avzp48tQ+vHCXU4lJ3s4P89sZcVk7L44y3LerW46I/n99Xxw38d4F1zC/jutT17LkUNkzsf2UlbIMLjn16VcIL1hXU+98hOXj/UxPsXj+N7184h1dm76a+UkurWIPWdIZq8YZq8IZp9EVr8Yfxhg0DEIBjVCUasn9sCEdr8USJG346lNlWQk+LAlJJA2CBsmEROcTedlpfCkgmWuc+75xf2Kag/unIC7YEIP/v3YdJdNr7zntk9XvfUvFR+9sEFfOavO/nZvw/x9at717IKIfj+dXPZX9fJ15/ax/JJWYMK2eUTs3i+rI6oYfbrfjsQ47PdGKbkQH0nc4ourKhMkiRDZU9NO7mpDgqHmHVxPrGwJIOnd9dS1xHq1R83SZJzheGktZ7K6RKT8ZRSh8PB9OnTx/z8QyEcDlNaWkp+fj5TpkwZluAxG04kah/jwlEaBmgaakYGRnsHRMKWY238IFVFVUBJS0PqeuL5hBCoHiey08pkEk4XSloaRqje+l3TrEilaYIRey5VQ4TDGM31mKaBoow+s+xcTXMdDk6nk5KSEkpKSpBS4vV6aWpqYs+ePYTDYbKyssjNzSUnJwebrfc8uC/8fv85leaaFJPnKYfqvTy4uZIblo8fds/CvvCGotz1yE4y3TZ+d+PiIQvJHZWtfOFvu1kyIZNffngh6inRrp+8eJAdlW3cfcOihAW/aUq+8Nhu3qho5ofvnctHV07o8/U9t7eW5/bWcbzZ3+MxVRFkuu2kOFRcdg23XcXj0MhJcbCgOINMj50sj41Mt51Mt52sFDvZHjuZHjupDq3XjUlKSSBisLemg51VbZSeaOWFsnoe217Nr16p4HvXzunVYxLgzsun0uqPcv/G44zPcnPr2kk9Hn/XvEI+unI8971xjLVTc7h0eu+eVE6byv9eP59rf7uRH79wkB9fP3/A6335zDz+VlrN9hOtI6qJetvMPBQBL5U3JMVkkouWPdXtLCjOuCAjd4vGd6XDX5sUk0nOQQZzax2MsRaTUkqOHz/OyZMnWbFiBdu3bz+jYiNOe3s7u3btYs6cOeTl5Q3rWL29CYI+ZFxEmibYHWgZadjSPAh3KtKhoQfDlsCMIVQFpIk9O5NIZ8+5lpbqIdpptVASLjeKkBhCgJSobjfCYUd6O0DXEU4XmAakZ0AkhHG8HGXKwPOZoXC23FxPF0II0tLSSEtLY8qUKRiGQWtrK01NTVRUVCCESLjEZmRk9DtGn89HcXHxGR59/yTF5HmIlJLvPlNOikPjy1fOGJPzff2pMqpaAzz6yZW92l70x7EmH598cAdF6U7+cMvSXvWNL5XX84c3j3PLqglcu6Aosf1Xr1bwyoEGvvOe2T2EpC+sc/9bx3l2Ty0VjT4UAaumZHPr2klMyvaQk2onN8VBpts+pimaQgg8Do1VU7JZNcUyzDFNydbjrXznmTJuf7CUK2fn891r5/RY6RdC8M13z6KqNcCPXjjAsolZvYT9N989m23HW/nPx/fw4hcuIaePazunKJ3b107i928c472LxvVp2hPnkmk52FWFVw80jkhM5qQ4WDohi3+X1/Of7zg7K69JkpxNOkNRjjb5ed+icYPvfB4ypyiNdJeNNw839bjvJklytume1jqaXo2apo2ZmNR1nT179qBpGqtXr0ZVVRRFOW1io79IW01NDUePHmXZsmUjSl/UD2xFKAJM03oOpxOb24XUoyAFUpoIwOZyYKgOjFAd0NWHT1UkmscF0Zixkc2GoipIuwMRCcd6TEpESgrS60U4nAhbV6sR4XSiuRzg8oCZhn68HNsYiMnzoWby1PMOZ7yqqpKbm0turG41EonQ1NREVVUVe/bswe12J8Slx+NJnDtpwJNk1Dy/r57Nx1r4ryunk+kZOC1yKDy6rZpn99TypStnsGIAIdOdigYvH75vCwL48yeWk3XKOKpaAvzX3/ewoDidb7y7K8XzhX113P1qBR9cUszHV09MbD/R7Od9v9vIL185TKbbzg+um8PWr1/BX29fyc0rJ7B2Wg4zC9LITnGckVo/RRGsmpLNvz5/CV9910zeqGjiil9s4A9vHEPvlkKrKIKffmA+OSkO7np0J95QT7typ03l7hsW0RmK8l9/34Np9l18/R9XTKMky8XXn9pHWO//QzIuel850DDiQu4r5+RzsN7LiVMivkmSXAzsq7FW2ufHnE8vNDRVYe20HDYcbhozs4ckSUZLOBxm69atRCIRVq9ePWIhCWMXmfT5fGzcuJHc3FwWLFiQ6B+pqiqm2XepzGgQQvR6T8bNfmpra1m9evWgQrI/oSIbqyxhp0cROQVoLidS0pX2GktFRbOhqAKcLhDCiibGzqumdokTYbMjhEDLsSKkIjbvUpyu2P4SYRigarH9NYSigBEz6gn7xuz+cz6JScMwRtWH1G63M27cOBYuXMi6deuYM2cOAOXl5axfv57du3fz6quv0t7eTmrq8Ew3b731VoQQjUKIsr4eFxZ3CyGOCCH2CiEWD/XcSTF5nhGKGvz3v/YzuzCNG1f0Tg8dLocbvHz32XIumZbDZy6bMqRjjjR2Ccm/fXolk3J6ro5EdJPPPrIDRQh+e+NiHJr1xqpo8PKlv+9h0fgMfvi+uYkbxLbjrVz727do8oV5+LYVPH7HKm5eNbGH4+vZwqYq3HHZFF7+4mWsmpzNfz9/gC+dIgozPXbuvmER1a0Bvvl07/fozII0vvnuWaw/1MT9G4/3+Txuu8YP3zuPY01+7ll/dMAxXTE7n8qWAEebfCN6TVfFjH5eKq8f0fFJkpzP7I6Z78y/wJxcu3PZ9FwavWEO1HnP9lCSJMEwDDZv3jxkt9bBGAsxWVdXR2lpKQsXLmT8+PE9HlMU5bTUZMYjnnEikQhbtmxB0zSWLVs25Hq5U9Hrj0PIj1Q0RHYeqsNmza+02PmkhEjMxd2VgiJAzcoCh7OHUFPdKZbAJGbcg2W0AyBibUUUNVY/GTvMTE2P7e/E1GwIPWqlvSoKRn3f853hcD5GJkcjJrsjhEi0fVmxYgWXXXYZ48ePZ/Pmzbz00kt88Ytf5Otf/zqHDw+tI8DHP/5xgHcOsMu7gGmxr08B9wx1rEkxeZ7x2sFGajtCfOVdM3vVJ46E3284hk0R/PLDC4cU8QtEdD7z8E4UAX/79Cqm5vVeGXlw8wnKTnbyv9fPpyTLcqoyTasHpUNTuPejSxICc19NB7c+sJ3cVAfP3LmWNVPPzd5oJVlu/vixpXz5qhn8c3ctP/jX/h6rbssmZvGFK6bzz921PL3rZK/jb145gStm5fHTlw71qgGNc9n0XN45p4A/vXUcf1jvcx+AK2ZZK4Uv728c8WtZUJzO46XV/UZKkyS5UNlb086kHM+gZlfnM+ti9dkbDjed5ZEkSWKJv7Vr146oPrK/841U7JmmSXl5OZWVlaxevbrPth+nir6xQlGUxLyhs7Mz0Q5lxowZoxJM+rE9VkQwLR3VbiORexoTS1KzIWIRSGmz7nuakIjMLvd8CQhhItIzrA0Oa+6mYKLkFSbEowDU3K6/o2qzYXpSUVQFXbGilKZmQ0oDvXbghfGhcL7VTBqGcdpqMRVFISsri29+85ssXbqU3//+96xYsYJwODyk4y+99FKA1gF2uQ54UFpsATKEEIVDOXeyZvI849k9teSkOFg7BqKrIxDlub21XL+kuM9avr741tPlHGny8fBtK3pFJAGavGF+/UoF62bk8s65XTecf+ysobSyjZ9cP5/8NMtB8WiTj4/9eRvpLhsP376CwvShpb1EDZPDDV4aEg6v1leLP0LUMDFMiW5KjNiXqgg0RaAqCjZVoKkKaU6NDLdl0pPhtgx6FpZkDJg2LITgs+um0OwL8+eNJ8hJcXDn5V1tUO68fCpvVjTxrafLWDIhMyGk48f+9/vmccUvNvDVJ/by6CdX9ineP33ZZF4sr+cfO2r4WLc04O4UpruYNy6df++v5zPrhhZNPpWPr5nIF/+2hw0VTVw+Y3iF/hc7Qoh3Ar8GVOCPUsof97HPOuBXgA1ollKOsJlLkrFmT3UHKyePvgXRuUxempNZhWlsONw44ntEkiRjyVg2bh+p2AuHw+zYsYPs7GxWrFjRr4A73WmudXV1HDp0iMWLF5OWljaqc5qGjuxsA08aQrNDtKuPtCRWE6nZIGIJDtM0E1EkNS0DmmKL23YHCiDdboz2NlAExC6BlpkB3q7+1qbbjeqzzqdEQpCeCWYULfac0jQQhiDY2kDV4cPk5eWRnp4+IsF8ulL1T5dIHW2a61Dx+/0UFRWxZs2asTztOKC62+81sW11gx2YFJPnEd5QlFcPNnLj8vFjEpV8clcNYd3kxuXjB98ZeLy0mid21vAfb5/WZwTRMvLZR1g3+dY1sxPb2wMRfvzCQZZMyOQDSyz3qUZviFv+tA0BPHTb8gGFZNQw2VvTwZZjLWw51sKOyjYCkZ6rkmlOjewUBw5NSYhHRRGoQmBIS1RGDYlhWq1AOkM67YEI3QNzQsC8celcOi2XS6blsHhCZq/2G0IIvvXu2bT6I/z0pUPkpNj58DLr+qmK4BcfWsjVv36T/3x8N499alWPv1N+mpNvXD2Lrz65j8e2V3Pjit7XfdH4TOaNS+ex7dX9ikmAK2fn84tXDtPYGSIvbfjtDd49r4gfv3CQP715PCkmh4EQQgV+B7wD60a7XQjxjJRyf7d9MoD/A94ppawSQiQv8DlCfUeI+s7QBVsv2Z3LpufyxzeP4QvrpDiSH/VJLm7ibT+G4pR6uiKTAIcPH8bn87FmzZoRp7V2xzixzzLX8aR0pbLGBVj8Ndi6FskVo5uvg82GmZaF0tkKdmseoSiCqCcNtft+dgdSVa0aSUDThBXt1K19hNsDvnYUU8dwpqCGA0hp4nRJUoly9OhROjs7SUtLIy8vj7y8PByOoQUwTqfoO9/F5GnoM9mXsBiSmk9+wpxHvLy/gYhu8p4xcOiTUvLI1ioWlGQkWnYMxOEGL9/+ZxmrJmfz+bdP63Ofx7ZX8/L+Br5x9Sym5Hb9k//0pUN0BKP84Lq5iWjc95/dT7MvzBOfWc3k3L7fEG3+CPe+cZSHN1fij4nHGfmpfGBJMcsmZlGc6SI31UFOiqOXk+xQME2JN2yJyobOMFuOtfDG4Sbu2XCU375+hBSHxmfWTeHTl07u0cfTMt1ZQFsgytee3Eem286VsTrEkiw333/vHL74tz3cs/4Id72t57X68LIS/rm7lh89f4C3zcyjoI8+dx9cWsy3/1lOeW1Hv+07rpxTwM9fPszLBxq4aQS1s3ZN4WOrJ/KTFw9xsL6TmQWjWx29iFgOHJFSHgMQQjyGlRqyv9s+NwJPSimrAKSUI8tHTjLm7KlpB2BBScZZHceZ4LLpudy74SibjjQn7k9JklxsSCk5ceIE1dXVrFixYkhN4k9HzWQ0GqWzsxOPxzNgVHS46HVHwW5HSNNyboVEFBJDx3SlgDMF/F4wDEQklDhWMXUMlwc6W2P1lZbTrJKZhQj7EvWTCJDpuYjWekybA1WaGJ401I4WpN2JkEbPKGjItIx5TINM00/hkuVIKeno6KCxsTHReiXuUpqZmdmvsDtdNZOnM332PBaTNUBJt9+LgdqhHJismTyPeG5vHeMyXCwenzHqc+2obKOi0cdNQ4hKmqbkS4/vwWPX+PUNvXtJAlS3Bvj+s/tZMzWb27r1WzxQ18kj26q4eeUEZhdZgmXT0Wae21vHZ9dN7VPIRnSTe9Yf5dKfvM59bxzjbbPyueemxez45hW89MVL+f51c3nPgiIWjc+kONM9IiEJlihMd9mYkO1h+aQsPv/2afzjM6vZ9e13cO9Hl7B6SjY/fekQ779nE3UdwR7H2jWFez+6mPnFGdz16K6EqQfAexeO45r5hfzqlQoO1HX2OE4IwY/eP4+IYfK9Z8v7HNe1C4qwqwr/2FHT79in56cwOcfDM7uH9D7vkxuXj8dlU/nzWydGfI6LkP7SQLozHcgUQqwXQuwQQtzS14mEEJ8SQpQKIUqbmpK1bWeCvTXtaIpgTtGFv3iyZEImHrvK+mTdZJKLFF3X2blzJx0dHaxZs2ZIQhLGPjLp8/nYtGkTLpeLqVOnjlocxVM/jUgQGQkjBEiEJSiFgjB0TJsdMnNQ09MRdhWRk4uRNy4RejJVG8LUUWUU6XAhugkgxWFHal3RTCEEigpSKEin1Z5CFRKJQDpdCNNEpmRYx0aC6Bm5mFn5SCmRvrbEOTIyMpg+fTpr165l1apVZGRkUFNTw4YNG9i2bRsnTpwgEAj0eq3nkwHPmYpMhsNh7PYxr/t/Brgl5uq6EuiQUg6a4gpJMXlecbjBy/JJWWPyxtp4pAUh4F3zBl+x3nyshX0nO/jKu2aSl9p3SuWf3jqObpr85AMLetQC3rvhKB67xhevsHoaSin5yYuHKEp38unLJvc6z5sVTbzz12/wvy8eZMXkbF78j0v5zQ2LeNe8wiH3vxwtaU4b75xbwH23LOX/blrM8SY/7/3dRsprO3rs57Zr/Pnjy8jx2Pny3/cQ0a0PHyEEP3zvXFKcGj9+4WCv80/M8XDr2km8VF5Ps6934XSG286ySZnsqGzr9VgcIQRXzilgZ1XbgK1EBiLDbefymblsPtYyouMvUoaSBqIBS4B3A1cB3xJC9GrqKaW8T0q5VEq5NN5jKsnpZU91BzMLU0e8AHU+YdcU1kzNYcOhZIuQJBcfcQGXk5PDwoULhzXBH0sx2dDQQGlpKQsWLMDj8YypSDWqDyGdboSUls0qYGoOoqlZkDsOVVjve0WPoACK24Oebn3WmE63JRKFQGRkQ/frY3dipltt4izzHh1FmhhpWRATMAKJTElH2GLzsliLENOdCi4PQo8g3SkYgY4+o7w2m43CwkIWLFjAunXrmDVrFoZhsGfPHtavX09ZWRmNjY0YhnHeicnTZcDTHSHEsJ/nhhtuANgMzBBC1AghbhNC3CGEuCO2y/PAMeAI8Afgs0M9d1JMnke0+SNkjpED4b6T7UzJTSHVOXjO/sNbKsl02/ptgN0RiPJ4aTXXLhjHuIyu2sf6jhD/2lvHh5aWkO62nmf9oSZ2V7dz19um9ZrQPbylkpv/tA3TlPz5E8v448eWMqNg6H10vKEovrBO1DDHbPJ09bxC/v6ZVShC8KF7N/dyR8z02PnBe+dS0ejjvje6nMsy3HbuXDeVDYeb2Hy0t1i7bmERpoQXy/puzzEjP43DDd4B3VYXlqQTNeSo7P9nFqRR1RoY0D32QkUI8YQQ4t1CiOHcB4eSBlIDvCil9Espm4E3gAWjG22S0WKakj017RdFvWScy2bkcrI9yNGmZE/ZJBcWQoh+hVm87cf8+fOZMGH4ZSBj0XpESklFRQVHjhxJROH66jM5GvTW2sRSpims+ZTuSUPzeDBVa85lqnZLbAIIgeZQ0R0eTK1rcV4gQXa7loqKpoK0OdAdKQkxp9psKN3WTg2nG2FaqbVKJEjU4QGbAyGlFSVVNBAaRuvAGVRCCFJTU5kyZQqrVq3ikksuIS8vj8bGRg4ePEh1dTVHjx7F6/WO2fU7H1qD9IeUckTX4dFHH0VKWSiltEkpi6WUf5JS3iulvDd2XimlvFNKOUVKOU9KWTrUcydrJs8TwrqBP2KQ5Rl9wbaUkj01HVwyBEfYhs4Q/97fwG1rJ/W7mv/o9ioCEaNHeivAXzafwJSST6yZmHjeX7x8mJIsFx9cWtxj301HmvnOM+VcPiOXez66ZMDIgZSSikYf5bUdHKjzcqCukwN13h5RPiHAriq47CrFmS4m5aQwKcfD5BwPU3JTmFmY2stcpz9mFqTx1GfX8IkHtnPrA9u556bFPWqQ3j4rn3fPK+Tu145w9bzCRA3ozasmcP/G4/zkpYM8+ZnVPVbXZuSnMiXXw3N7a/noyt4fdtPzUwhFTarbAkzI7u2aC11N1/fWtLNwhDVgcbF+uMHLovGZIzrHecw9wCeAu4UQfwcekFL2DiX3ZDswTQgxCTgJfASrRrI7/wR+K4TQADuwAvjlmI48ybA53uLHG9JZeBGJyUundbUImZo35vU1SZKcNTRN6xUFklJy8OBBOjo6WL169YjTAEcbmdR1nd27d2O321m1alVijGMZ8TT1CKYeTYg5pEk0qxA0O4R1dGlN8GU3YSOkRCCQ6dmW62tMLxt2F6bNjtreYO0HCAShtDxUIwIyEhs/GO5M8FoL5NLhwhButEC7NSZPBhpRMHVMzQ6mjnR4iDZWYc/tvgY7MKqqJox60tPT8fl8qKrKgQMH8Pv9ZGVlkZeXR05OzohNjM73NFfgtERsR0pSTJ4ntAesG8ZY9EZr6LRaaQylafdj26oxTNmv42tEN3lg4wnWTM1O1ESC1Y/yka1VXDWnINEi4+X9Dew72cFPPjC/h5CrbPHz2Ud2MjnHw903LOpXSOqGyQtl9fzxzWPsqbFSTu2qwrT8FNbNyGVqntWMN6Jbjq1h3SQQMahqDbCnup1/7a1NuLemOjRWTcnmkum5XDotp1/BFqcg3cnf71jFTX/Ywpce38Mzn0vt0RrlO++ZzRsVTXzjqTIe+aRVXO+0qXzhiml85Yl9vLy/oYcAFUJwzfwi7n6tok9H1ukJkefrd2yF6U5yUhzsrm7nllUDDr9fZsae51D9xScmpZSvAK8IIdKBG4CXhRDVWOkdD0spo30cowsh7gJewmoNcr+UsjyeJhJb5TsghHgR2Itlrv5HKWXZGXpZSfph70VkvhOnJMvNlFwPGw439VrsS5LkfCYePYyLiXA4zM6dO8nMzBy1wc1oWoMEAgFKS0uZMGFCr6ho9z6ToyVSe8xaNVdsSEIYrjQUYaLEIqrxvpJC6ZrmK4aVgWQnSsjhhoDlBaHb3Ng0iRQKSBMlpjIdio4hutqNGK50QGIqGoqpg6IiNS1hviNtdgwDVDOKVO0oYR+GzYURGVofxL4wTROHw8HEiROZOHEipmnS1tZGQ0MDFRUVqKqaMPIZTvuR8znNVdf1M5JKOxySYvI8oS1gvZnHIs017mg4b5AVetOUPLa9ikum5TCxj56SAC+U1VHfGeJH75/XY/sTO0/SEYxy+yXWBMYwrajkxGw371/U5VfSHohw21+sSPofP7a0z7TbiG7y9x3V3LP+KDVtQSblePjetXNYNSWbSTmeIUcYw7pBVUuAQw1eNh6xnFv/vd9aiZual8KvPrxwQGfbFIfG725azDW/eYu7HtnJM3etTZgR5aU5+eq7ZvKNp8p4dm9dIiX4+sXF/P6NY/zi5cO9HBXfs6CQX79awUvl9dy8amKPx6bnd0UM3zE7v8/xCCFYUJzOvpqOPh8fCiWZbtx2lYP1I0+VPZ8RQmQDHwVuBnYBfwXWAh8D1vV1jJTyeazagu7b7j3l958CPx37EScZKXuqO3Db1YsuQnfZ9Dz+urWSUNS4KGpFk1wcdE9FbWtrY/fu3cyePZv8/L4/L4fDSCOIzc3N7Nu3jwULFpCV1buX7UCpucMl6m21hJOhE03LQ5g6yK7WH6oe7yspUQHd5kST1vUyFQ3FriEDMRGo2VAIE0nLQQ36EsJAAaKeVGj3AaArNhxGgFBqLk5vEzYziohGiboz0IJebBhEnSmogTaUSBCEAqaBiSTi92L3DL1sKc6pBjyKopCdnU12tlXTGQ6HaWxs7NF+JD8/n9zc3AHbj5xOMTkWLV8GIhAI4PEMHAA50yTF5HnGGLSXZGdVGzZ1cEfDstoO6jpCfPmqGf3u86+9dRSmO7lsepeBiJSSv26pZO64NBbHol2Pl1ZzsN7Lb25YlGizEYoa3P6XUqpaAvzl1uV9RuDerGjiq0/s42R7kIUlGXz7mtlcMSu/h8nPUHFoKtPyU5mWn8o184ssy/CWAG8cbuK+N45x4x+28NBtKwaMXBRnuvn+dXP5/KO7eG5vLdct7BLGNywbz31vHOPvpdUJMampCh9eWsKPXjho1bx6uhYDpualoimC+s5Qr+dJcWioiiAQGbiWsSTLzfYTrcO8El0oimBitoeq1sDgO19gCCGeBGYCDwHv6eZa9jchxJBrBZKcH+yubmfuuPQx6dF7PnHZjFzu33iczcdakj1lk1wwqKqKruucOHGCqqoqli9fPmYT7OG2BpFScvz4cWpra1m1ahVOZ99GhWMVmTSMKHo0giYlhtODqdmxhSNIBKqpIyWoujWvEDFRadhcaFHrcz5qc2MTJmFPLk5/EwqWwFVsGqZMASxBaqh2bEaYUGo+Tm8DimkFNRy6n3BqHg7DOp+i2dBdqWgCNCOMqagopkE4NQ9hRMAwiLTWjYmYPBWHw0FJSQklJSWJ9iMNDQ2cOHFiwPYj53PNpNfrPefE5LkVJ03SL67YinIgMvreRzsr25hTlD7oKvXrB5sQgh5CsTvBiMEbFU1cObunuNtZ1c7Bei83Lp+AEILOUJSfvXSIZRMzuWZ+IWClrN71yC52VLXxq48sZNWU7B7nNkzJL18+zC33b8NtV3nw1uU89dnVXDmnYERCsi+EEEzK8fCx1RP526dXku628dE/bWVXVf8uqgDXzCtkRn4qd79agdHNIEdRBO+ZX8TGI8096jfjvSLLazt7ncumKkSN3h8uUkoMU6IOcrNLc2p4w/qARj2DMS7Txcm24OA7Xnj8UUo5W0r5o7iQFEI4AKSUS8/u0JKMJRHdZH9t54hri89nVkzKwmlT2HAo2SIkyYWDEIIDBw7Q1tbGmjVrxnRyPZzIpGEY7N69m46OjgGFJIxNZFIIQai5weoRaXcjNQcGMfMdYUXEdNVatA568tA9WURc6aB2RelkzHlV2GyYioYtVhOpIgk7urKzojYXCIENnYA7F5u0FrcFIJ1u4q9E1UPobus4RZrozjSiNhdCCISqIlUb4cDIFqyH0xok3n5kxowZifYj6enpVFdXs2HDBrZv305lZSXBYPC8rpn0er2no8fkqEiKyfMEl9365wxGRycmI7rJnpoOlk4YvD7u9UONLCjO6Lclx4bDTYSiZq/0zUe2VuGxq1y70IrO/fmtE7T4I3zrmtmJm8If3jzOKwca+N61c7h6XmGP45t9YT52/zZ+/WoF71s0jn/etYZLp+f2e0MJ6wb7azv5d3k9lS3+Ea38FWe6eexTq8jy2LnlT9sGbMuhKIL/uGIaR5v8PLunp0vZexZYLq0v7OtqzROPAJ/aWgTApopES5HuxEWqbRDhnOq0ISX4B4lgDsS4DBc1bYGLsX3AD/vYtvmMjyLJaedgfScRw2TBRWS+E8dpU1k5OZvXDjZejO/xJBcgfr+fhoYGUlJSht32YygMtWYyGAyyefNmMjIyhjSOsXJzjXpbEEYU3ZFq1U3GDMll7LtucxPKLsZwp6DaFERKGiF3JoaIicjYvMImdAJphT3mVtLhJKrGBHGs16QQVssPXbP8L6KKA1vUR9hjZTpENTdSURM+r6oZxbB7UKRORHWBomJGgujR4ddOSilHLPpsNhtFRUUsXLiQdevWMXPmTHRdZ9euXbS0tHD48OFE+5Gx4kzUTPr9/nMuMplMcz1PiEcmg6OMTJbXdhDRTZYMIiZbfGH21LTzhbf3ao+X4J+7T5KTYmf5pK7agI5AlOf21nL9kmJSHBr+sM6fNx3niln5CffR6tYAv371MFfNyeeWU2oFtx1v5a5HdtIRjPKT6+fzwaXFvURkY2eIx0ur2V/XyaF6LydaAj0ihHmpDpZNzGLZxExWTM5mZkHqkFa2xmW4eOxTK7nxD1u55U9b+cuty1k6sXfdA8A75xQws8CKTl4zvzCRujujIJXp+Sk8u6cuUQeZ6bEzLsPVZ2TSrilEjN4fWnrs9ajqYGLSegt3hvQhtXnpi+JMF/6IQUcwOiYGT+c6QogCYBzgEkIsoqt3ZBowtK7WSc4r4oZdC0oGNx27ELlmfhH/9fc9bD/R1uN+nSTJ+UZ9fT0HDhxI1MWdDkfLoUQmW1tb2bNnD/PmzSMnZ3Bn/KGedzDCfi/oESI2D/G+ICL+XQr8zhxMlxun7iMiu8StJgyCaQW4O2tRzW7eck43Mhi0+kai4CBMxJ2J5q3D7DY3UVQN3e7EkGA6PDjMADbdT0R1ErF5cMoIAXsGnkg7YcWJdKahRTpQMVGjYSKOdLxtrWTm9QweDMZwIpMDEW8/Em9B8uabb5KdnU1DQwP79+/H6XQmHGQ9Hs+In/NMRCZ9Pl9STCYZGQkxOcrI5LbjVn3dYGJy/aEmpIR1M/pOcW0PRHj1QCM3rRzfwwDniZ01hHUz4f766LYq2gNRPnv5FMC6MXznmXIUIfjOe+b0OOcL++q469FdjM9y88Anlvdwh40f+8i2Kn743AFCusHEbA/T81O4el4h0/NTGZfpYn9tJ9tPtLL9eCv/ikUHb1hewv+8b96Qbg6F6ZagvOG+LXzs/m288qXLKEx39dpPUQRfuGIadzy8k3/vb+gRXX3P/CJ+/vJhmrxhclOtqO6swjQO1PUWk6oiiPYRmYyLSW0IkUmwemxC73EOheJM67iatuBFISaBq4CPY/WI/EW37V7g62djQElOL7sq28hJsffog3sxcfW8Ar73TDmPbatKiskk5yXxth/t7e2sXr2aysrKMY0odWewmsnKykoqKytZsWIFbvfQ1x/HIjLZXleNQIDdjWrGMpJ063tA8+DSdOJTnXikUiKwyQhCBX9aMZ5Il8+CoimE3Vk4Ay1E7CloQmIXOp3uIlKMDhBWD0tN96MgiTpcxEWsgknYkYotVmOpCOsRXXOhSQMTq4YyojpQgYi3HYYpJk3TPC0LBlJKCgoKGDfO8r3w+/00NjZSXl5OIBAYcfuRM1Ez6fP5zrk01xGJSSGECtyONRl7UUq5sdtj35RS9pU+lmQUdIasm0U8EjVSnt9Xx5yitF6tKE7lub21jMtwMa8fd9Ond50kYph8YElXv0jDlPxl8wmWTMhk7rh0wrrBH948xqrJ2QkjnhfL6nntYCPfuHoWRd0mdjsqW/mPv+1mYUkGD3xiWa8oW6s/wlee2MvL+xu4ZFoOP3zv3D4NexaPz0z0baxpC/DHN4/zwKYTzMhP5eNrhmaNn5/m5P6PL+Pyn6/n76U1fP7t0/rc7x2zC3DbVbYea+khJuO9Gxs6Qwkx6dAUzFM+RKKGSbMvQl5a7zTiNr9VwzCYuHParA+LcHTkq505sTTmlthzXuhIKf8C/EUIcb2U8omzPZ4kp5/SyjaWTMg8p/pynUncdo1rFxbxjx01fOfaOaS7Tq/bYJIkY0kkEmHHjh1kZGSwcuVKhBAJA57TQX8RRNM0KSsrIxKJsHr1ajRtePOx0UYmjx49iisaQtpcqNJA6jERZ0bwu3LRRKxDZKwFiJDWc0UUFw5iRjwODwEhcIdbMBGoZhRTCHRhIyKcaFj+CabNQcCRhzvYiF9Lw4NV86irDoSqYYZCKEjQHOjCjqr7sMswQWc2NqGjmBBQ00gxOpEoqNEg0YgLXY+iaUO//4xVZPJUTq2Z9Hg8TJo0iUmTJmGaJq2trTQ2Nibaj8SjlmlpaQOO50ykuZ6LYnKkr/j3wGVAC1bD7+6r++8f9aiS9KLRazlz5aUOLAIH4niznz01Hby3mwNpX7T6I7xZ0cx7FhT1aXYjpeSx7dXMG5eeMJcBeP1gI5UtAT6xZiIAT+48SUNnOBGV9IaifPfZcmYVpiX2iY/r9r+UMi7DxR9u6d0e5I3DTVz1qzfYcKiJb10zm798om/n11MpznQn3F9/8K8DbD7aMugxcSbmeFg2MYvn9tb2u4+qCOaOS0+k0MWJj78z1JVK4gvrpDh6fvDUtYcwTNnna+n6e/dvbQ0kosLRPlJlh0pcsLYHLg4xKYT4aOzHiUKI/zz166wOLsmY0+gNUdUaYOmEizsid8Py8YR1k2d2nzzbQ0mSZMi0tbWxadMmJk2axKxZsxIT+e6tQcaavmomw+EwmzdvxuVysWTJkmELSRi5m6tpmuzZs4dgIICiqpbhjpTYpI4pIexIx7A50IgipUQ1rfmDFmuVHKFrThWRGsKmoguNkJaCEKAKid+R3VXwARiaA4cSwe/OQ1e6jg/jxG4G8DtzMRGASYSuRW9ddSQio4qQSMCwuQk7MzCkQltr7wytgThdYhLo97yKopCTk8Ps2bO59NJLWbJkCQ6HgyNHjrB+/Xp27txJTU0NkUjvOdOZSHP1+/0XjJhcLqW8UUr5K2AFkCKEeDLmhHhxLv2eZho7rVWlvqJYQ+WpnTUIAdcsGDjN4Pl9deimTLS3OJV9Jzs4WO/lw8tKemz/86bjFKY7uWpOAYYp+f2Go8wbl87aqVY9wc//fZhGb5j/ed/cRI1hiy/Mx/+8DSEED3xiGVmenpG4P7xxjFvu30aGy8bTd67htrWThuXmqiiCX354AZNyPNz5yE5q2obuKPaeBUUcbvBxaIAejAuK09lf19nDRCfNFatjDHatmvrDOp5TxGS8Hcf4rN5pMg2xv3f+IBFkLVZT2Zcj7FDJdFsfFG0XSWQSiKv3FCC1j68kFxA7TlhmWksmDm46diEzd1w6c4rSeHRbddKIJ8l5QWVlJfv27WPZsmUUFPQ0+judYvLUNNeOjg42b97MtGnTmDZt2ojFzUjcXCORCFu2bMHlcpGSkkpEdaFhIBEIJG1aLjicmKgILEdXgSXCNNOaR8huU30VE1VIAs4cjG4Or041guwWUbPHUlcdIoJid+C3ZWMicAtr3uI2vbTaCtCEgZsAPmGVJUlVI6xaH7EOGaZTy0IRJoZiA0yCvuGLydMd6RsMp9PJ+PHjWbJkCevWrWPSpEn4/X62bdvGm2++ycGDB2ltbUVKecbSXIeTXn0mGOlfKDHjl1LqUspPAbuB17AmaEnGmEZvTEwOEqnqj4hu8si2ai6fkddnDWB3nt1Ty9S8FGYV9j2v/tv2apw2JeHWCnCo3svGIy18dOUEbKrC8/vqONES4LPrpiCEYF9NBw9uPsFNK8azKJbyGowY3PaXUuo7QvzxY0t7ROiklPzohQP89/MHePf8Qp793NpeNZRDJdVp476blxA1TD790I4hmxi9a24BqiJ6ObZ2Z35xBhHd7CE403rUMVr4hi0mhxaZtI9BZDLdZUMIaA1EB9/5AkBK+fvY9+/19XW2x5dkbCmtbMOhKcwtujjNd7rzkWUl7K/rpOzk8CZ0SZKcSQzDSDhurl69uk+zkdMtJuOir6amht27d7N06VLy8kbXp3W4kUmfz8emTZuYOHEihYVFmNEoETQUaWCi4nXkYtit+ZwpLYEbMS0hExUOKw2VLoMeCdixFo2dqk5Y6VqsDiopqA4bQVxEsOPEmoMEpBsXIRxqlAZbMSpdi+Sqw55oD2KqGn48aIpJVO2aY0ZtbhAC1QhjQ0ePRgmHhz7XOF01kyNFCEFmZmai/ciKFStIS0ujsrKS9evX09bWRm1tLcHg6Wu35vV6SU09t9a9RyomS4UQ7+y+QUr5feDPwMTRDipJb2rbrX/Mkaa5vlBWR7MvzC2rJgz6PNtOtHLN/MI+38ChqMEzu2u5em5hQjQBPLylEoemcEPMeOePbx1ncq6Hq2JtQ37w3H6yUxx8+aqZiWN++K/97Klp59cfWZSoqYxz74Zj/H7DMT66cjx3f2TRoD0xB2Nybgp3f2QR++s6+fWrFUM6JifFweop2bxUXt/vPnNjNaXdzXXcsTYu/nDXTdcb6p3mWtnix64qfUYf6ztD2FRB5iA1k/EG7MYo+kxqqkKqQ6PjIklzjSOE+IkQIk0IYRNCvCqEaO6WApvkAqG0so0FxRnYtWQnrGsXjsNpU3hse9XZHkqSJH3i9/vZuHEjmZmZLFq0qN90Uk3TTmuaq2EYlJeXU1tby+rVq8ckrXA4kcmmpia2b9/OggULyMnJoa3Dj1Q1VGF91gdUD4bdQbwhh25YcwEZE5V6t9TWuICMYscmrHmJiYJi04hK6/qaig1VSAy7i7Cta+E+RNf8RFE1WrV8AILSiZMg7TIDAA8Bgpol+p0ECeIiKhzYFQNd2FCFSRgXdhmhrmngXt6nci6JyVOx2+0UFRWxaNEi1q1bh9PpTLQf2bBhA+Xl5TQ1NY3p/+oFk+YqpfyolPLFPrb/UUqZrOw/DWw/0cqM/NREv8nh8sjWKsZnubl0Wt/urHH+tr0agOsXF/f5+Mv7G/CG9R7GO7ph8vy+Oq6YnU+Wx86JZj97qtu5Ydl4FEVQdrKDbSdaueOyKQnjhyONXh7dVsXHVk3knXN7pq8cb/bzy1cO8665BfzgurkJwTRaLp+Zx5Wz8/nHjhr0IUbyZuSnUtMW7Hc10Yh9MDhsXW+lJp8VRc6JRRVDUYPajmCvCOT+uk6mF6T0+fqONvqZmO0ZNKXXO0bGTFKe2zfs08SVUspO4BqgBpgOfPnsDinJWBKMGJSf7GDpRZ7iGifdZePqeYX8c3ctgVH0pk2S5HTQ0NDAtm3bmDt3LhMnThzwM+l0RiYNw6C1tRVVVVm2bNmw3DwHYqiRyRMnTnDo0CGWL1+O2+1GCEEwHEEKgQAiwoWhWAvNSiw2qBG7FhJatXxanYW0pY2nOWU8AS0dUwoiSlfEMCCdODQTr2rdG20iltaqGkRtHtrJAMCpdl1jhxIhVQ3SrmTjIwWEQNOsiGcEO1Gta44TVFMIqKkIRRCNPa8motjMIJHA0Ptan2uRyYEQQiCEYNq0aaxevZo1a9aQk5NDXV0db775Jlu2bOHYsWP4fL5RPc8FIybjCCHuFEJkdPs9Uwjx2VGPKkkPwrrB9hOtrJ6aPaLjjzb52Hq8lY8sLxlQnOiGyWPbq7h0Wi4lfaReAjy16ySF6U5WTu4ay7bjrbT4I1wTczSNm9a8e771+z921GDXlB4C9E9vncCmKr2cUqWUfOOpfTg0he9dO2fMbyLXLy6m2Rdmw+GmIe2fm+ogGDXw95Ma2+S1VvxyU7rSUataeqavHm3yISVMz+9KS5BSUnayo9/UuyON3h7790dbYGiur4MRNkwcF1/kJj5DuBp4VErZOtDOSc4/dle3o5syKSa7ccPy8fjCOv/aW3e2h5IkCdDV9uPo0aOsXr2arKzBzbJOl5js7OyktLQUh8PBzJkzx3QOMlhk0jRN9u3bR0tLS0LE2mw2GtrCmKggTQxD4NNSUUXsPIYlAlUjTJuZRtiThfC4kCgoikBoNhS3nWbnuB5prSFpzVk89igtaj42xTqfIRUcIojLKWlQCrBJa3E8hAOnYs03HJoBsfmCWwnTLtMJqOm4bUYi0ulWQphKLPghDUwEmozSQjZgUF0/tFT702nAc7qIj1fTNPLz85k/fz7r1q1j3jyrRV15eTmvv/46e/fupb6+ftiuxOdin8nRzh4/KaVsj/8ipWwDPjnKcyY5hV1V7YSiJqunDK0x7qk8tq0KTRF8cEnJgPu9drCRhs4wN60Y3+fjLTERdu3Cni6vz+2rw21XWTfDqid4dk8dSydkUpThImqYPLunlnfMyk9EJTuCUZ7edZL3LhzXy3DniZ0n2XS0ha+8c+ag7UtGwuUz88j22HliZ82Q9o+39miK1ayeSnMsCpndXUyeUgtZ0WCtQk3L71pJqu0I0RaIMqeP1iuhqEFla4CpeYOvPMVNc+ImOiNBSknUMC/GNMBnhRAHgaXAq0KIXIgViiS5INhRaa0PnJpGfzGzdEImk3M9iSyUJEnOJpFIhK1bt2KaJqtWrcLhGJovxOkQk3V1dezcuZOFCxeOWTSyOwO1BolGo2zduhW73Z4QHTabDSEETe0RIoaKEBBSXYBAmDqmIXEqUQwTOmQqpicFRVjXJP5dNy1x53CA35ZOUFrzKtFtDhdS3HRipbYGhCeRSisUQaeagc9wEpRdUc2waSOids1PNJuKYpMoQuIX1vaIcBJULMGjCYNOMwW/moap2UFR6fQNzQzxfBST/RFvP7JixQouu+wyCgsLaWlpYePGjWzcuJGKigo6OjoGjdqei61BRpcbB4oQQsjYK4/1n7woup6fSTYdaUYRsGLy8K3tQ1GDf+yo4co5+Qlh1B9/3VpFQZqTt83su8j82T21GKbk/Yt6pri+WFbP22fl47KrVDR4OdTg5XvXzgHgrYpmWvwRrutm1vOPHTUEowY3n1K/2eqP8MN/7WfJhExuXN63oB0tNlXhuoXjeHhLJW3+CJmegf9du4vJSTm9V4Ja4imtKV3nqW4NkOrUEuK5otGLpggmdjMYKjtptROZ24epUF+RzP5oDUQRglH1jdNNiZRdZj4XC1LKrwoh/hfolFIaQgg/cN3ZHleSsaO0so1peSmjjtxfSAgh+MiyEv7n+YNUNHiZNoT7TJIkp4P29nZ2797NjBkzKCwcXjP7sewzKaXk0KFDtLW1sXr1amw226j6QfaHEKJPoeDz+SgtLWXatGnk5uYihEDTNIQQ1DaHEZgIYRI27YAgoktcmiQQVnApUBNMIztDIWoI3Ip1TWwxMemPCJyxdXmbYhJwpmEEBW6ta4FcVUxUTdARScOUCsQCioaw4bEF0VUXwZBIWJ37TSepzhChiB2niOCN2lGERpoSwqaYSBNCwmWlwJpWiwehqkQVG3ZhIJAYpklda5jCrIHnpafDzfVccLNWFIXc3Fxyc63Ss2AwSFNTExUVFXi9XjIyMsjLyyM3Nxe7vefnVyAQuGAMeOK8BDwuhHi7EOJtwKNAr1rKkSCEeKcQ4pAQ4ogQ4qt9PC6EEHfHHt8rhFg8Fs97LvLWkWbmF2f0MLwZKhuPNNMWiPLhZQOLsyZvmDcqmvjQ0uJE245TeX5fPbMK05hR0PVPvLOqnVZ/hKtjdY//3t8AwLvmdf2e6tQSUUuwROmC4vSEeU2cp3adpD0Q5QfXzR1W+4/hcv2ScUQMk3/tGzzNK8NlvYnb+jGnqWoN9jLKOdzgY0K2O7GaVl7byaQcT4/I366qdlRFMLOgt5gsr7XSP6bnD77yVNceJNNt7/dvNhR8sbrLkdbjnufMAj4shLgF+ABw5VkeT5IxwjQlOyvbkimuffD+xcUoAp5LpromOUtUVlayZ88eli5dOmwhCWMXmYxGo2zfvh3DMFi5ciV2u71f0Tda+opMNjc3s337dubPn09ubi6KoiSEJEBtawQDgaaYBHQnipBEYxraMFVqI1koMUfXiG7NA6QpsStxx9SYMQ9gU3RsmqDTnpXoDRkyNFJsEVQhUe0KulQS+7tUa96jqRIcTsKmNQdVVGE5wOvW/EXYNYKmJQrtShSfTEXRrOcLY41NV+xEpYoiTCKmDZsiqW4cvHbwdNRMngvtRk7F5XIxfvx4li5dyrp165gwYQJer5etW7f2aD9imuaI0lxffPFFZsyYwQCaap0QokMIsTv29e3hnH+0V/MrWO1APgPcCbwK/L9RnjMe4fwd8C5gNnCDEGL2Kbu9C5gW+/oUcM9on/dcpNkXZld1O5fPGJkldXltJ0LAskEmVNuOtyKllQbaF6Gowe7qdi6d1jPVdk91OwDLJllR0wN1nZRkuRKusw2dIcZnuXsIqUBEpyijd3sSW6xn4mh6aQ6F2YVpTM718ELZ4BOpJp+V9dhXVFdKySsHGlg9JSchfjtDUbafaGVNrLdmMGKw+WhL4vc4rx1sYPnErD4F3IZDTeSlOgZNc5VS8taRZpZPHF0z9v11cfF6bq10nW6EEA8BPwPWAstiX0vP6qCSjBkVjT46QzpLJ4zu/XEhkpPiYHZRGtuOJ8uEk5xZDMNg9+7dNDc3s2bNmhGn642FmIy33igqKmLOnLH3aDiVU0VqZWUlBw4cYPny5Xg8HlRV7SEk69si6KaBlOAL2whHre2KEJgmeGUKLo8NI2YoGI1Y30OGSnw9Pp6yGopqqErsZ9OGX/Xgi9rxGl3+GCHDjsMlaI2m0BlxYVNi0U3djscp8SppmFJg16ztme4QLZEUXA5JiiOKHnOSDZoO4q0WAzGRaQiNkGH9HDEUbCKKis6JhoHbhJyONFfTNM85MdkdIQRZWVnMnDmTSy65hBUrVpCamkplZSUrV67k5MmTPPnkk9TW9t+2rjuGYXDnnXfywgsvQP+aCuBNKeXC2Nf3hzPmUV1NKaUppbxHSvkBKeX1UsrfSynHIol9OXBESnlMShkBHqN3+tl1wIPSYguQIYQY/vLWOc76Q01ICW+fNTIxeajey/gsN277wBnN24634LarvaKFcfZUtxMxTJadIlz2nexgXIaLnFjN4JFGH9PyukRJiz/Sqy5SN2WfDqbxVLR4HeDpQgjB1XML2XKsNZGm2h81bVZLluLM3uL3QJ2XqtYA7+rmRrvhUBO6KXnHLMs+e/OxZsK62SN1uLo1wOEGX59/U90weaOiiXUzcge9gR5u8FHXEWLdjIEdegdjd2xBYH7xRdeHbymwRkr5WSnl52Jfnz/bg0oyNpTG6iWTkcm+WT4xm51VbUT0sU/nS5KkLwKBAJs2bSItLY3Fixf32/ZjKIxWTDY2NlJaWsqCBQsoLu7bvX6sibu5SikpKyujsbGR5cuXJ4x2Tm12X9loopsaEjCkhhF7rwokDaEMlFhGUlwYiZjhTTjSNXfQYm1B/OGu6X44InE6FUKONILRrn29YRuKAk4ntEa7RKYvas3NXE5JnZ6DXbNEqSKgk1QQAptq0h6xgggh7IRjrUqcWpSOqAtFFQkx69YiSKxayurmyIApxeeTmDxdzrN2u51x48axaNEitmzZgtPppL29nVtuuYXjx48Pevy2bduYOnUqkydPZgBNNSpG6+Y6TQjxDyHEfiHEsfjXGIxrHNDdHaAmtm24+yCE+JQQolQIUdrUNDQHz3OJVw80UJDmZE4ftXVD4UB9JzOGEHHaeryVJRMysfWTLrn5WAtC9J6Y7TvZwdxx1th0w+RYs59p3SJqLb5wQmjGMUyJ1oeYjDui9md2M5a8c24Bhil5OZaW2x81bUEcmtLDrTXOi2V1KALeMTs/se2VAw1ke+wsihl+vHawEbdd7VHv+soB6zmvmJXPqeypaccb0nukBffH64caAYa070DsrWlnYrb7YqwrKwMKBt0ryXlJ6Yk2clIcvVryJLFYPimTsG6yL1a/nSTJ6aaqqoo5c+YwefLkUU+6R3q8lJIjR45QUVHBqlWryMjIGNU4hoMQAl3X2bp1K5qmsWDBgoTRzqnipsNvEIgYRHXwh1Q0TcFus/wNfFEndqeGKmPtPGyWqFZjjqwRPd5zElyxx3TZJdxtsVZmDjvgdOOPWI+57Na+QhEoDjutIWsRXXaTCqbmIBjtdi6nRnw9KmraCOsqbhcEdHdsTJJOwxKZDs0grFsRUn/UjjQlGmHKqy8MMWkYRq8FgbEmngb95S9/mVdeeYVJkyYNeszJkycpKelhwNmnXgJWCSH2CCFeEELMGda4hrNzH/wZK71UBy4HHgQeGuU5IZ7k3ZNTE9iHsg9SyvuklEullEvjha7nC2Hd4I3DTbxtVt6I3kyhqMGJZj8zCwcWou2BCIcavAOmS75+sJFFJRk9BEdnKMrxZj/zizMAqG4LEtHNHumZLb4I2adEJg1T9lkTOS6W+lrTHhz0tY2WOUVpjM9y80JZ/YD7VbcGGJfp6vP6v1BWz/JJWQkn16hh8vrBRt42Mw9VsdJZXj/YxJqpOTi0rhvMKwcamJqXwsQ+DH3eONyMELB6yuBtYF4/2MiswjQK0kfneru3piPxN7zIyAH2CyFeEkI8E/8624NKMjaUVraydELmBeMEONbEs0ySqa5JzhQzZ84cUtuP04Wu6+zcuZNAIDAs59ixIhwOU1dXR3FxMVOmTOnh2HoqeysNwhGJqUeJ6Nb8QRUG9Z0u7A4FU0pcDivK6dSsIkoN63tcKPnCCvH4QDz6JwGPI5YOG1VJ9UBQ9dAccJHisMSpKcHjMsFpxxvWEmIVrNYhrRFr7qKblsBt9FvCMcsToTmSglAEQnRNx4WtW5QzJlwDUSdBPER0wclWg0i0b0F5OuobT2dk8nSLyXhke7jH9LX5lN93AhOklAuA3wBPD+c5Rns1XVLKVwEhpayUUn4XeNsozwmWau4uo4uBU5ODh7LPec2uqnb8EYO3jTDyVNsexJQwMXvglfnDDZZ76Lx+0hyDEYM9NR2sndZTjFc0eAGrBhEs4QUwIeZaapiSsG70ajlh15Q+o48F6U5cNpVn99RimqfXbUsIwRWz8tl0tBljgOc61uTvM7JRXttBRaOPd83tyqx+/WAjnSGdK+dYwa7SyjZOtge5ols6a1VLgC3HWntEM+MYpuTZvbUsPEW090WTN8yOyjYuH2WK676aDuo6QiwenzGq85ynfBd4L/A/wM+7fSU5z2nsDFHdGkymuA5AdopVl73teMvZHkqSJKedeIptTk4O8+fPP+M1cy0tLezfvz/h0tndsfVUDh/10e6XCEWzooLSREpJZ1AD1Y6mQigsUQSE9ZhglBK3XUc3BIap4A2pBKJd8wibzXqeUFTFYbOEW2fQugZOh8BLCuGYgU+rT0NTwG5TaJepOLuJSYTE4xEEIipNPocVGIil1woB3lgU0mU38UVsBKMaNpskGLH20TRBIGpDqhog0LGh61E27vcTjfaun0xGJvtmONekuLiY6uoeraB66SUpZaeU0hf7+XnAJoQYcj/C0V7NkBBCASqEEHcJId4HjC7nzmI7ME0IMUkIYQc+ApwaMXgGuCXm6roS6JBSXlDWdPH2EQtKMkZ0fLxOMjxITYzLZv3z91c7E3cyLTwlAtbktbbHDXOUU/65VUUwNS+FA3U9m9NeM6+Qt440J8RnHLum8M1rZvFmRTO/e/3IgGMeC8ZnuYgasl+n1njEdkkfPeoe2lyJy6by3oVdmQJ/fPM44zJcCYH3f68fIctj59oFXfv86tXDaIrg46sn9jrnc3trOdbk5/a1kwcd++Ol1eim5Polo6v1+MXLh8hw23j/KM9zPiKl3ACcAGyxn7djrc4lOc8prWwDYMmEpJgciGUTsyg90TbgglqSJOc7zc3NbN26lblz5zJhwoTBD4gxVo6uVVVVlJeXs2DBAoLBIC0tLQgh+hQEG7e18NjLLUR1A5BEDM1yYA0q2F0uwiFL2EUi1tjCYUlYV6hqT6Xan0OjmYtXpOFzFNJs5nDMm8uJtpSEEY8v3CV2okbXzyaCpqAHU0LI6OocoEsbJ5rj2VcCj0uiqoLGgCfh7pqVYuCLqLT4HTgcGvHLFojaCegx0x3TErZuu0Fb2IOqCCJRgU0Fh02hxe9gw8adbNy4kSNHjuD1epFSnpY6xPNZTEaj0WHXGi9btoyKigqOHz9Of5pKCFEgYhdaCLEcSx8OeaVxRFcz5oII8E/ADXweWALcDHxsJOfsjpRSB+7Caj1yAHhcSlkuhLhDCHFHbLfngWPAEeAPwGdH+7znGruq2ilMdw7aH7I/0lzWP1xHcGC3rIxYw/v+9ouLrUx3z9YkLX4ruhg32Im7sUaNLlE6vziDvTU9m7DeuGICihA8vKWy13PduHw8711YxC9fOcymI80Djnu05MSua3M/Jjzx9K/lk3qm5bQHIjy9+yTvXTSO9Ng12VXVxrYTrdy2dhKaqrC/tpPXDzXxidUTE46tRxq9PL3rJLesmkB+Wk9hbpiSX79awcyC1B6GPn1hmJJHtlaxeko2U3JH3rh2R2Urrx9q4tOXThlR25nzHSHEJ4F/AL+PbRrHMFM7kpyblJ5ow2lTmFN00ZlKDYsVk7LwhnUO1ncOvnOSJOcgAwk+KSXHjh3j4MGDrFy5clgptn218RjJ2MrLy6mvr2fFihWkp6czd+5cWlpaePPNN9m6dSuVlZWEQiGklDzyVDVf+UEZ4ydlYZgaoQioNgW7zaTDb0UxRWyeJWKOrs0+O63RLCLSgcOlIYSCMxaQjEZM3Cl2tNR0gvYsjrWk0hnomvYrouv1CWmSnqZS05FCd50VDENGlht/WKEj2JWSm56hoNq7dmzssNMZUvA4TToC1pzH7TQJmXFzIKuGMxRVCeixtiS6giIMbKqJKUzMjCUsWrQIm83GgQMHWL9+PZ2dnTQ3N49JG5g4p1NMnu6It9/vx+0eng+Apmn89re/5aqrroL+NdUHgDIhxB7gbuAjchirKSO10loihJgA3IQl5ALAl0Z4rj6JhVmfP2Xbvd1+lljtSC5ITFOy6Wgzb5vZOx1yqLhsKjZV0DmImExzDSwm2wPW9lNTL+OpqtmeWH+hWDpr9wjnguJ0/rGjhpPtQYozrTdAQbqTq+bk87fSar5wxfQe7TGEEPz3++ZRVtvJ5x/bxfOfv4S8tNHVBPZH3Bioxdd3ZHLb8VbsmtIrMvx4aTWhqMktq7pWOP/45nHSnBofWmZlXt+z4Sgeu8otqyYm9vnFy4dx2VQ+s25qr+d6Zs9JjjX5ueemxYP22Fx/qJGT7UG+8e5ZQ3mZ/fKzlw6Tk+LgY6uHvlJ7gXEnlnP0VgApZYUQYiwyK5KcZXZUtrKgOKNXin2SnsQXyrYdb00K7yTnHaqq9lunZhgGe/fuBWDVqlXDjhjFxeRII026rrNjxw7S0tJYtGgRUkpsNht5eXnk5VkfM16vl4aGBrZtK+XJlwx27INVlxTj8jhQVUHUVLHpBq1BhXgwKm6/YEpBTYcHU1VRFIga1rw/qkucsZRWVVMASSAkSfMIUjI9NLRCZbOf4uwwaTHbBt2A9Ni6dEaGSlsHgDWPU1SBpgkaW10oMoontev5vWEbGanW/NDtVlAd1iDb/QoZHgN/0IpOelwGds2kI6hhYsOmxcYnrNcTjAg8NkmrX1DTpFOYlUV+fj6qqvLWW2/R2trKkSNHcDqd5OXlkZ+fP+w+i905Xa6rZ6Jm0uv1jqidztVXX83VV18NMCW+7RRN9VvgtyMd10g/ae8FXgRmAjtiX6XdvicZJfvrOmkLRFk7bXAjlv4QQpDmtA0amUx1aAgxuJjMPEVMNnrDZHvsiQlb3Ak20i0yGRdie2t6OgbeumYS7YEov3/jaK/n8zg07rlpMf6wwV2P7kI3To91fVxM9huZPNHKwpIMnLaum4NhSh7aUsnySVnMitWKVrUEeKGsjptWTiDFoVHZ4udfe2v56MoJicjlkUYvz++r59a1k3q3SjFM7n71CDMLUrlqzuDmog9vqSQv1dFn3eVQ2XSkmc3HWrjz8imDto25gAnHbLIBEEJo9GHileT8IhDRKavtTNZLDoGiDBfjMlxJE54k5yX9tQcJhUJs3ryZ9PR0Fi5cOKIJ/mgik/H6zKKiIqZOtRaP+zLaSU1NpWjcJJ59PZ3mNhezpzmZNLOAcEQiMBDSSi1VHQ6U2EeThk6HXyWCE6fLji3+8R0LIoW7rY2rwro2oW6tQmw2QUpGCscbUzBiArTdryYWsb1Bga64E6mqbqc1r8vKshHSu65juxccTo34JfKFVFo7rMcz0hR0E9qDdkLdplfegELYsKEpEsO06iqlBMO0yqJUIdldk4rNZiMajeL1ejEMg4kTJ7JmzRrmzp2LEIJ9+/axfv16ysrKaGpqGvbf6XxOc/V6vaMS0qeLEV1NKeXdUspZwP1SyslSykndv4/xGC9KjjT6AEa9WpyT4uDkIO6oiiKs/dr63i8YtW5ITtsp1tXBKOmurvTIVGcsrTbQJUpnFqThsav8u7yna+rSiVm8Z0ERv3ntCBsO927ZMi0/lf95/1y2HW/lW/8sG7Pahe4EI9br6qteqKYtQNnJjl6uqq8caKC6Ndij5vH3bxxF7VYHec/6o2iKwm1ruyyb7371CE6b0met5C9fOczxZj//+Y7pg0Yld1S28fqhJm5YPr7fNi6DoRsm339uP+MyXNywfPyIznGBsEEI8XXAJYR4B/B34NmzPKYko2RHpVUDeGpP3CR9s2JSFtuOt56We2ySJKeTvsRka2srmzdvZubMmaNqQRKPeg6X1tZWtm7dypw5c8jPzx/QaKe5Jcy3/7ecYMjAaVeJCjcujx3VphKJCuw2E3/QRAgFmyYxpSQQFviidlyOWB9Hm/W+lbGxxmspAZx2a5/ul8hpj4lOqdESSsEXFIS6CVCvX5DiUalqUvGHwJVIDBOJ+kcAf0jB5VSpbbHmIVFTJRKrwXTaob5FwemykZmhEoyfXwhUTUFRoCNgffcHBQ6biU01CYQluik5WOvA5XJx8OBBJkyYgKqqBAIBdF0nJyeHhQsXsmbNGnJzc6mrq+ONN95g27ZtVFZWEgwO3g3gfE9zHUlk8nQzqlctpfzMWA0kSU/ipjaj7bm4eEJmYnI1EEvGZ7K1n9Xp9H7SYB2q0iMKWZzpxm1XOdCt/sauKXxk+Xie3VvHsSZfj+P/531zmZGfymcf3pEwG+rO+xYVc+flU3h0WzV/eHMs2pf25KldJ7GpgrfN7J3Z+NCWSoQQfHBpl2GwlJJ7NxylJMvFlbGoYG17kMdLq/nQ0hLy05xUtwb4x44ablhekkjPLTvZwTN7arl1zaREG5E4rx5o4HevH+Ujy0oSLrD9oRsm33y6jII0J5+6dORrNo+X1nCw3ss33z2rR9T1IuSrQBOwD/g0Vlr9N8/qiJKMms1HW9AUkRSTQ2T5pCxa/BGONfvP9lCSJBkWqqqi63ri96qqKsrKylixYgU5OUM2ouwTRVGGXadXXV1NWVkZy5YtIzU1FVVV+xWSFcd8/PT/DtPYHKazM8LJhhBTF5QgJQgJulRiIlDBMEw8LoX6ZgNpdxMJWw6n4YiBIyYY7bHU1nDYmpMZpkwIQWlY1ygckQkRqhsCt1ujPeIhGu2aH0YN63GHx0VLp0K8C59hSrJynDS3x8SrsOYOpmJDSnC7VTLTBeHYuXwhBbtdRVUEzbGIpS+k0uGzHjeMuLuswGkzEBg4NJNgGPZWSjZu3EJJSQnTpk3D4/GQnp5OampX1NLv9+NyuZg6dSqrV69m5syZRKNRdu3axYYNG9i/fz+trX0vkp3PrUF8Pt+FE5lMcvopzrDqC/uLFg6VFZOy8Ib0Xo6qvfabnMXJ9iA1bYFej2V5LDHZ6u9ZW+iwqYS69QZSFcHMglTKa3s+16cvm4zHrvK1J/f1aPmR6rTx508sI8Nt5xMPbO/l7grwpXfM4Op5BfzohYO8frBx8Bc8RKKGyT93n+TtM/N71YIGIwaPbavmqjn5id6XANtPtLGrqp3b105Gi0UF791wFCnhjsusNPTfvnYERRF89vKuusgfv3CQDLeNO9ZN6fE8jZ0h/vPxPcwdl8Z3rx28P+xDWyo5UNfJt98zG49jZKmpvrDOL14+xLKJmbxzEKOfCx0ppYlluPNZKeUHpJR/GE7BeZJzk83HWlhQkjHi98jFRve6ySRJzifikUnTNNm3bx+NjY2sXr162AYlfTGcNFcpJfv376e2tpYVK1Zgt9vRNK1fYfHW1hZ+fm8F23a14XZpNLdFKS72kJOXAgg6fTqGLunwC9wuQSRi0tphEjKdKMJKIQXoHoRLRBBjujUQ6GqpEdeyvkDXx1s8xdXl0uiMdPlSxIfsdKi0+bvG3+EFVVFp9VsL4g6HNQfKTNc4dhIcDhVNFdTFEs0MYScUE7aaKjBMidPjJBiKpeuq1mM2VVLdpFHZbCMUiBDVTTr9Jvua5+Bw9VzoV1UVp9NJamoqaWlpOBwOTNMkGAximiYFBQUsXryYVatWkZmZSVVVFevXr6e0tJTq6mrCYSs4cz6nufp8vgsvMpnk9FGQ7kQIqBkkRXUwhjpRWDHJSufceqz3fvFayfZAz8ik06YQjvZcuZtdlMaB2s4eq0F5qU6+8e5ZbD3eymPbe/S6IT/NyQOfWEY4avDxP2+j/ZQ2HYoi+NkHFzC7MI3PPbor0dtytGw41ESLP9Jna42ndp2kIxjl46sn9dh+z3qr1ceHYtHK+o4Qj22r5gNLiinJclPVEuAfO2u4cfn4hFvrmxVNvHWkmbsun9rLMfU7z5QTjBrc/ZFFg0YIGztD/OLfh7l0eu6gbq8Dce/6ozT7Inzj3bMv2mbusXZC3xVCNAMHgUNCiCYhxLfP9tiSjA5fWGdvTQerJo+81vxiY1KOh5wUe1JMJjnvUFWVUCjEli1bcDqdLFmyZNhtEwY691DEpK7rbN++HSklixcvRgiBzWbrU6xIKXnyXyf54S8PUHagkzkz0giGDKZM8jB5TgnBoIndrqDZNAxDomgKDrtCp88gghMzGovCxiKNkYj1PRTuilCqMYfWYKhr7C6niG3rmq/F95dSkpnl4thJa7vb3XX9ojgTabP+gHW+rGwnDS0mqSnxOYvAG+lakNdsKl6/SWamg6ZW65iMNJXKOrBpCrbYXCfFreAPQmunwFRdGIaKLpxghBFIAqab//7tUT7++VLu/ctR9u7vQDe65pWKouBwOEhJSSE9PZ2UlBRUVSUSiRAIBPB4PMyYMYM1a9YwZcoUgsEg27dv58033+TkyZOEw+ExT+0/U2muychkkiFj1xQK0px9RgqHQ1GGi5IsF1sHaUw9syCVdJetz/3ihjG9IpOa2quH5ZyidLxhneOnpEx9aGkJqyZn86PnD1B7ikCelp/Kfbcspbo1yKce3EHoFIHqtmv84ZalOG0qtz9Y2mscI+Hx0mqyPXbWxXpCxjFNyQObjjO7MI1l3Qw8+mr1ce+Go5hScmcsCvmb1yrQFMFnYxFI05T8+IWDjMtwcXM351eAl8rreaGsni9cMY3JQ2jv8cN/HSBsmHz/2jkjFoG17UH+8OYxrl1QxMIR9i69QPgCsAZYJqXMllJmASuANUKIL57VkSUZFduPt2KYklVTkmJyqAghWB6rm0yS5HxC13X27dvHlClTmDZt2pgukA4lMhkMBtm0aRMFBQVMnz4d6NtoByAcMfjFvRX84l6rh/aCOelICSkeDV0H7E4UVcHr1XHYFXRToEcMIlGTiKGhamoiapjQKzExFAh2jdMe87YIh7vmUSlua5veLZ3VHROYXp+Jpik4U1OpazJwObsWtl1Olar6WI1lLJYghEJTpx2rxXwMoRKNZanlZGnUNQuEUHr0nPSFrMX01BQVr98aW1OLgepyEQiY2DSJy6WimzbCYQOnSyN3cglOh8L+Q14++5XdXHfLJn72f4d57t91NDSFelxfTdNwuVykpaUlopaGYRAIBFAUhaKiIpYtW8ayZcuw2+20tbWxfv16du3aRW1tLdHowEaVQyEZmUxyTjJ3XDovlzdQ3xEafOcBWDU5m01HW3q07DgVRRGsnJzFG4ebe6SiAqQ5bbjtKidaegrEnBQ7EcPsMb61U3NQFcHvXu/p0iqE4Efvn4cpJR+7fxttpwjClZOz+fmHFrDtRCuff3RXrxrPogwXv795CfUdIW7+09ZBHWr7wzQlP//3If69v6FPE5vfvHaEww0+Pn1ZV+G+lJIf/ms/qU4t0eqjriPII9uqeP/icZRkualuDfDkrpPcuGJ8olbyxfJ6yms7+dKV03FoXTeYzlCUbz1dxqzCND55yeC1j0/urOGZPbV8dt0UJuaMbEVKSsm3/1kOwJevmjGic1xA3ALcIKU8Ht8gpTwGfDT2WJLzlE1Hm7GrCksmJJ1ch8Pyif2XOSRJci5y8uRJmpqamDp1Kvn5I3c274/Baibb2trYsmULs2fPpqCgYGCjndYwn/vabp56vo65M1OZNjkVECiqoLk1SkhNxeF2oAiImgq6bmKzKZiGQUOzgapY86G4s6rbFUtfjTm8dheO8cfigjMY1NFirTgy0uL1khK325qTGLF5oc2u0hnu8nQwDBNPqp3UzBSklBTld6XCTp2UjqZ2vc6CAg/pKV3RyYhhCcf0NI2W9iihkInd5UgIy/YO64fOkIoQCtFoFLdbwzQlQkhMVKJhA4fHgT01hZ37Opg+2cP0ySkcqPDy+weP8bX/LudjnyvlDw8dY3dZe79Ry7S0NNxuN4qiEA6HCYVC2O12CgsLWbt2LRMnTqSzs5PNmzezceNGKioq6OzsHFHUMikmk5yTfOPqWURNk288tW9U4fir5hTgDelsPjZwdPKqOQXUd4bYU9PeY7uiCJZMyOy1ch2P6r3Uzam1JMvNHZdN5omdNb1cWifmePjDx5ZS2Rrg43/ehi+s93j8PQuK+M57ZvPv/Q188+ner3nJhEx+f/MSKhp8vO93G6nrGF4K8IG6Tj70+8385rUjfHhpCV98x/Qej792sIFfvXqY9y8ex7ULihLbn959kk1HW/jKO2cmWn3c/eoRpJR8/u3TAPjDm8dQBAljHNOU/PqVCibnerhu4bgez/O/Lxyk2Rfmf6+fN6gj6+EGL994qowVk7K46/Le/SmHyr/21fHKgQa+dOV0SrJGX09ynmOTUjafulFK2QTY+tg/yXnC5mMtLBqfcbEbSw2bZbFyiO0nktHJJOc2UkrKy8upqalh4sSJ2Gyn55Y9UGSypqaGvXv3smzZMtLS0gY02jlY4eVTX9pFfWOYlUuzsDs0dEPicik0tUZISdUYPy0fm00hakgUIenojOJwqOg6OD0uMjM0NMXE7dZQsMx4On0mhuqkpkVDx0Fju43WdlBVDYddY8YkD3abSnaGI15GSWZMTAqzy9ixpKjLF2J8cRoCS5i6HJbQE5oNp9OJ1q0G3URBUazrbtMEUUMQiFj3XIdNobAoJSEcQyFBbaNOSoqN5lYriKDZFNradZwpLqQENTYPCgZ0kCBNnUhUEggYpOTns3xxFm63jUDIREqJ02UDBBlpGjv3dXDX1/bw4U9u5ae/O8zLGxrp9HUFGxRFwWaz4Xa7SUtLwzAM6urqyMzMxO/3oygKJSUlrFy5ksWLF+NwODh06BDr169nz5491NfX9zB5GogzZcCTFJNJhsXEHA9fvmomrx5s5OndJ0d8njVTc/DYVV4sqxtwv7fPykdTBC+e0sYDYNnELA41eHu0/Zial8r0/BSe39fzvJ972zSm5Hr4+pP7egnG1VNy+N2Niymr7eT2v2zvldL6iTWTEg6uv3j5cK9xrJuRx+9uWow3rPO2n23g7lcrep3jVDpDUb73bDnX/OYtjjX7+cn18/nx9fNQu7XhONHs5wuP7WZWQRr/8755iQ+FjkCUHz53gIUlGdwYa6NxotnP30uruXH5eIoz3TR6Qzy2vZrrFxdTmG7dmF8sr+dQg5f/ePu0Hs+z/UQrf91axSfWTGJ+ccaA4/aFde54eAceh8ZvbliUMP0ZLm3+CN99ppx549K5dc2kwQ+48BkoT3r0OdRJzgodgSjltZ3JFNcRMLMgjVSnlkx1TXJOE41G2bp1K6qqsnz5cux2+7AdV4dKX21HpJQcPHiQkydPsnLlykGNdl59s5Gv/ncZmRka06emEgyZGIbE4VBpaY8yodhDWk4mDpcdXTcRikIkYiAQqMIkNVXDruggVDxOgaqA06FR73URMFyoDidCs5OX6yEkneBIpdaXwqEGN9Udbg43pdDo91DVkUprMAW0FOyagsfTtaDc1t7lpO/1BfHF1ui1bq+pLWhPpLmClfLa2KmhiK79vCHLR0NRNCI6eGJR1IJ8J0WFVkaVrlsKMyPdRmObwOHQ8HkjpKTYME1JNGpgt1mGPYoCms2GzeUkYktF1RRSPBpHK0O4nCpZmTZaO6LsO9DJ7BmplBS52Lu/g1/cc5jPf30Pn/v6bh5/poaqk13ZFk1NTezbt49Vq1aRm5ubiFqC1Zs0HA6TmZnJvHnzWLt2LePGjaOlpYWNGzeyefNmjh49is/XsytBd5KtQZKcs3x89USWTMjku8/sp9E7snRXp03l8pl5/Lu8YcAWIekuG6un5vBiWX2vqODSiZlICTur23psf9fcQradaO3RwsRpU/nJB+ZT2xHkpy8e7PU875idz88/uICtx1v57F939kq//a8rZ/CRZSX85rUjPLDxeJ/HP/mZ1aybkcsvXj7M23++gef21vYYc0Q3qWzx83hpNW//+QYe2HSCG5aX8NqXLuNDy0p6rCB2hqLc8fAOhBD8/uYlPaIaP37xIO3BKP/zvnmJHpC/euUwmiq4821WpPD+t06gGyafvqyrVvLXr1QwJdfDNfO7Ipxh3eCrT+ylONPFl67sGRU9FSklX3tyHyea/fzmhkWJ1NmR8MN/HaA9EOV/r58/YkF6gbFACNHZx5cXmHe2B5dkZGw53oKU1oJVkuGhxlqp9NceKkmSs43X62Xjxo2MHz+emTNnIoToU/CNFadGJnVdp7S0FF3XE0Y7mqb1a7Tz50dP8OiT1UwY5yYzw0F7RxRVFQRCJv6gQUqKg/ZOg7SCXFRF4vXqqKpCZorCtPE2IsFOdBxkpFoRQZsK/pBGMGK163A7EiWTxNfT7d00bVz8WdMWQVhXqGq1c6zFTcR0JBxe3Z6uXubBiIHXSEPBpFvXN0xUXN0ik/6IIGoK7HYbpoy/fgFCozNk/R7f7rAJVM2KYubnu63WJ0hkrOYyGNRRVUFnRwSnQ+BJseFwKOhRnWgkgqEbpOdnI4Ed+zopKnSSl+ugvjHMieoQyxdn4nKo1DaECEdMsrMcuF0q4bDBcy/VceMd2/nE53fw8//bx7Mv7mfJkuW4XK7E39hms+HxeEhLS+vVesRmszFx4kRWr17NvHnzUFWV8vJy1q9fn3AP7v7/d6bSXM9FA56kd/o5jqoIfvKB+Vz96zf5xlNl3HfzkhEVmb9zbgHP7a1j+4lWVg7gdPiuuQV87cl9HKjzMrsoLbF9YUkGqiLYfryVy2d02TVfPa+QX79awQtldYl6QoAlE7L42KqJPLDpBO+cW9grWvDeRePwR3S+8VQZX3x8N3d/ZFEigieE4IfvnUurP8L3nttPpsfeK1W0JMvNPR9dwuajLXzv2XLuemQX9xUfw6mp1LQFqO8MEdfNC0syuP9jy5hXnM6pHG3y8R+P7eJIo4/7P76sRwro1mMtPLqtitvXTkpci4P1nfxzTy2funQyealO2gMRHt5SydXzCpkUq2d87WAjhxq8/OrDC3tEJe9Zf5SjTX7+cuty3PaB33oPb6nk2T21fPmqGaOKtGw62swTO2u48/IpPf6eFzNSymQO5AXI5qMtOG0KC0p6v8+TDM6SCZm8drCRjkA0kc6fJMm5QF1dHYcOHWLx4sWkpXV9jsXdXE8H3cVkMBiktLSU8ePHU1RkLRD3Z7QTjZr87s9HqTjmR2KJx8P7O1kwJ4M9+71Mm+yhpj5MQR6k52Si2O2EIyaaKkhxSPxhDW9nG4qWhgk4NEsQ+oIKHUFBitOa2DhsEIoJxoRwjH2yCQHxpLD4PMhlt6KHIOgI2bApArsIEeqWPKY60jB0QTAi8AWDEEtlRZp4wxoaBpoKkZD1upu9Gh57l+r0hgTBaDyrC9wO0E0V3RSAJKJDlkfg80fIzlCJAtMneWgPSDJSBFKzEdUlelTHNEw01YamqUSiKh0yjVnTJHa7QlNzhIbmMIvnpxPVobE5QnaWg47OKJkZdiIRg4amMP6AwaJ5GZhGmBdfb0VRFDbvOkh+roO1K7JZviiLrMyuWk9VVRPtR0zTRNd1otEogUAAKSXZ2dkUFBSgqiptbW00NDSwf/9+XC4X+fn5RCKRZJprknOXKbkpfPmqGby8v4E/vdU7UjcULp+Rh9Om8K+9A6e6Xjk7H7um8NCWEz22u+0aKyZl8Y8dNT3SSqfnp7CgJINfvny4l1HQl6+aweQcD59+qLTPPpc3rZjAN66exb/21vH9Z8t7RBY1VeHuGxaxfGIW//n4Hn71ymGiRu/6hVVTsvnX5y/hf943z4pwClg5JZvPvW0aP/3AfP5+xyqe/MzqXkKyMxTlh8/t56pfvkFlc4D7blnCpdO7nF3fqmjmUw/tYEK2my/EaitDUYMv/30vGS4bd1xqRSF/+K8DBKMGn3ubVTsppeR3648wLsPFNfMLE+frCET5/YZjvHt+IZdN7+kgeyrltR384LkDXD4jl89cNmXAfQeiMxTly3/fy4RsN3ddPm3E50mS5Hxgy7EWlk7I6mF2lWTozCxIBaCicWzaLyVJMlqklBw6dIgTJ06wevXqHkIS+k5FHSvirUHa29vZsmULM2fOpLCwcECjHa9P5xf3VrB+UzONzSGaWyMcPOJj3uwMDlT4mD87jbqmCFMmeEhJceDMysLQDRRVZUKhhibCmBJCMoM0j7XgLARUNQoiuvV8cZ+ZeAKVQpeojI+o+1pQPPGrexl5RIeGTo2Q7kCP7aAp1naA9kgKNlfXtfb5AzR5FYQZRciueVgwqmDSdWKbpibSWyXgsmvUdyq0+cEWWz/3+wO0BjzowoOU0Bm0IqyZGXaEEOSkCWZOcjK+yI4RjWAYOqZukD8uE1UV+PwGEhhf7EFKgdenk5Vpo6U9SnaWHU0TVBwPgKKwYE4G/kCQvfuDeDx2JpR4cDgUjlf5efDvVVx7y2bu+vpuHny8koNHvD3MJxVFwW634/F4Eq1HNE1LRC2dTidTpkxhzZo1zJo1C8MwaG5uZufOnZSXl9PS0jLkPqXDIZnmmmRU3LZ2Eu+aW8CPXjjIpqO9vEMGxePQuGJWPs/tre1TlMXJTnHwoaXF/GNHTa+02v94+zQavWEe2lyZ2CaE4BcfWkAoavLFv+3ukUbrcWg8eJsVhbv5T9t6tQsB+OSlk/nkJZP4y+ZK7tnQ0wHWaVO5/+PLuGZ+Ib96pYL3/98mDvfRZ1JVBDeuGM+LX7iUxz+9il98aCFffMd0Pri0hGUTsxLpqWAJwke2VnH5T9fzp43H+cCSYl77r3W8bablBmeakt++VsHN928lP83Bw7etIMWhoRsmn3t0F2W1Hfzv9fPJ9Nh543AT/9hRwx2XTWZGbCK25Vgru6rauWPdlB4ppU/uqiEYNQYVh6Gowece3UWmx8bPP7Swx9iHy7efLqO+M8SvPrww0c4kSZILkRZfmIP13mS95CiYnm/dww439F8TlCTJmSIajbJ9+3Z0XU/UJ57K6U5zbW1tZc+ePSxdupT09PRE5KovIVnfGOIL397Ds/+uJy3FhmEKUlM0li/KxDBMFs/PIKJLFs1LJyfXgzsnD0XTUJAIITD1EMFQiMIMk86gghCQ6pJUN0mihsAXqyQKxqr642vvri4D1kRqqr2bmEy09FC6joufo6UzghZL07XbBHE5KoSgewKPw5UGCHTsRKNdtgKaYtDq75rnGCb4gl3XJmoITNP63RUPcqKhS42ILkhzWSm6qU7wxaabNgWiUcjKsDNnmoeiLAWbamKzaWgZOeRk2en0GzgdCpom0A2oqYtQUuTG6VA5UOEjNUVj2iQPjU0+Ko6FmTEthXEFLqQpqW8MEolKQiGTJQvSURX4419P8Pmv7+aur+3mR3cf4o0tzfgDPf0+4q1HUlNTE61HTNMkEAhgmib5+flkZGSwZMkSsrOzqampYcOGDWzfvp2qqirC4TBjQVJMJhkVQgh++sEFTMx284XHdg/Y5qM/3rtwHG2BKG9WNA24361rJhE1JI9tq+6xfcXkbC6ZlsM9G472MNaZkpvC966bw+ZjLdx7iiAsznTz8O3LMaXko3/c2qvHJMDX3jWL6xYW8ZMXD/HEjpoej3kcGr/+yCLuuWkxJ9uDXPObt7jvjaMD1n6eipSS7Sda+dqTe1n236/w9af2MTnXw7N3reXH188nN9W6G3cEotz+YCk/+/dhrl1QxNN3rqEky42Ukq8+uY+X9zfw3ffM4co5BfjDOl97ch9Tcj2JqCTA/60/Qk6Kgw8uKe7x/I9srWJBcTpzxw2cgvfLVw5zrMnPLz60MNHfcyT8c/dJnt5dy+ffNo1F45NtEpJc2Gw5ZtX6JcXkyBmX4cJtV/tcsEuS5Ezi9/vZtGkTRUVFzJnTf2/l0yUmpZQ0NDTQ1tbGihUrehjt9DWW/Yc6+NSXdlJx1MfyRZmkpNgoLnRSlO8kFNZJ9diIGpKiQg92t4v2kIapOcCUjMuzkWIPUdlkIy01HSMmvkwJLW0SX0ghxQm6AZoqE1FIPV4n2a1iJh5ZjK9jq0ImtsXFp13rEp2pHidVbU4cmuixcO2yw8lWlfgmf9j6ocnvxOFKTeynSJ2OoAq6FSjoCEg6ggJPTOB2BBRSY3YPrZ0RpJT4Ih4yY9VE8Wip3WaNyQZUNUB5JdQ3mUgJEUMhaqjYhA6ag6C0MWNKKna7ZfSjmybTJnnQdUlzq05RgZNxhS5aWv2cbNBZPD8Dp0PD69PxBwykFGSm2yjIc9DWHmXHng6yM+3MmJqKNGH7zlb+8NBx3n3TJv7re/t4/J81VFYHemTOdW89kpqaSkpKCoFAAJ/Ph67ruN1upk+fztq1a5k+fTrhcJjS0lLeeOMNDh48SFtb24g7NPh8PlJTUwff8QyTrJk8j0hxaHzj3bO49YFSXj/UyFVzCoZ1/KXTc8lw23h6V20iEtcXk3NTuGRaDo9sreKzp0TY/uvKGVz3u43c/9bxRFsMgA8uKebNimZ+8fJhVk7O7tHnbWpeKg/eupwb7tvCR/+0lb9/ehXZKV3LaYoi+OkHFtDsC/OVJ/aS6tS48pTX9q55hSyblMXXn9zH/zx/kBfK6rl6biGzCtOYVZja43xh3aCqJcCxZj/lJzt4enctVa0B3HaVd84t4PrFxayekt3jQ6HsZAd3PLyDhs7/z955h1lWVXn73SfcnCrnHLu6OifiOI5iQAVBkKCiqIiKio5jGh1Hx/A5MzqGGR0D5iyooIKOmAFpOseKXTnnujmcsL8/TnWCbmhig9z3eeqpqntP2PfeU6f2b6+1fivDxy5dzavPqVtZnZN88q5ubts9zjuf38Jrz6sH4D9+08NkNM2tN557zLBn/9gy9/TP84EXt59k4rNrZIn+2QT//oqH93Y5OB7llnuGuHpLDec3P3YTkfGlFB+6/RCb6gq46bmPPU02z6kRQrwI+DygArdIKT91mu22ANuBq6SUtz2FQ3zW8deBefwulTWPsFiT5/QoiqClNJAXk3nOKrOzs3R1dbF+/XoikcjDbvtkiEnLsti7dy+WZVFRUYGiKKc12gHHsfUz/9tPSZGLtpYgyZRFJmsRDrlYjJkURnTcHg2/2w2KSv9IjpLKQrwuiS0UYskcXs1AVd1YtkRVBW5NMrsEbhcYWQh4IZp2IniplcDg0VbbJ3rqHY04Hp3ZeF3HHzsqPlVhAM5Ctaqq2FKQymmEtOMBCk0VZE2B162QztrHzikRZE0NcLb1eDyQAkUPAiaJrHPcVDKF5vIwHdUoDtqAwBIeSvzQNyUoW1knPyqMLcv5Z5rOwmIcVAEel8C0JOGAQFVUbEMQ8ivMzYdILUVxucDjUZmcyRJLWvh9CsGgxsRUGiEMkmmT+jo/pgVLUYNQQGVxyaKi1EM6ZzEzlWEparBmVQivW2V4PEkqbVFU4PTDXNMeJJu1+MItA7hdg6xZFaa+xs+5WwpZ3xnB7XLeeEVRiMViHD58mHPOOQefz0cul8M0TbLZLEIIKioqqK11ugHMz88zNDRENBolHA5TVlZGSUnJKSPvpyKZTOYNePI8fv6upYTSoJtbd40/ajHp0hQuXlPBz/dMEMsYhDynN1m47tx6bvjOLu46NH1Sz8V1NREu6ijja38Z5NpttRSviDghBJ+4rJO9o0u844d7+dXbL6DghMhaZ1WYr79uC9d94wGu+8YObn3zuSeZ0Lg0hS+/ehOv/voObvrBHj595bqHmO4UB9x85TWbuH3fBJ/+vz4+cVf3sedKg27CXp2saTO+lDpWdC4EnNdUxM3Pa+FFneX43Sdf8iMLSb5x7xA/3DFGUcDFj288l40rkTzblvzX3X187Z4hXntuHTeviOf7jszzne0jvPbcejbXFx471n//oZ+QR+NV59SddI7vbx8h6NZ42Qnv44MxLZv3/fQARX4XH7h41Wm3eyRsW/Lun+xHSvjsK9fn3VufYIQQKvBF4CJgHNgphPiFlLLrFNv9O/B/T/0on33cP7jAlobCR+zbmufhaS0L8sfeh89cyZPnyUBKycDAADMzM5x77rm43e5H3OeJFpOZTIadO3dSXV1NMBhk3759SCmpqKigoKDgpAVo23YcW+/buUhzvR+XW2VmLofbpeD16lg2VJT5kUIhkROEXAq5rE1hSZBwUMHr05BmkkzGTag4QKkXBiYl1aWCQr9keFZQXwaJ7PHoo1t3xKRbOx5xPIpbg9zKW2GdEIU8KiaPprsauQwIZ252NEI5FVVxn6hlpPM6F+MqBX7JcXkKYwuCoiAYppPGCjAbV2kshYWk83vC8hM0koCb+ZjE57aRQj0mSpeTgDxu0mPbcGQCyguciGyxk1VLMg0uTZIzYG5Jks1KCkIeCoIK6ViSWDSDz6tRUuRicjrL7EKOyhIbgU00rlBcqBJLGBSEdZaiOYqL3GSyJhOTGfx+jU1rwmRykh37lggHNaorvbhdKumMyXLMYGg0TXmpm+oKD6m0xe/+Ms3+w8uMTabZuqGQczcX0NakMjnezdatW4+JPI/Hs3KN2FiWhWEYZLNZbNsmFApRWFiIruvE43FmZ2cZHBxECEFpaSllZWWEQqHTRuNt237Seqs+HvJi8hmGpiq8bF0l371/hETWJOB+dB/htVtr+cEDo3zpjwO8/8Xtp93uH9pLaS8P8rFfdXFhc/FJwvB9L2rj4i/cy7t+vI9vX7/1WHpEyKPz39ds4KqvbufG7+3me2/Yhks7Prnb2lDI/75qE6//9k7++WcH+exV60/6gwl6dL7z+q288ds7uflH+9g1vMSHXrrqJEMNIQSXbajmsg3Vx+qkuqdidE3GiGUM3LrKy9dX0lgSoKHYT0OJ/yGiWUrJrpElbrlnkN92zaApgss2VPG+F7Ufi3COLTrRvT/3zfHKzdX868ucVJvdI0vc8J1dNK+YIh3ljn0T/K57lve9qP2kz2RgLsEvD0zx2nPrH9bB9ad7xumaivHFazcS9j72G8VPdo3xwNAi//6KNdQW+R55hzyPlq3AESnlIIAQ4kfApUDXg7Z7O/BTYMtTO7xnHzOxDINzSa7eUnO2h/KMp7UsyK27x1lM5h5Xmn2ePI8Gy7LYt28fuq5z7rnnnnGvPk3TnjAxGY1G2bNnD6tXryYSiSCE4DnPeQ7z8/OMjIywf/9+IpEIFRUV+AMFfOGWIaamM3jcCkJVmJrJUFnhw8hJNF3B43MjEYzPWVSUusgZEtXrpTriJpUVJJJZikM601GVZAYK/I6w8rlOrHN05kcSSVEA4kmYnIOikMC2JRWFx9NX3S7IrVQRHfVIPLq2ppzg7hoKBZlfST44sQ34clLhaMTxqChdTCoUh45/Fi4NYkmF8ojEMO1j6a8gSGWPz9NsqWAL78pTGi4lhWHlGJ52DHKypqAkJFlOCcJemwMDjoBcWinX9ugwF4NEyqkb9XkgEhC4whqWZWMZGqrHS0RVkVKQydnMLRrUVUksA44MS9pbApiWjWVBMmURDOiAZHgsTUOtH49HMDqZYWYuS32Nl8KIi3TGZmI6jcetsrScY93qEB63QndfgpxhUVPpzKnaWwLEEzn+/X/6UYRk28YCekZmOHdzIavbw2iq874oinKs/Qg4QjCXyx0Tl4qiUF1dTUNDwzEDn/7+fuLxOAUFBceilprmzB2llI85PfbJJi8mn4Fc1FHG1+8d4p6+OV68puKRdziBzqowr9hYzTfuddIp64tPHS5XFcF/vXI9l37xXj50+yH+59oNx4Rfc2mQj7xsNf/884P8758HuOm5zcf221BbwH9esZabf7SPD/zsIJ++cu1JgvG57aW86/mt/NfdfWyuL+TVD4rihb06P7jhHP7jNz187Z4h9o0t86VXbTypZcdRigJuzm92n3FK6PB8kru7ZvjlgUkOjEcJe3Xe+vdNXHduPWUrfRxjGYMv/vEI37xvGEXAx1/eyau21SKE4NcHp3jvbQcoDbr5/hu3HYtyTi6n+ZfbD7GxNsINFzacdM7/ursPt6bw1odJN03lTP7r7j421ka4eM2jizafSDRl8Knf9LCtoZBXbs5PrJ8kqoATi4nHgW0nbiCEqAIuA/6BhxGTQog3AW8CjqXA5Hn03D+wAMC5jfn+ko+XljLH2KFvJv6wLaTy5HmiSKVS7Nq1i7q6Ourq6h55hxN4oiKTR1uPbNq0CY/Hg6Iox+ojKyoqqKioQErJ4uIiBw5P8OM7eomnFHxeHdPWSeckFRV+pBBkLRvNoxNLWASCLuqrNVIZ6fRYVHVmo5KwO0bKCBHN6FQUKSAtUjmVoqCkb9SiocIRZpkchH2SuUXJbBQqipy5lEeHyUXBchJ8bknYDy4F/G4ncpnJnfz6FJnBxpnjSHl8PpY6wRNmckHQWiWIZyTp3PFtEpnjPx9dlx+ZU6gutDnR+DmectJzsyYoQjI1b6B5XE4/S8WLVwc7Jgi4cyRyLuKxKGhhFpay2NKNR4f5GBQEnPTXdA4iAdBVgZWzCAcgGhcsxSQeVaAqAuHS8Ye8CGlQVSaxbZXhSYv21iBet+BAV5yaKi+6JlAVGB7N0NYSQhWSrr44liXZtC4CSAZGUqhC4PWq+LwqxYV+DEPywOFlAn6V1qYgihAsx7Mkk9A/lKQgLGmqD7OwZLL7wBh7Di4zNpHmnE0FnL+1iM3rComEjwcHFEXB4/Ecaz1iWRa5XI50Oo2UkkgkQklJCaqqEovFmJmZob+/H03TKCsrI5FIIKV8VO0Bf/Ob33DzzTdjWRZvfOMbef/733/S88I52OeBi4EU8Dop5Z4zPsEKeTH5DGRzXQERn87dXTOPWkyCE1n8zaEpPnFXN1+7bvNpt+uoDPGui1r5j9/0ctG+Ml6+4Xja6TVba7h/cIHP/LaXzqrwSe0uLl1fxdB8ks/9rp/GEv9JYhPgbc9tZs/oEv/2yy7ayoNsOSFVFEBXFT74kg621Bfy7lv3c+F//JFXbKzmH9pLubC1+GHTc08kY1j0TMf5ffcMvz08Q+9KLdCqihAfu3Q1r9hUfSxaaFo2P9wxymd/189SKsflG6r5pxe2UhH2ks5Z/NuvuvjhDsdE539fvYnSFfFp2ZL33LYf05b814PSSg9NRLnzwBRv/4fmY+nAp+Ib9w4xE8vyxWs3PqYeokf5nz/2E00bfOSS0xsW5HncnOqNffBS4eeA90kprYf7HKSUXwW+CrB58+an53LjM4D7BxYIebR8H9UngKOu1P15MZnnKWBhYYEDBw6wbt06CgsLH3mHB/F4xaSUkiNHjjA/P8+2bduOichT9QoUQjA0pnD7b2F20U1lhZuuviRlxSaWVPC4bVwuD36/i/HpLNWVPnRNAVUlUqgjFZV0JodLZkmaIQoCKotJSUWBZGRGEo6ojuCSTj9IRUjcGgxO2sgVK9b4SuTx6H8VTYFkRpDMOG6a4wvgdUkMy0lhzWUcgVboExRGBNoJ6bG6CvEV0elzQSIlmI8quN3WsfMALCcFXrcj7o5ObyxbrESPj/9/W0xAZZEga0owk2RliIgHklknVde2nHRZXXdBDtDDBDSDoWkNpM1CNAP48OgWM8sqqgIhnyBnKNiqZHEpi0uF0ghks4JcTiOTzpLKSOLRJMGQF7fuIhKxsS2bvQej1Fb5CflUZhYzpNM2TQ0+NBV27nVMd1oa/UTjJj39cSrKPPh9Gn6vSipjMjOXZWomS2O9n6KIzlLUYGomTXmpl9n5DHVVktKSMAe74+QMSUdrCMuS1Nf6WFjM8ZH/7EER8Ly/K6W+xse5mwtpaQwcm5s9OGp5NB3WMAwymQy6rlNXV0dLSwu5XI6xsTFuvvlmxsbGeMc73sHFF1/MC17wgoeN4luWxU033cTdd99NdXU1W7Zs4QMf+EDHg8pyXgy0rHxtA/6XBy2Qnwl5MfkMRFMV/qG9lD/0zGJa9qOuiysNebjpH5r5j9/0ck//HBe2nL7v4Y1/18Tvu2f5lzsOsbWhkMqIk7oghOBTl6+hfybO276/h5/fdB7Npccdpm5+XgtD80n+8/96qSvy8dK1x+sFFUXwuavWc/mX/soN39nFT99yHk0lD7U6fsHqcu4sD/Hd7cP8ZNc4P90zjqYINtcXcGFLCSGvjqYIVOGsUllSMjyfpH82Qf9MnNFFp3ZSEU6K7Ydf2sFFHWUnRTmTWZPb903wjXuHGJhLck5jIR96Sccx19We6Rhv/8Fe+mcTvPk5TfzjRa3HUndtW/KBnx3gviML/Psr1jwkyvuZ3/YS9uq88cLG076/84ksX/7zIC9cXXZS/eWjZXQhxbf/OsKVm6pZVZGfVD+JjAMnhn2rgckHbbMZ+NHKP41i4GIhhCmlvP0pGeGzjO1DC2xtKEJ9HG108jiUhzwE3Vq+PUieJxUpJcPDw4yPj3POOefg9Xof03EURXnMvfwsy2L//v2oqsqmTZsATmu0I6Xkjv+b4mvfHSabs2msD3Cg2+kbebgvyerWANPzOUqLMqQyKbxeL6pmIzQFXVNRFYWeoRxVxVlc7iBzcaguVVCFxXxMobxYASySGQW/B1IZqIhIuoYlZRFYTjtmOkcjjkfTUEM+WFiJDh41+Pd7xLHHluM5JG7cHi/9k05UsrXKWbf06BBfaePhXlmfn48LVkcEy8nj99JkWuBzOfscbfMBkEgruDUnVdajQzThpPQGfJKAz89cwjHSAQh5IZMRxHHE7VH31lhKxbQFZRGYi3rRFYtYPI0tAwTdaTI5nYWYimWBz61hGSaJuEk8bhIJgNejkoin8AW8xJLgsSQKoApBa6OPYFCnpy+BUKCxzo9t2+zaH6W6yktNpZfRsRQT0xlWtwWdci0piScMlqIGhulELYWArr4YQggqy30IYREKmPj9AXbui+F2CzaujWAYktn5NKXFXvZ0Ramp9FBT6ePIUIK7/zzLjr1LTEylOXdzIRdsK2ZDZxif77gEO7qIcTRqaZomhmGQSjlOstXV1dxxxx0897nP5dJLL+Uvf/kLL3zhCx/2Gt+xYwfNzc00Njpz0KuvvpoDBw48uCznUuA70smf3S6EiAghKqSUD9+U/kHkxeQzlItWlfGzPRPsGF7kvKZHn971+vMb+NGOMT7yi8P84m0XPMSY5ihOuus6Xvz5e3j3T/bz3TdsPSZe/W6Nr79uC5f+z728/lu7+OXbLiC80i1XCMG/v2ItE0tp/vEn+6kr9LOm+rjTYsTn4lvXb+WyL93HdV/fwVev28Tqyoc6MdYW+fjgSzp434va2Tu2zB97ZvlDzyz/+X+9pxyvpggaiv10VIa4dH0VrWVBzmsqOqnmE2BwLsF37h/htt3jJLImHRUhvvqaTVzUUYYQgpxp8537h/mP/+sl5NH57hu2niS6LVvy4TsO8ZNd47zjeS1cteXkNMW/Dszzx9453vei9oetgfzv3/eTNize+6LT16+eCZ/7XR+qInj3C9oeeeM8j4edQIsQogGYAK4Grj1xAynlsVxnIcS3gF/lheSTw1Q0zchCitec8+jS4/KcGiEELWWBY1kcefI80ViWxcGDB5FSct55550yCvhkk81m2blzJ5WVldTU1CClRNf1U2b0JJImn/3KEX775zmKClyUlXpIJE3O2VTA/KLBlnURDvcnaW8OEE/aFJe4MS0TM5djcMGmIKzj9UJVkcLEop9VTTpSWCwsGWRzkJOS4jAMTFh4/S6qisE0rZUUVIHXI1hOQ8h/XDgmViKHJyZpHU1ZPTqVE1gY0pn3HC2z8+jQMy5oqpCcYDjPietwiwlxwuOSxZTTA7Kq5OT0WVuCS3XEpHdlepWzVCJ+i1jKmSPORcG7Io6X4o4ot2xBxA+WKUmtiGJdc0ZcHFaZjwUAicelMBdXwM7gFjlsqZFI2yxFbdyqIJWxWF5cIuB34dE1gl7J9Ewan1eAIhzzHrdECmhvDrC8lKNnIEFLY4DiQp3u/gTLUYOtGwvJGTbJpImi2EzPZSkpclNS5CKRNOnuT1Bc6KK81INtO9HJSNhHd3+S5no/xUUuxqcyjE+mWd0WZH4xy7rVIbwele17FrFt2Lg2TC4nKSt1Mz6d5n0fO4SuCT5wcxsv+PuHdlZQFAWXy3XM4fWosPzJT37C8vIyz3ve83je8553iiv7ZCYmJqipOb72XV1dDU6pzomcqnSnCsiLyWcDz2krIejWuHXX+GMSkx5d5ROXdfLab+zg5h/t5Suv2Xzalf26Ij8fvWQ177ntAJ/9XR/veeFx4VMV8fKV12zmqq/czz/dtp+vvmbTsRuyR1f5yms28dL/vpe3/3APd7ztgpOEVW2Rj29ev4U3fnsXl33xr/zzxe289rz6U97QNVVhS30hW+oLee+L2ollDLKGjWVLTNs+1neyIuw9yfTnRKIpg7u7Z/jF/kn+0jeHrgpeuraS15xbx4Yap+DesiU/3zPO53/fx9himuevKuVTr1h7UppqMmvyjh/u5fc9s7z5OU286/ktJ51nMZnjPbceoK7Ix+tWWomcitGFFN9/YJSrttScMjL7aNg+uMALVpcdq/3M8+QgpTSFEG/DcWlVgW9IKQ8LId688vyXz+oAn2U8sNJfMp+S+cTRVh7kN4emH3VtTp48Z8Lc3ByhUIiGhoazcn3FYjF2795NR0cHBQWOc/vphOTgcIIP/XsPY5NpNnSGMSyJpkJRoYdM1qa40EU2J1nbEaJ3MENzox9VUxibUWltDBAqEMzMp8mYOpGgRFdNUvEE2ZxONK3S3uCIhZlFm/IilaQB0rQZmpS01DjT86PjOho9dJ/g0Hp0yILjKbCmZQA6IS8kVgxyjqa2+ldaiwxMCVorj1dWnOjpYlmCsPd4v8hFnLRWry6Zjx3fLpOF6WWoL4dUKgk4c5jlhGAx4aS0GhZU+CRHJp1zVBTCUhJMU3JkXOJxOQIzmhRICYrimAcVBgWa5kK1ckjLSduVdhpVGIS8EstWWYrmULQA6YxkfDKLqtgURVz0DSZpbXATCun4vSrhkItsVjIykWHDmjCqgMO9cVJpky3rI+QMm+mZDGWlHgaGk9TX+vF7VYZGk8wt5GhtChDwaSwtp5mZy1JU5CGbk6zvDKOqgu27lxAC1neGkTaEg87ntn33Eh63YH1nhGTKYnwyRX2tn/2HojTW+bhgWxEXPaf0jK5ZTdP49a9/zVe/+lV27dp1Rvs4n+spq2ce/OCZlO48Inkx+QzF59K4bGMVP9o5xodf2vGQyNuZcGFLCR+5ZDUfvuMw/++ubj700o7Tbnvl5hp2jyzxxT8OsLG2gOetOr6asqmugPe/uJ2P39nN1+8dOimtsyjg5gvXbOCar27npu/v4ZvXbznJvn9tdYRf33wh77ntAB/5ZRe37RnnXc9vZVtj0cM61YY8OpyBbppPZPnt4Rl+fWiK+wcWMG1JZdjDu57fyjXbaigNHrVwltx5cJLP3t3HwFySzqoQ/3Z9J3/fWnLSP5nZWIbXf3snXZMxPnbpal5zbv1J58uZNm/+3m7mElluvfFcvK7Tr7p+7vdONPHm57WcdpszIZk1mYxmaC17+jWy/VtESnkXcNeDHjuliJRSvu6pGNOzlQeGFgh6tHxq9xNIS2mQH6bGmE/kKAk+cnuGPHkeDeXlj91k7vEyPT1NT08PGzduxOv1nmS082DufWCBf/uvXiIhjXO3FJLJWOQMC6/XzfBoiqpKD3OLBsVFbrJZm9ZGP/3Daepr/bTUuzkykqEonKMgEmIxrhAKuQkGLIamoKo4BQQxsimml1Qs4aK8SGAYJsmMMz86Gmk8Fg1cMc4JnpDaetS1NeiDWMr5OZHMADp+j0pi5RiJjPP9REP5pbikMAxLKXHMPRbAtI7WVYqViKHD5AIoJ0xnlpOOQIzHkyeVWgkEhYHjY8wZx8Xq0XfZMiW6JklmBGUFzrYFAVheya736RY7D2dxaVBaIBiZUxC4iPhcBP0mozNphBCoIosqoLJcY2nZYnQyy4YOP9OzaTRV0D+UJhTSMExJS2MAKSUjk2l8XpWmej/pjEX/YIL2liBzCzmaG/zommDXgShCwJYNBViWTf9gDGnblJZ6Cfp1DMMmlbLoHUhQENZoaw4Si5sMjiRobQrS3ZegrclPUaGL3iNJFpYcZ9il5RxrO8K0NAZ446vOfDHl17/+NR/72Me46667HlVtcXV1NWNjx4OO4+Pj8NCynDMp3XlE8mLyGcy122r5zv0j/HTP+MPW5T0c151bz+BcklvuHaKpNMA1W0/vKvmRS1ZzYDzKu368jzvfceFJtYdvuKCBHUOLfOrXPWysKzjWqxFgS30hn7x8De+97QAfvuMQn7xszUl/REUBN19/7Wa+9ddhvnnfMG/49i40RbCxtoALWoo5p7GIkqCboEcj4NbwnJCfYduStGGRyllE0wb9MyutQqbi9EzHGF9yluvqiny88cJGXtxZztrq8LHzJ7Mmv9w/ybf+OkzPdJzWsgBffvUmXri67CF/6H/omeGDPz9ENG1wy2s38w/tJ6cnSCn50O0H2TG0yOevXs+6mshp38sjs3Fu3zvBGy5oeNzRxIE55w7cVPL0a2SbJ8+TyfbBRbbWF+brJZ9Aji5K9c3E82Iyz98ER3tYzs7Ocs455zhC5DRGOwA/v2uSn/96itZGH16vSv9ggkzWorTIy+79UdatDrO/O0F7s5/9hxN0tAXJZm3amnyMTGZJZiwKAlkS2QDCrVJXoXJoIENLvQewUPQQdcUWAxMKZQUZEobKzGya2ZiLQMCFS3PaZCjC6cUY8YPApjgo8LlgYUWWJVdEos91XEwKLQAWHH1pbu2EViMn3CbTWegbk9SUC5LZkx+fXoLWWnlSfMqlOdHJpbTAo0tiK8JvPuGn8oTEEEVI0lmJk7gDqbQk6IF4RjCzDJGgpH/cprpYMLF4PC034IGFGIRcOYYnbSwbygsVJuYtpITaMpWsYTG7kCLocWFkpfMZkiOZyKCJFEVBhX1dWQrCOsmUhVChrFhn5/4oDTVeshmDijIfpmmTyUpGx1M0NwQwDEk46Ix31/4oxYUumht8TM9kGBpNEQlBRWUAXVOZnE4RCrqYnE6zuj1IyK9xsCdGImmxtiNMOmPS3hLA5VL4684lALZuiJDL2aiqoLbKy9vf0HSspd4j8fvf/55/+Zd/4c4776S4+NFlIW7ZsoX+/n6GhoaoqqriRz/6EcAvHrTZL4C3rbQ52wZEH229JOTF5DOa9vIQm+oK+MEDo7zhgseeMvKhl6xiaD7Jv9x+iLpCH+edptWGR1f58qs38ZL/voe3fH83t735vGPCTgjBf165jpf+9z287ft7uPMdF54ULX3l5hqG55N86U8D1Bf5ufE5J7fKEEJw/fkNXLO1lj0jS9xzZJ57++f57O/6eHCk3qUqeF0qWdMiYzy0+F4R0FgSYH1NhGu31fL3raWsqgie9P4cmojygx2j3LF3gmTOoq0syOeuWs/L1lU+ZGI6vpTio7/s4u6uGZpK/Hztus3HDHpO5Ov3DvGTXeO8/R+auXT9g9PST+azd/fj1VXe/KD34bFwVEw2lz6+VNk8eZ5JzMQyDM0nufZhFsDyPHpay4+3BznTtkt58pwthBDYtn1aV0vbttm/fz9CCDZvdtzrT2e0A/Dj28f5w33zLC5l8ft8bN+9TDioUVLoJmdYnLMpQjRusnlNkOW4RWOdh4HRNLVVXqbHTWorVabmMqRUP+2Nbg4PZMlk3YT8ChOzJk1VGnNLWfQCHcuGSEEYPWkyF3UR9hlkLReF/iwGKpUFNjNLJoNzNooisCXUlSl4FYVgQGUm6sxVstkk4EcR8ljvx5XKHwJeyB416VmJZEopiaac3zNpm6Rx/L04Gh20LUnuBMMdTZH0jknqKiUezUljBac3ZjJlc1Q8JjOSiXmoKpEkszC5aFNeIACBZYNHcYRiKuscY3GlljJrCuLxLCEvzC1LCoKCnAnZHFSXqiTSFlMLEr/Lh8ul4NYtpG2Ry7qQAhZjErcuCQdMYvEMQa+koEDhgb1Rqsvd6BpIl0oybeHWBYmkQWW5B11XVlxaPfQNJulsD+LWFXbuXcQ0oaYCSkpCjE1kSKUtSovdqKqgtSmAEHD/7iUUBbZuKCBn2MQTBl6Pyq59y5SXumms8zM7n2VwJMnFzyvnn97aesZC8k9/+hPvec97+NWvfkVZ2UNrKx8JTdP4n//5H174whdiWRavf/3r2b9//4PLcu7CaQtyBKc1yPWP+kTkxeQznldtq+Uff7Kfv/TPn9Se49GgqQr/fe0GXvGlv/Lm7+3mxzeee9q0sdoiH//1yvXc8J1dfPSXXfy/y9ccey7s1fnStZt4xf/+lZt/vI9vvHbzSekP//SCNkYWUnzqNz343dpDekyCI1jPay7mvOZi3vcip/5w39gSyymDRNYknnG+0jkTt67i1VV8Lucr4NFoKgnQWhY8KXp5lGja4K6DU/x45xj7xpbx6AovXVvJNVtr2VgbeYgYNyybr987xOd+14dA8L4XtfOGCxpOWZN554EpPnlXNy/uLOddz2992Pd7z+gSdx50WoYUPUzLkDNlaC4JQG1hPjKZ59nD9kGnv+S2xsfugpznoZQE3ER8et7RNc8zAk3TsCzrlOIwm82ya9cuysvLjxmRnK4+UkrJd34yyi0/GEURsKolwNxCjo1rwmiaIJ60KPSqdPUl0DSYX9JIJC1WtYZoqtUQqiDgNekesNm0JszcksWhIxkaaz3ML0uaqnWGJnJIW2ExalNeoqAqJsmEgWWDZSuUFvsZm4OQX2F0OslEJs1yNkxhwCSadoomkxlYiFmUF1ggBX5PFtt25jthn2B5JUJ5NBp5Ymrr0VpLnxuWVwRmPAXFEclCQuDWJdGVxwcnobLkuGg0TceBVVgWiUwCcBbUAx7JwKSkrVaymIC5ZWd/r0uiq4L5JZhekrhdElsKluM2IJiLQiQgSWQE5YWwsJjDNG3mY875isOKY0rkcqKys8tOLWUk6GJu0SQet1GFjVcHn0+noVZhZDyFy6XTVu5laTlLz2CG8mKBIMnwqEJBRMPn1VBUgZQCv19ndCJJebGbeMKkuc6HlDZ7DkYJBlRKCyyk4mPPgRgBv0pjnR9VEUzNplBVNz39CepqvFSWeRibSDM+lWH96jAT02nWrQ7jdQt27FnEtODlL67gH9/ccsZC8r777uOd73wnv/zlL6msrHzkHU7DxRdfzMUXX3zSYyeW5ay4uN70mE+wQl5MPsO5eE0Fn/ltH//xmx4ubC4+4wv1wYQ8Ot943Rau/PL9vPqWB/jRm86h5TQ1eBd1lPHm5zTx5T8PsKmugCs2VR97bk11mI9eupoP/Owgn7yrhw+/7HgdpqIIPvPKdaRyJh+6/RA7hxf5l5d2PGwPxkK/6yHppI8Gw7L5c+8cP9s7zu+6Z8mZNk0lfv71ZR1cvrH6lE6rUkr+2DvLf/yml57pOBd1lPGRS1ZTFTm1ffkv90/yzh/vY2NtAZ955bqH/QwSWZN3/XgfVREvN/zdY0tNfjBH27UMzSeP9YnLk+dvnQeGFgm6NTry9ZJPKEIIWkuD9OUdXfM8Azjaa/Jov76jxGIx9uzZw6pVq47VmWmadkohaVmSz/xvP7/4vymqKz1UVvhIZyx8HoWp2QzTczk62oLsPxzH5RJEwh7GJjOsWx3hYHeczlVBBkaSNFSrrGrysbcrzZp2P263ja5IlpczTLlhOW7j90mEgETKproEBidMVje5mYs5DqtBl0EypZDMQEVJhOUZiVu3IK2jCIvFGIDArcPwjA3olBUJgl6DgEfFpYEtBQLQVXHcqVUeN+k5UUx6XTA8aRKJ6PhPmIoJAbZxPOKYSDuhzoEpQVOF54TtnMeXYhahgMpS1Hl8fFZSs+Ivk8lBeaFEAN1DNsURhXhaEPELEhnQhMXknEVjpcLgpE15oSCWktjSEbpT8zaqIigpUDEMm7DHIuwRxBJOWq2uSrAkzbUeRsaTxBIwOJals82PEJKDPXEaql0sRzMIO0MyrVBY4GJ6Jk0kqKNpCrm4ScCvMTicobXJSyqZZnpBJZ5I0dzgpzCiMzaRZm4hS1NDgGTSYt3qEG6Xwv27nHTWzeucFiFFBS4ENtv3xHG7Fa56eSVvek3jGc/Pd+zYwU033cTtt99+khvr05m8mHyG49FV/umFrbzrx/v51cEpLln32Fcwagp9/OCGbVz11e1ce8sD3HHT+ceEyoP5pxe0sn9smQ/+/CCrK0MnRTKv2VpL30ycb9w3REvZyXWYHl3la9dt5hN3dXPb7nF+uX+SbQ1FXLymnBd2lh8zxHksGJbN4FyS7qnYSt1kjAPjUaJpg0K/i2u31nL5xirWVIVPuzL5h55ZPv/7fg6MR6kp9PLlV2/kRZ0VpzyflJL//fMAn/6/XjbVFfDN67ficz38n9RHf3GYscUUP3rTuY6J0BPA37c5d+w/9MzmxWSeZw3bBxfY0lD4qPvs5nlkWssD3LFvMu/omudpz1ExeSIzMzN0d3ezYcMGvF7vsRrJU13LmYzFJz/fy9RMxnHo1BR271+mrNiNYUriCZMt68Ok0jZrO4J43E7K5bYNEbIGbF4fZGwiQU2Fm6EJaG0UdLa4mZ7NomuC0SmTylKd6QWL0kKNmUWT1jqd8ekMDTUewCadg7pSSd9QhkRaEgk784j4SpTR6/VCTFIcVplbSW1dWFwGwrg0ycwCzGDRUG4zNC2JBARRJ2EJFwolQRXTVphfEZD6CbdMISTRJNRVSLQTxE7YD72jFs11ComMYCF+PEqZSquoihOpzKzUW84uQ1HoeNlRxoBU5vjv2ZxEVxzhGfI6wjaWkpSEoH8khwAWos7zXrdgaMom7LdJJNOYto+WahgaTRGPmxQXagyNZWmu0UllBPMLJi7NxqNDUYGTrrqhM0gmbTI0lqazLcj4ZJpwyIdLE9jkSCZNLMsAKegbhOZ6H4mkuWLmkyaVUvF4VFoaA1iWZMfeZTQVOtvDK9eNiW07j0fCGh0tIZaiBgPDCVa1BunuT9DeEmBtR5g3vaYRVT2z++iePXt44xvfyM9+9jPq6+vPaJ+nA087MSmEKAR+DNQDw8ArpZRLp9huGIgDFmBKKTc/daN8enHpuiq+8udBPvPbXl60uvy0rTHOhMaSAN97wzYu/9J9vPl7u/nJjeeeMmVUUxW+cM0GLv7CPdz0/T384u0XnOS++sGLVzEw59Rh1hf5Obep6KR9//Vlq7lmay2/OjDFXQen+Jc7DvPhXxxmbXWEkEdDEc6KmrJy8zdtiWHZjtOYZWPaNhnDJmM4dZNZwyJlWMdahLhUhZayAC/oKOOFq8t5TlvJSS6yJ2Lbx0XkwQlHRP7HK9Zy2caq0+4Tyxj800/289uuGV66toJ/f8Xa0/bqPMqdB6a4dfc4b3tuM1sbnrjUvPKwh46KEH/sneUtf//4azDz5Hm6MxvPMDiX5KrNz4xV22carWVB4hmTmViW8nC+3VCepy8nikkpJYODg0xPT7Nt27ZjJjunM9pZWMrxha8dYXo2QyJpEE0IpmaytDb5MU1JkVelpdHPcswklTLxBVzs746ybnWIXQfjtDZ6mZ7LUlHuQVHcdLaq7O9JsKY9yNyiSWdbgLlolsKITiprUlGkYBlZbEslkZbEV/pHZjMGsZwkkRaUFihE0+BxwWLcmc8cNdfxexXmVgSXrTgLx349Q850Fv1jSRNQCfkE0aSz3fSiTWLCprpEUBLWmYuJk1pG5Azn5+4hk46G43MYtyaR0mlV4ndBdKV+UldhcNKmvd5mPqGwEDt+LKd20pkzaSrML5gclRlzUdCk8znNR22kVFhOCnxKjkQaassUxuck5YWC6QUbgcQlkiTsIDVFFhOTWabnTNrrXfQM52itdzM8kSMcgJoKF4Zhgm2DFDTXe4guG8wvGTTX+ViK5gj4VAJelZ7BBA3VXixbw224GBpN0VLvIpVMsbBk4XZLsjmN+lofhimZncsyPpWhstxDbaWXuYUsg6MpOttDjE6k6WwPEvTr7D6wdKxlSDpj0dYcpKbSw03XN52xkDxw4ACve93ruPXWW2lubj6jfZ4uPO3EJPB+4PdSyk8JId6/8vv7TrPtc6WU80/d0J6eKIrgvS9q4/Xf2sWPd44+pF3Fo6WtPMh/XbWeG7+7mw/+/BCfvnLtKVf0SoJu/vuaDVz7te38888O8vmr1x/bTlMV/ufaDVz2xft4y/d3c8dN51NXdHJNX2tZkH+8KMg/XtRK/0ycOw9O8deBBRJZE1s6/xhs6dzQNFVBVwSaKgjqGrqq4NEVPJqKW1fx6Ao+l0pzaYBVFSGaSgKnFYJHiaYMbt09xve2jzC8kDojEQmOMcWbv7ubkcUU//LSDl5//ql7Y57I6EKKD/zsAOuqw9z8/MfXCuRUPLe9hC//eZBo2jhl6m6ePH9L5PtLPrm0lDoT1d6ZeF5M5nlac1RM2rbNgQMHsG2brVu3IqV8WKOdoZEEn/vaAHsOLFNX7SMWN9F1hXM2RsjmbHI5G59PZe+hKIUFbmwpGB9Ism51iN6BJM31bobGslRXuOkbsqiqsOgbzlJeorMctWiq1kFaNFUpzC+kmZ830BU3c0sWltCJBBR0xcYXkBwZN1jV6GYpYVMQUommJaUFKlNLTs3j0oqozGYNQMPvliRWWohEIj6W0hKQLCdWIofJOBDA64LESmqrpkgO9mZZ2+o6qRVILOUc27Agm7U4mtZqryzMHxm3qCuJAc4CeCQA0Th0D5usbdbpmzh+rLFZk6oSnellpz1I75CksQbmYlAUBDNrs5xUiKWgqgRcmk0y4Zzn6AzK6xJM5yQFnjjBgJ+JI0kCisrYjEldhUb/WI6CoMLknEV5kYK0bcYnM7hdCsuxHBUlOlkD4hlJc4MPwzDJGZKCsMb+7hgbVoewLEn/UBzbhnUdIQzDpn8oS1WZgqq6CPgtJidjWFJgWgrrOoK4PRq79i9h2bC2I4xtSyrL3Oia4P7di+ia4JzNBaRTNguLOdZ1hnnP29rOWEh2dXXx6le/mh/+8Ie0tbWd0T5PJ56OYvJS4O9Xfv428CdOLybzrPDctlK21hfyud/1c1FH+eOeALxwdTk3P6+Fz/++n47KEG+4oOGU253TWMQ/XtTKp3/bx/qaCK8/YbuQR+frr93Cy790H5d96a989w1bWV35UBdUgJayIO8sC/LO5z+uYZ8R/TNxvvnXYX62Z5yMYbO5roB3XdTKxWsqHlZE2rbkRzvH+NivuvC7NX7wxm1sO4PJ7Fw8yxu+vROAL1yz4RFF7mPhguYSvvjHAXYOLfL8jsdeY5onzzOBB4YWCLg1Vlfm6yWfDFrLHEfX/pn4YzZ2y5PnqUBVVTKZDN3d3ZSUlFBfX4+U8rRGOwB7Dizxz588TCJpsaY9SM6QNNT5cbtVegeTJJMG9XUBdu6LUl/jJZ2ReNyCLevCJDOSVc1ulqIZOltDpA1BbYVjLqMK8HtVBkZTrGkPOO1DmryMTxvUVLiYmreoq3JEY2utzv6+NB3NPsBe6e0IEkFRCPweSXnYidAtxSWqYhKPZSgJF+JxKSRWUkizK6Y6xWHB/EoKrOryQQp0kSSNs4ifyTrGN/t7s3Q26YCCqhx3bwXoGc5RV+1hMS5Ipo+nqKpaEEU4DrFu7XgkMhozcesKWQOCXpiahQXdBHQUnP2FdKKV0raYWrARQiAR6IpkYCyLbTv1meNzNh4XjM9ZhN1JBC72HE7TVK0xMm3gdTv7WRYUF2hkczZGNsvoZBavR0UoEq9XQyiSooiObdpkc5KB4QzN9V5GxpOsXx0ia0i6+uJUlLipKHMxMZlmciZLUy34/UHiSQvLVpACigo0VMVkfjHOxDR4PbCmJYBp2AyNJWmqD3KwJ0ZrY4CiQhdHhhLMLeT4hwtL+NA729HOUEj29vZy9dVX893vfpfVq1ef0T5PN56OxSZlR3ucrHwvPc12EvitEGK3EOJNpzuYEOJNQohdQohdc3NzT8Jwnx4IIfj4ZZ1kDIsbv7ebjGE98k6PwM3Pa+EFHWV88q5u7u0/fQD4rX/fzEUdZXz8zi5+3z1z0nP1xX6++botBD0al/zPffy/u7pJHb1rPoUsJXN89/5hLvvSfVz02b/w093jXLquijvfcQG3veU8Ll3/8NHI+wcWuPSL9/HPPz/IxroId77jgjMSkrOxDFd/9X7Gl9J85TWbHxKdfaKYW+lOnI8i5Hk2sH1wkc31Bfl6ySeJooCb4oArb8KT52mPZVkcPnyYhoaGYzVmDyckf/37af7xXw9SEHZx3uYCcpZkeDwJCHbsXSaZNGlsCGLbsHVjAYURN0URnYpyD+PTWdLpFIOjWeIpnck5k/6hNB6PxuhklvpqDwOjGbwehcEx53+yaTnjCAd1XDoUhRWsbIaFZQtVhck5C1WRmBY0lMPsXJrBkSRTszl6hrLYtmRuySKRMBmf89E/lMHM5agtAbcO8ytppgHP8dcbTTr3xaKC4+3CFqPOvMurW+ztzVIekYR8HGu9FvI5PSbjcSdsObd0fA65FLMpDTm/H02LBbBsScjtPB5asdeYW5aURyCacMTk8KSFzw1TsyaJtKSs4Ojn5kR/UxlJdbGCZUOB38CrpdDQGRizqK/QWIza5ExJfaV+LDppmjZmNsvAaJbaCjeJpEXILwgHYGAkQyxhYZiChahJU4MfVYGAX8c0obs/wbqOEGUlLrr748ws5GhtEPgDIcYmM3g9KpmspKbaj8+rEY0LJqahpcFHa6OX4dEEB3vilBULlqMZOlqDhIIa9+9aZG4hx8tfXMGH370KXT+z/00DAwNceeWVfPOb32TdunVntM/TkbMSmRRC/A4oP8VTH3wUhzlfSjkphCgF7hZC9Egp//LgjaSUXwW+CrB582b54Of/lmgtO56e+qHbD/GfV5w6PfVMURTBf121nsu/dB83/WAPd9x0PvXFDxVDiiL4/NXrueor23n7D/dy65vPPSkCuaG2gDtuOp9P/bqHr/xlkDsPTvHxl3ceM455MrBsycRSmoMTUe7YN8Efe2cxLEl7eZB/vridKzbVUHhCH8zTcWQ2wad+3cPvumeoDHv47FXruHRd1Rm5ck1HM1z7te1MxzJ86/otZyQ+Hyu7hxfxuVTa8wY8ef7GmYtnOTKb4BUbqx954zyPmdayIL359iB5nsbMzs4yNTVFU1MTRUVFD2u0I6Xk6z8Y5oE9S6xqDqDrCn9dceFctzrE0nKO9R1BPF6N4bEUigKz8zkSK66dO/ZGKSkUTMcULEtQV+xmZDzN2o4gU/NZGmtdKIpkVaOHgF8llZZomsCSklX1GqlUDiuX43C/JOBXGZ81aax2BKaqCLoGElSVasxGwa0LpuYdkbawlAF0yks8DEw4Am163mIp7tRghoMaQlM4OrktCAiWV8x3rJXgotclSa60Fgn6bGJplYN9KZqrDcCZMwS9MANMzFq0VseJxZyFaUXA7KLNxFyOjiYPy7HjEcvFmMViTNLRqGJZxx+Pxg2m5+WxMRT6LMYnV9JpVxxiJ2dyVBYpDM9IzJWU2lTKYGYWXLqFqkDOgKW4TUuNi5FJJzoZ8gv2HIyhqlBerDEwlmV9u4dDvQkMQ9La4KWrP8HGDj9L0RyKgK7+NG1NXnoHEmxaEyaTtejpTxDwKZQX26i6n+4jcVa3BlmOGlSUurEsycBoBkXA5vURpIS9B5dBwsY1YbJZg7nFDNLKMDolKCnSuHBbEe+4ofmMI5IjIyNcfvnlfO1rX2PTpk1ntM/TlbMiJqWUp01mFELMCCEqpJRTQogKYPY0x5hc+T4rhPg5sBV4iJh8tnFieurqyhDXn3/q9NQzJeDWuOW6LVzyxXu54Tu7uP2m809pNONzadzy2s28/Iv38YZv7eLWN59LTaHv2PMRn4tPvWItl22o4p9/fpDXfXMnL1xdxqa6AkqDHkpDbspCHiJenaVUjplYltl4htlYloVkjpxpY9nOTceynaa3uipwaQouVUHXFAQwsphiYDbB0HySrOnc3EqCbl53Xj2Xbaim4wzT4sYWU3z1L4P8YMcoXl11alLPbzilGdGpmFxOc83XtjMfz/Kd129lc/2T2wtv18gS62si+UhNnr95dgwdrZfM95d8MmktC3LrrrG8o2uepyWDg4NMTk5SX1+PYRgIIdC0U09pszmb//3WIAe6ogyOJOhoDbHnYJSaKg/VFV7mF3LMzKXxeFX2dS1RVODC7VYoCKt0tgVJpk0aqiUer06p4iYUdDE1k6WhxsvhIyksC0qKXBzuT1JcqBMftDFMSXuTj96hNGvaA/QNpels89M7nKOlwUepaSOlzeH+DO1NTlgvEtKYjZpUlWmMztjoqsVS0nlN1kqEsygsjrmeBryC7iEnAlocUSjwqxQFNdy608cxvlIPGQkox9JWvR4XYGFLhVxWQ1ctDEslmYgBzjgWlw18bg+pLBSGYHRFnM7MZdBdjij1e2Bh2Tn+4HiWwpDgaOWjIhwjnckF5/lM2kYIiZSC8Vmb1lqFfd0WoCAljM9Y+D02Rk6lpADGZixaa3X6Rg2aqjWmFyzKiwReHXbsj9He4KF7IE3W4/Tv3N+VoKxYJ5GyGJ/Osq7dz96uBNXlLmYXcjTUOa+rotRNzpD0HElSW6UhZY6c6WVkOEV7cxDTBK9Xw7ZtDvclqKrwUlbiYn4hy9BIioKwRktTkKXlHP2DKdZ3hpmYStPZ7qIwbLN59Tx//esspaWllJWVEYk8tH/5UcbHx7n00kv54he/yLZt2x7Vtf905OlYM/kL4LXAp1a+3/HgDYQQfkCRUsZXfn4B8G9P6Sifxtz8vBa6p2J87Fdd1Bb6eN6qx1dDV1vk40vXbuTVX3+ADzzIaOdEykIevvG6LVz91e1c87Xt/PjGcx/Sm3FbYxF33XwhX/7TILfcM8j/HZ55yHEejEd3BKOmKqiKQFMEihAYlo1h2eRMm5zliM2aQh9NJQH+rrWEphI/zaVB1lWHz0hkSSnZNbLE1+8Z4rdd0yhCcO3WWm5+fsvD9sJ8MD3TMW74zi6WkwbffeM2NtYWnPG+j4Vk1qR7KsbbnvvMcv/Kk+exsH1wAZ9LpbPq1PXXeZ4YWsoCJHMWE8tpqgt8j7xDnjxPAbZtc/DgQSzLYuvWraTTaYaGhrjnnnsoKCigoqKCkpKSYw6ui8tZPvuVI/zx3nk8bkFbUxDLkqxuC6BpTo9AXRc01wfIGTYb14RQFIWJ6QwBv8oDe5fRNad34NC4wfrVPnbsi1IQ1kikbTwarOrwk81JmuvceNwaC4sp6qo89A6lUVWYnjeRtkRRBK21TuTTMCRS0dA0wdiUk4J61AxHX5mZl0RgZlkgBEwtOpHKwqDCQtT5eTnpCMTSAoXZJZv5ZRsFycCESTggcIV0ikMa7hM8+bInpKnGU4KAz2YpraJqx+dqpmEg7CTgx3dCApffLZhfzhKOuAl6BQvLzuMel8A2LI5JCluSSh93cp1fMqgqFIwvOPVppuG83tlFm5KIyXLaTVWxxs4DSWrKnX2mFkxUBTRFoEoDyxDs7s3Q0eSlayDN6mYPC8sGyZRJcYHG2FSO6nKdsF+w51CC0iIdy5LUVbqR0uZAd5xVzX6GRpO0NGhkMgZLUR0pLdoaA6iKYHQ6RW2Fl/4hx60VKenpT5BMWXS0hQgGVPYfWiaTlWxaF8EwbCIRndISLx9+9yo0VWAYBrOzswwODhKLxSgoKKCsrIySkpJjix1TU1NccsklfO5zn+OCCy54LH8GTzvEiRbBTweEEEXAT4BaYBS4Ukq5KISoBG6RUl4shGgEfr6yiwb8QEr5iUc69ubNm+WuXbuerKE/rUhmTa752nb6ZuLc9ubznpCJ1//8oZ9P/7aP97+4nTc/5/QtKA6ML/OqWx4g5NH55vVbaC07deqllJJE1jwpCrmUylHod1Ea9FAWclMa8pzUcuTheKwr6ImsyS/2TfLd7SN0T8WI+HSu3VrLdefWP6oaRNOy+do9Q3z2d32EvTq3XLeZdTWRRz2eR8vX/jLIJ+7q5juv38rfPTvNMp7xYZNn073p8fKCz/6Z8rCX77x+69keyt80u4YXueLL9/PN123hue1PXknCs4Bn/P3pQZy1SWMul2PXrl0UFxfT0NBwktGOlJLFxUWmpqaYm5sjEAhgUcRnvjLL1EyWxjofhREXyzGDmbkMJUVuhkZTtDYGiIR15hdzLMdyuFwa07NZ2poDDI2l8Lhsqiv9mJZKSZGLdFaiKKDrCiPjWfxehal5A9OUdLYFONSbIBJSqa3yOS6iEZ25BZNgQKNrIMOa9gA9Q1nWtPnpHTForfcwMWtSGFZwu1UULHLZOLrLRyTsJZWW+LwCw3K+NE1hdMYm5IfoihNqS41G/5gj0II+QTwlaahUGZp0ROfaFp35uEYiLdFUm3TWiR7mchaWBWvbPIzPZMkYzlwr4jWZnJc0VBiYls1c3Clvqi2BgQmnPrG2Qqd/3BGz9WWCnqEcjTUuZqMCYeWIJiTNdR5iCcnUdIqyIpV4TsWlCYxUGkOqmJagojCLgZ/oYpJ0VmKYgppynck5izVNGjsPxmmsdtE3nGVVg4vugQy15TpC2GiKzcHeNC5d0FrvYXouw+yCSXujl2TKxDBsCsIavQNJKstc+DyC2fkkHt1idlGhuNBFwKuSyVr0DzktXbI5iUCSM2wmpzMURFyUFrnIZEy6+xO4dMGmdQUsRQ36B+M859wSPvxPq06Z2nr0mpyZmWFubo69e/cyOzvLnXfeyWc+8xme//ynwHHyoTwp96OnnZh8Mnm2Tdhm4xku/Z/7EMAdb7uAkuCZR9dOhW1L3vGjvfzqwBSfv3o9l66vOu22hyaiXP+tnWQMi6+8ehPnNRc/rnM/0Ugp2Tu2zI93jPHLA5OkcharKkK85pw6LttQhdd1ZumsR+majPHen+7n0ESMF3SU8fHLOikNPvlmOL8+OMVbf7CHF3SU8aVXbUI9g1rOv0Ge8S/62XZveqwsJLJs+vjveM8L27gpH4l/UommDdZ99LePuHiY5xF5xt+fHsRZmTQmEgl27dpFa2srJSXOoqmmaaetj/zTfeN88vND+H2SgjAYps7wmEFpsQufVyPg1xBCkk7bHBlOUlLkwuVyMqAqyj0kkllisRSlpWGmZ00iYZ3+EafPRkuDn/6hFIVhHZ9PIRTU8XkUJmZzTM/mWNcR4mBvkqKIRiYnMC1JYYGbxahBa6MfTQOXrhGNm3g8KkdGs3S2eOkezBEJGMTSboSASNhFPGnT3uCmdyRHwCuwpKC6TCcSUukesZBSUFGsMDVvH4tQAjRVqwyMWyAlLh0UBVobvMcEYGkExqaPmvLkKIi4WU5paCokEwaWDaoCzTU6I7PSabUis2RMHSklpWEBmkosJSgNSUanTQpDCqGwzuCok3rbUKXhdasc6HUaZTbVOO/xge4E1SUG8wk/ugrlBZLuwQztDS76R03qKzXSWZhfSOFzKcwtW7Q3uOgedJxoY3ETI2cxMJqho9nL2FQGv0fgdavEUiaqIjAMi9JiF919SRprPQR9gl37o9RUwnJMobbSi23ZTExlWI4ZdLYHsGw4MpSgotRDImlSXuJmZi6DS1cYm0zT0uCnIKKza98Shgkvfl4Z73t72xnXSO7cuZN3vetdpNNpVFXl5ptv5lWvetVj/6N4bDwp96OnY5prnieI0qCHr123mSu+/Ffe8r3d/OCGc3Bpj72mTlEEn3nlOuYTWf7p1v0UB9ycfxqR2FkV5vabzuf6b+7gtd/cwScvW8MVm6rPeu3NXDzLL/ZP8uOdo/TNJPC5VF62tpKrttawoeb0+e2nI5oy+Oo9A3zlz4NEfDpfvHYjF68pf0pe546hRW7+8T421hbw+as3PFuFZJ5nEfl6yaeOsFenPOShbzrv6Jrn7DI3N8ehQ4fYsGEDPp/vYY12AG7/9RR33j1LS2MQ25b0DybJ5gzqq0FRcmQNm8Ulk0xOsrRssL4zhKIIMhkbTRPs2r+MtKG9JcTeQ0nqa7wMjaVx69DRFsIwJKta/JimpH8oRVHaxrQEsYRJZ1uAVMqko8mD36+TzUl8Xo25RYPKFh8H+1J0NPs4OJiitEhjfHYl5XPBcVEtL/ERG7WorXAxMbdiuLPgbFNd5tQRDozlqCxRUSyb+kqd6Eo9ZDhwXEwuLDvfy4sVJmZX0mKXstSV6ozMgveE2EJBQLC8aOKLaIR8gljMeTzoE/QMpmlr9BJPweyiky9bGDCYWtDwunJEIjrjK84mizGb8qLjLrBDEyYt1ceNeWzbJpN2nk+kVKSUFIYULMN57VNzJooiGZ8xqSqSJJI2Yb+KIiRDEwadjRr7DidpqfcwMG3Q2epnZi5LZYlOPGFxZCRNRalOcURldMrkUG+SDR1+cjmb3YcSlJUoBANehLCQEobGUuiqwtqOIHMLWUYnMqxuDaAogmzWon8oSUmhjq4ptDcHcOmC+3ct4fUoXP6SSt5yfeMZC8nFxUXe8Y538IEPfIBLLrmEeDzO4uLiGe37TCAvJv/G6awK859XrOPtP9zLh+84xP+7fM3jEjpuTeUrr9nMK798Pzd+dzc/ufHc05raVEW83Prm83jL93bzntsO8M37hnnNuXVcur4Sn+upu/QSWZP/OzTN7fsmuO/IPLaEdTURPnX5Gl66rvKM02hPZHQhxTfuG+Inu8ZI5Swu31DFv7y0g4IzcIh9IphYTvOm7+6iusDLLddtPmNjoDx5nsk8MLSIR1dYUxU520N5VtBWHqQnLybznEWGh4cZGxtj27ZtaJqGqqooinLKeYxlSb7xg2Ee2LvEkaEEne1hDvXFaKj1U1LkYmQsxdRslrpqwXIyRzgApUU60zMZpudyrG4PcbgvgarAmjVhMlmbzetC2LZjLlMQ0dh9wFFa7c1+egeS1Fd7KC50kUzZRIIqg6MpUmmbtR0hdh6IU1/tpftImmBAc2oaheNQCo5pz3w0Q2WJwsyiE/CdW3ZeS8CnAjbVZRoTc44AS2acbUoKVCZXHsuZkpHxLBXFGooEnxvcLsFS3NnW71UAZ1vbluzvTrK23U8mc7xFm6ZqLMUNwiEDj358DlMQhLlFONyfZkO7m/klp59mJOhhbtkkndMoNNIo6NgrcmJqJo3PrZPKOpHNVMI4drypOROMJOBmOanQXKtgGSbDk1k8LpVowqat3gW2ZGo6jaZKJmYNOprcZDIWXUccsdg7lGFVkwfbsikuUOkbTGGYkg0dfmYWcuzvSaKpgm3rgoxOZpicyVFaCLWVQXYeiNHS4GNuMUd9jdM2ZHAkyVLUYNuGCPGEyaGeGEG/Rn2ND1UVDI/Eqa8J0NUXp6M1yKrW4KMSktFolEsuuYR3v/vdXHLJJQAEg0GCwb8d9/28mHwW8LJ1lfRMx/jiHwdYVRHitefVP67jhb0633r9Fi7/0l953Td38NO3nHeSc+uDt/3267dy665xvnP/MB/42UE+eVc3V2yq5mXrKikNuhFCoAgQODba8/Ess/Es84ksc/Es0bSB36US9OiEvBohj07Iq1MccFMSdFPgO95TyrIlIwtJ+mYSDMwlODwZ5Q89s2QMm+oCL2/5+yYuXV912jrOR2Lv6BK33DPErw9NoSqCS9ZV8cYLG1hV8dQ1Tzcsm7f9YA+mJfn6a7c8ZQI2T56zzY6hRTbVFTyuDIs8Z057RZD7BxYwLPth+/DmyfNEY9s2hw8fJpfLHXO71DQNRTn1dZhKmXzh6wP86rfTKALWdIQwTJv2lgBul8r23U4bkK0bCsgZNkIYeNxwZCiFaUFTrU0sukx9lUZJcYQDPXE8HgVd05hfzNHW5OdwT5zGai+lJR7GpzJIKfH5NHYdiOH1CCJhF5oKm9cGSaQsOlt9qIqCr8FDwKcRT1qEQ24WoxbNtRrplEF1kYmm5GiuCeNxaRgWFIdUBBZNVQoBn+NaL4RjSgNQGFKYW7KcmrxlRyimMza7D6cRAta3e/C5BeNzThqvg2Ryztn/QHeCquI0UICU8lhPyeGJHCEfx5xXT+wpOTNn4FYlBSGF6YXj0UbDclMcEkwtSSIBm7Epi/LCBFBAWcSmZzBLXZWb2WUIuJJIFeLZlRHZFj0DTgpsR5NG76hJLmczOJQga0BHs4ee4RyWaWPmLDJZyXLcor5SJ5Ew8HkVDvenKC3SKQipDIymSKUtOlv9qAK273WEf0OVTcDnZ8f+OMWFLvw+lWxWRUrB1EwGw5Scs7GA0YkUE1OZY/W1s/NZxibTrG4NkMpYtDcHaKz38443NqOeoZBMJBJccskl3HTTTVxxxRVntM8zkbyYfJbw7ova6J2O82+/6qKpJMAFLY+vhrEi7OXbr9/KlV++n6u+cj/fv+EcGk7RgxJAVxWu3VbLNVtr2D2yxHe3j/C97SN8877hMzqXz6WSNixOV96rq4LigJugR2N0MUXGOH6jqwh7uHJTDZeur2RTXcFjispatuTurmluuWeIXSNLhDwaNz6nidc+SoOeJ4KcafOOH+5l7+gyX7x242nf8zx5/taIpg26p2O883mtZ3sozxpWlYfIWTZD88nHvACXJ8+jxTAMdu3aRWFhIe3t7U693sMIyemZNO/7+GEGhpNUV3iorPCyuJRjZCxJW3OIg90x2pr9FEZcdPXGicZN1q0OMzKWor0lhM8r6OqNkkhBY53CA3uXcbugKKzj9WrUVLiYmTfIGRJFFdy/axEpYdO6MLmcpLPNj8etcqg3QVHExaHeJJmsTUdbkEN9Cdqb/Ow+lMDrUZhZNIknHcHTM5Am6LNJ53QsO8WqJh99w1la6j10DWZQFfB5NJJpm45mD9HlLNVlOtJWiAQEPq/K+IwjEMuKVJZizjxpbtFkfMakskRFFRpSSqpKVEannChhxJ9hZNrN2nbBUhxmVtJpXToc6EtTXa4TzxyPfhYExLHoaMAjCPsgZwgCXo6l6bY3ulGEwsSUweySl7ISi0wqBahkUgkgAFJlZMqiulIwtyyRpkVducbItMnQRBa/V2VpMU1DtYueoRzdAxnaGz109cWQEmor3EzM5EBCOmMxOJahvdlHJmMyNpl2HHQHU+RyFgPDKeoqBaZpsbCsMTiWpKLMRV2lh+17l6kodaNpNuGwRnmpm5GJFFMzWbasj2BakkM9jhBd0x5EKIJc3OTczQXc8OqGM55HJpNJLr30Ut7whjdwzTXXPKa/hWcKeTH5LEFRBJ+9aj1X/O/9vPX7u7n9pvNpLAk8rmO2lgX5wQ3buO7rO7jyy/fz3TdsfdgInRCCzfWFbK4v5EMv6eDQZJS5eBYpJVI6Vf0CjkUcS4JuigIu3JqKbUuSOZNYxiSWNoimDeYTWWZjWeZWIpjLKYMLmktorwjSVhakscRP0KOfdjyPRCJrcuuuMb5x3xBji2lqCr18+KUdvHJLzWNKjX28ZAyLt35/D3/omeVfXtrBS9ZWPOVjyJPnbLF7xJnAbW3I10s+VbRXOAKyeyqWF5N5nhKSySS7du2iubmZ0lLHRfioY+upONwb4wOfOEwwoLFxbZhMxmbHniUCfpWmhgCKAk11PvSVNiCKcKKT2ZyNxyOQ0mTHXic6drTdQ0erxLYsegYyeNxpvF6V5ZikozWA26VQX+1FUWHf4Ri2Des6Quzct4zPo+LxKJS6BRWlHpJpm3XtPhRFsKrJQzCgMzWfw+8TKxE5QW11gK4jaQrDjhEPACuvtbnOQ/9wDiFgctZASvC4Bfu7nfFuWOWloUJlaMpkfiW6WBhSjglMv0+h60iG6jKdoO94KUxhxMd81ORAT5KNqzxMzzpO+FUlKv2jFsMTBm31kDMF43M2xQUai7HjEc4jYyaRoEJBQGNqpV5yYDRLWaEzbluCV4fxGQ2QzCzpVJWmGJ20AYGwMrh0N/2DSSIhZ5t0BtpqFbbvyzE1C1XlbiZnTYxsDo9bEEvYzCzkaG9wsfdwgoBPparMRS5rYZk2uiY42JtkVZMXRYBh2oxNQlmxm5BfUFnmRlWcaGV1hRevR6AAWRMWlnLMzOU4Z1MB8ws5+gcTlBa7qCr3ks3ZDA7GeevrGrns4sozvo7T6TSXX34511xzDdddd90Z7/dMJS8mn0UEPTq3vHYzL//ifbzh27u4/a3nE/Y9drEFsLoyzI9vPJdX3/IAV391O9+6fgsbzqCvYknQzXPbztxuXlEEQY9O0KM/pHflE4mUkj2jy9y2e5xf7Z8knjXZXFfABy9exUUd5WfN5CaVM3nTd3Zz75F5PnFZJ6/aVndWxpEnz9nigcFFXKrChtrI2R7Ks4bG4gC6KuiZjnPp2R5Mnr955ufnOXjwIOvXr8fvd7JuTufYCvD7e2a59RcTVJZ7yBkW/YNJ4gmT1W1BvB6VmbkMEzGDogI3oxNJ1nSE8HtV9h+Oks3atDZ5GZtI0tkWIBB0sXv/MqYlWdUSomcgQ12Vl7JSN7PzGTLZDJPTcZZjgkhIwe3WaKrzUhjWicYtSoo0Sku89BxJUVPpYffBOKYpndrKwQR11R66BlJICVWlFpqi0VrnB9uird5NwK8yPGGgaYLBcUdUrvjS0FTrZmAsB0Bu5TGfV3Co30nRbK514XZJ0llBaZHGYszZNptz0rnGpnPEYmmK/SZzcT9zi8ffz6mZDLWlKuNzJ6d+GTnJkdEsFcUqQiqE/AJNhaFJR6jmcjaDYxmKQhoLMUlNmcrCYnalTYsAbIpDkrE553hhv4cRO4UQMDYDtaVRFrMa6TmDtgYX81HY1xWnskRncs7AMGza6nX2HY5SXe4im4OyQo3+wRQVpS6mZnOUFWtYps3QmNMTtLPVx9BoinjCIhKCtqYQuw/EMC3obPMzPZtlVbOP0YkMdkglGNCYW8xhWZLN6yIMDCeZW8itXD8KvQMJUimLD72rjef/3ZnPV7PZLFdcccWxqOSzgbyYfJZRU+jjy6/ZxLVf285bf7Cbb12/9XHXwjSXBrj1zefyqlse4NW3PMAtr93CuU1FT9CInxpmYhl+tmeC23aPMTCXxKurvHhNOa85p+6MxPGTScawuP6bO9k5vMinr1zHFZuqz+p48uQ5GzwwtMi6mnDebOopxKUpNJUE6JmKne2h5PkbZ2RkhNHR0TMy2pFS8qPbx/ntn2Y4MpRkdVuQ0bE0tdU+2ps1xiczTM3GqSz3UFrsIeDXcLkUYjGDg10xgn6VxhY3yVQaVdOQKGzftYTbLdjcGSGXkxQVanh9Kjv2LqOq0NYURAgoLzVJZwyGx7KYRo6RMZVsTrJ+dYgDPXGqKzx43ArNdR7CIZ1EyqK+2oWiqUhpUF5kMjHrRONMS9LTlyISUklnJTlD0tnqY2ExS1WZm8WlNGWFKl6XTVudhhQKQ+OOUKyrcNM9mAGcjK5DfWk0FexiKCtUSGflsbTWsgKbqXnBUlyns1lhbCWttSAoGJ3KAQaNNToLy87763XD0KRzHo9LYX+Pc561rW68LpWRaZPKYo3uQRNFmAS8KkvLOabnTTqaPRwZt4lGsywtp1FVH5YtmJvP0FytMzDhiFGX7gOygGBsKkPImyGV1gl4DVRVYqzUSUopGZ/O0dbgZWExSzxpYUtJU62b2bkMsbjJqmY/IxMZZmbTFIYtLEtSUepn+55lwkGN5gYfgyMplqImi8s52pt8xBIWXX0JqsvdlBbp7N4fBQFb1xcwt5DhcG8cl0vhY+/v4MJtZz6fzeVyXHnllVx00UW85S1vOesdDJ4q8mLyWciW+kI+edka3nPbAT76y8N87NLOx33B1xT6uPXNToTytd/cwXtf2Mb15zc8rdtVSCm5p3+e79w/wh96ZrAlbKkv4Ma/a+LitRVnJZX1wZiWUyO5Y3iRz1318L098+T5WyWZNTk0EeXG5zSe7aE862gvD/LA0N+OhX2epxdSSg4fPkw6nWbbtm2PWB+ZM2y++I0BfvqrSQA2rQ2TMyT1NT5cumDPwSi2LdmyPoJlwch4ikzWJpt1RMamdRESiQRd/VncLoXaai/JlMX6zhCaKti5dxlFwKrWILG4wbqOIC6Xws59y2iqoKHWz/CoSX2NF79PwbJMpJ1jejZG0CdQVegdSFJX7aF/KIVpSda2hzjYmyAStAn6fRQXulAUQe+g07eyqtxD15EUBSGVvmEn2uj3qYxMZSgphD2HHVHY0ezFyBo0VLtBWoAkHDyeHltdrrO/ZyVld7WPeEBhZMpCFQbgZKHlchbSMKkodhH0CmbnnfdVE4LFhTRNdV5UVaF7yBGTR+OVAZ+gazCLaTq9J+cWnTEtxWxWNah0D+YAQf9whvpqF939BqCxukUlnhYMDiUJ+BR8HhdFYZUDPXE6W330DhsEfC48bgUwmF20qSrJks0qHOx1xPXhI2kENn6vgtslSCQtFGlTFNFYXDbo7o+zqTPAzv1RpBTUVnrQVInHLUimTCamMiRW6lQVFfYedBbHNq4NMTefY9f+KJVlbkpLXOzvWiaTsVnVEuCVl1Y9KiFpGAbXXHMNF1xwATfffPOzRkhCXkw+a7lycw1H5hJ85c+DKELwry9b/biFX1nIw09uPJf33HaAj9/Zza8PTfMfV6yl6XHWZj7RSCn5S/88n727j31jyxQHXNz4nCZeubnmaWVoY9mSd9+6n992zfCRl3XkhWSeZy17R5cxbcnWhmdWxsPfAu0VIW7fN0k0ZTzusog8eU7EMAx2795NOBxm/fr1SCnRdf20QnIpmuOfP3GYg90x6qq9VJZ5GJ1IMzGdYf3qML2DCVa1BPH5VA51R0mlbVqbApimpKTIRSpj0jewTDzhCLiyUjfpjMVSNIumCY4MJamq8FBT6WN2PsPEdJpQUGPfoSjhkEZbc4hczqa53odpQ1d/itYmP4PjjlBtbtAZm8xQWWLj0gya69243RqHeuOAoKLcT89ABrcrRyiokcsZdLYFkdKmrcGD36eyvzdJKKDRN+IIxLJiNwvLabxuwcBohpwhkcD+7iQFIZXGSje9wzbJtOTEt214PMtC1KK8yEbX/YCJzyMYGMthmJJEKs2qRjdCSGwbYgmTdFZyqC9FTblObalCwK8QT9l43FBdqtMz7AhMRUikbeP3CpJpydyiQXO1i75RA8OExPI84AMEfUNpWuudppaJlM2qCoGUTmS0dyhNUYGLgMfmcH+K1S1+eodzBIMhNCUNmBzqS9FcbXCwxxGvtZUeIiGFfYfiKAI62wPYlsX2PVFKiwRerxvDsNh7KInfp7JpTYiu/iTZnI1lS7r6E6zrCDI7n2NsPE08YbKuI0QqbXK4J0ZFqRNZvvRFFTz/wjNPbTVNk+uuu44NGzbwnve851klJCEvJp/VvP9F7QB85c+DTEUzfOHqDXhdjy+FrMDv4mvXbeL2fRN85BddXPz5e/jHi1p544WNZz1KedSV9at/GWTP6DJVES+fvGwNV2yqftq1GrBsyT/dup879k3y3he18brzG872kPLkOWs8MLSAImBT3dlNOX820l7uGO/0TMfY1pgX83meGFKpFDt37qSpqYmysrJjQvLhJuE+r8arrqjhz3+dZ3Qixf27l9B1wYbOMFJCSYGOqsKOPUu4dIVzNheSTBqMT6ZQFQ8j4ykiYY32lgCJhMmeA1EKIjqFETe6rrBmVRDbhu27F9FU6GwPYdvQ2R5E01V27lsm4FcpCLsYm0yzpiNINidZ1eIjGNCZmcvh9Vgompf+4SyRYJpMDpDQ2epBKAqtDV48HpUD3QlURTC/aDA5m6O8xEX3EUes1bd4SaVtPG4F27IoKVApKdLpOuKkmyZTjhjL5mz2dSWwbElHs4/5ZSeFtKnGdazGsiDk5XB/ktYGJ933YL8jUuurdPZ2Jaks1SkuctF1xHm8td5N37Dzc0udm8ExxzAokRTUlKnMLVkMTWRJZyQVxRrVpToHe5NMzkBdpUo8mWNw3EVnm4veYQO3S2FhIYOqSCxbMDOfI+x34p2GISkICrr7nV62/cMpWuv9dPVGMU1JW5OfqdkcE9OCpmrBkTGb5WiSeAxqKnXGJg1yWYt4PI7PAzPzks5WBeFVSSRNSovc3LdjEVUVbOwMsRwzMQzJ4d449dUevF4XsbhBImmQSpm0Nvrp6ovzrjc185Lnl5/xtWxZFq9//etpbm7mgx/84LNOSEJeTD6rEULwgRevojLs5aO/PMzVX72fW167hZKg+3Ef97IN1ZzfVMyHbj/E//t1D786MMWl6yv5u9YSWkoDT+kfWzRt8JOdY3z7/mHGl9JURbx8/OWdXLm5Grf29Ku/smzJe27bz8/3TvBPL2jlrX/ffLaHlCfPWeWBoUU6q8JPi9TzZxtHHbp7puN5MZnnCSGTyfDAAw+wbt06AgEnc+mRhCSA26VwwdZiLthajGna7DmwzL5DUX559xTJpElTQ4CJqQzrOkJ4PSrbdznp2Z3tfhaXEjTV+RCqyqHuGOmMzarWID6PwlLUYHomTcCvMzGdZlVLkHBIY3gsxcJiloa6AId6lqmt8lJU5AYpKCrSWY46LSnWrgpz/65lFEXQ0ugnlbZY1xEgl80wPGEQCWv0DWXJ5rLUVAh6ByQ1lR6qKjzMzJsgJX6vim1DJKRyqDdJzpCsbQ9wqDeOooC0XNSXa0QiGiOTTpSuvsrNoX4nrTVn2IxPZWiscZPLLCOlFyFgZt7Z9shwmsKIRludi4Fxg2jMEZ6TswYuXVBVouDzKuRyNlJKaspdHFkRpLXlLroHHYG5od1D14Cz7/SCQcBjc9SLf3Y+R3mJxsxsjq7+FDVVHoJehX2Hk05K64hBSYFC30CS8mI30/MW6bRBfZWLI6NZsjmJkclQVKAzNZujfyjJ2jYfO/elicZhVYufVNpgeCyDEs1QX2HRP5AjZwrCQY1zN/i5b+cSQghKS3S8HkF5qZuFxSzTs1nGpzI01HgpLXEd6zu6qtlx6B2bSDIxneH9b295VELStm1uvPFGysvL+ehHP/qsFJIAQp6ued/fIJs3b5a7du0628N4WvK7rhne/sO9FAVcfOv6LTSXPjE28FJKfnlgis//ro+BuSQAZSE35zcXc05jEaVBNyGvTsijE/JqhDz6E2Kwkcya7Bxe5HfdM/xszwSpnMXW+kJef0E9z19VhvY0bcBt25L3/fQAt+4e513Pb+Xm57ec7SE9E3jG373z96bTkzEs1n70t7z23Do++JKOsz2cZx1SSjZ+7G5e1FnO/7t87dkezjORZ/z96UE8IZPGbNZx/lQUBVVVH9ck3LIkh3qj/PHeee7ftUAoqNPdFycS1miq8zA5FWd6XrBmVYjuvji11T6KCnXGJ9JMzmSpKvegaoJISMc0JamMyfBomoBfpbbKh6oKhAJSCg71xGmo9TEznyOdsVi/OszCkkFBRMfvVekdTBJLmFSWKoxP23g9Cg21TmsS05JMTKeJJyUlhRbzSypSwpr2ALYNEoHbo3KwN4VLF3jcGomkRUezj64jjmhsrPUyNJ6hqd5DwKfRP5LB71WJxi0sGwpDBgvLGmXFOnVVbvb3ZrAsaG/00D3g1GiubvZgS+gbydJQ5TnmHruq0UP3YIaAT9BY48GWAtOUjM2a5AzwuMC2bEoKVxxcS1UO96VordcYmhLUVWhkMwbj0wYSQV2li4XFLMtxp23JulV+DnbHMS1JUYFGabGHQz1RADpb/UgpOdgdx+dRqCj34PMoHOiKs6Y9QFdfgpYGL1OzWYoLdCZns6gyh64DQqAq1kpLERcet0bOsBmdcCK52zZESKRs+gcTtLcEONAVo6zETXW5h4HhBEtRk2BA4x1vbORFzy074+vOtm3e9ra34Xa7+cxnPnPa9OynGU/K/Si/zJsHgOd3lPHjG8/h9d/axeVf+itfec3mJ8SRVQjBJesquWRdJRPLae7tn+Oe/nn+2DPLz/ZMnHIfj64Q8bqI+HQiPp0Cn4vKiJf6Ih8tZUFay4IU+l2AM9FJGxbJrMVMLMPvume478g8+8aWMSyJS1N42dpKrj+/ns6q8ON+PU8mpmXz/p8d5Lbd47zjeS15IZknD3BgPErOtPP1kmcJIQRt5UG6p+Jneyh5/kbYt28f9957L5dddhmVlZWPO5qjqoJ1HRHWdUS4+YYmuvvj/Omv8/T2LbD7QAIQbFwbIWfYNNX7cbkEu/YtY9s4Rj22ZGI6w/xijlzOJpE02bAmjKYJRsZSmKbE5daYmcvS0ujHtiTN9T78fpXJ6RwTU2kKwjrb9ywD0FzvjKum0oXPq9PVl0BTBVWVXjJZ6Gj149IE0UQCXYX+wTiZnKCsWGVh2aayzE11pY9Y3GJBl8wvORHCploPg+OOQPK6VfZ3JfB6FBqrvQxNZFlYtgkFPCwsm0zP5RwTGt2iptZDNO5EKKWUzC8ZTM0ZlBRqBHwQCSpkc5KxGec85SUuDvQ6wrOj2UvYB16vhs8jONSfZmQyR12Fi7kFR4T2DZu0NXpYXMoyNZtjTZuP7sEcuioJ+gTJNBgmpFM56ipdDIxlWVgyKC1QCAcdITw+laWyRMPrEaQyNrrq1GUqChzsSbBpTZCZ+QyLywbxhEFDpc3knGBpQVJX7SEUVMjm0oxNZqkpz5DNCVrqXbjdLh7Y63wuq5r9CAmVZR5SGZOh0SSmBetXh3ne3xU/aiH57ne/GyHEM0lIPmnkxWSeY6ytjvDzt57H9d/ayXXfeIAvXL2BF6+peMKOXxXxctWWWq7aUottS4YXkiylDGIZg1jaIJYxiaUNommD5VSO5ZTBctqgbybOH3tnyRj2sWMJAT5dJWVYnBhcVwSsqQrzhgsaOb+5iM11hY+7DvSpYCGR5aYf7GH74CLvfH4L73x+69keUp48TwseGFwAHKflPGeH9vIQP945hm1LlKexQ3eeZwZlZWWkUimuuuoqdF3n5S9/Oa94xSuoqqp63MJSCMGqliCKPcnGdou3vn49ew/FuPPuaYZGU6zvDNN7JM6qliB+v8rhnjjJlEVTvR/LkpQWuckaFqPjKRaWDMpK3YSCGgG/Rk2lm2jMYng8RUdriO27lwHYsDpEJmexus1POhXnyLACWKzt8DM67hjLBAM6uw/FMEyJmbM52JXApQvWtIaJJkwGhlMoQmKakvmFNLPzObI5J2o5MJqmptxFKKjSXOcmnrTpG3QilYVhjQf2xpASOtvcZHIKUkpa6j30DzuCsKzIYnExx6oGLxJB10qEsiiisftgAoCNnQHH3KfEacsBUBBS6R1KY1ngdhk01bg5mtLqcUE2vdL0EgVFHk13hYO9KTatDrBjn/P+tDR4kRIO9TqiuqXBh6bCge44hRGdihIdn1twsCdBUYFOU62LvsEkmawjrKvK3ccEYWebn0QsTs+gRNcEW9aHmZxOc6AriaLAeZsLGJ/MMLuQxu2yGZ9KUFsBiqIxNpkinrBx6c41YtuSnoEE2zYW8PIXVZ7xNWbbNu9///tJJBJ85StfecKE5G9+8xtuvvlmLMvijW98I+9///tPev5Pf/oTl156KQ0NjofG5Zdfzoc//OEn5NyPl7yYzHMSNYU+fvqW87j+mzt42w/38mnT4rINT3xfQ0URND4Kl1cpJdOxDH0zCfpn4iwmc2RNG79LxefW8Ls1Qh6N85uLKQ48vprPp5pDE1Fu/O5u5hNZ/uuV67h8Y76PZJ48R9kxvEh7eZCIz3W2h/KsZVVFkLRhMbqYov5p5Hid55lJRUUF733ve3nPe97D+Pg4t912G69+9asxTfOYsKyvr39MwtKyLPbt24fb7Wbbtm1OZL05zNUvr2F0PMWf758nlTbRdYUde5bRdcG5mwpJpU0GRpKoqmB6NoOqCrZuKMA0bYZGUyBgcMwgnbbobA+RTDkuoE7bkCVAUFdpMzat0NzgpajAxaHeOMmkTU2V4P7dS3g9Cps3OGmxQkjam4PHBNfGNSEMQxIMgK5DV38Gj0tyZCRBJivweAS7DjgtLTpafPi9OqoC2ayJlM4cKZaQDI8nqCjR8XsEmuqkAC9FTeJJi0N9cSpL3LTXu4gmLKZmnUhkSZHOgZ4klg2rm730D6WpKNGprdQ50GdhAQ1VLg70JGlr9DI5ZzI0miCRgtUtPsZnDPqHk7h0hYKQSjJtMTyeoK3RS+9gmtGJDC11bjxuQSYrWVjMUlasI6Vkcdmgs1RHSlAUSKZMpuck1RUeDMMmFNB4YG+UxlovLl0wOxtjdgFWtwZAwOHeGJmszeq2AH6Pxl93OrWQGzpDIASL0Thzi+D32iiY1FWCx6Ozv8t5L6+9vIpXveLM51xSSv71X/+VmZkZvvGNbzxhQtKyLG666Sbuvvtuqqur2bJlC5dccgkdHSeXdlx44YX86le/ekLO+USSF5N5HkLYq/PdN2zjjd/exT/+ZD/pnM2122rP6piEEFSEvVSEvTynteSsjuWJ5Gd7xvnAzw5S5Hdx25vPY0310zsVN0+epxLDstk9ssSVm/ILLGeT9vKjJjyxvJjM84QhhKCmpoZ3vetdvPOd72Rqaoqf//zn3HDDDSSTSV72spdxxRVX0NLSckbCMpfLsXPnTioqKmhsfGhP2tpqH6+5spbXXFnL1EyGP98/R/9ggrv/PIttw+r2ILmsTXODH9OUHOqJkUpbNNT6sGxJS70PXRf0DSaJJyw6WoPsOxQlFFApLzYwbB+WlQEJO/Y6RjBb1oVJZ208bkFFmYfte5awbcdMBqC63I1Q4ECXU0u4qiXAwZ4UJUU6jbU+MhmLTC7H4lIKKRVqKxS6Vkx3mms1JqeztDcG0DSVA72OL0UkpLNzf5SgX2X9aj99Q0drIv0c6ksyNpVlTZsfyzToaPLgdissxUw8LsHolCMwTUuyY1+cgrBGfaWLwTEnvbZ3ME17naR32AYUDven2NzpY8f+DKm0TUWpi4oSnf3dSWbmc3Q0+5GWzb6uOBWlbmRQoquw73CMtiY/hinp7k+QzdmUFbtoqPGyY3+U6dksnW0BonGDzrYAC0tZFhezqJpKZ7sfW9r0HklSU+HFsxIwfWDvErVVXkqLXQyOpFhcNggGVFoa/KRSFr0DcWqrgxzoilNRqlBfbbG1c5mZmRlKSkpQ1YfPYpNS8olPfIIjR47w3e9+9xG3fzTs2LGD5ubmY9ft1VdfzR133PEQMfl0JS8m85wSv1vjm9dv4S3f280///wgqZzJGy/MNwx/opiLZ/nwHYf49aFptjUU8sVXbXzGRVTz5HmyOTwZc8yz8vWSZ5XWsiBCOI6uL+p84kof8uQ5ihCCyspKbrrpJm666SZmZ2e54447eMc73sHi4iIvfelLueKKK1i1atUphWUikWDXrl20t7dTXv7IbpwVZR6ufnkNAG95XSPbdy3yh3vn6OlfprXJz5GhJCWFbtauCrEcM+gbSKBrCuOTaUxLsnltBNOSFIRVdM1kaFzFMDO0NQfweVUqy9xkszbd/QniSZOyEjc+r0Jro5/ZhSzTczmWlg1CAZWyEg8dLQEkNgvLJlJKykvc7NzvRM+a631MzRgUFSi4dKgqsViMSUYnTbI5hYHhFD6vyqoGD/G0xfScIx6zOZuegRSxhElHsx/DdI4dCWn0DaXI5iRuXeFgTwZdE3SsDpDOSkanJQUhjdl5g4Vlk/Iilbpyna7BDG6XZGDEpKHKx+BEjvIine27l1jdFqB7IINLg5nZLCUFGnNLJpZloQCaBlOzWda0+TBNxzF2ZDxFebGLtkYf3UcSlBW7uH/3EqGgRkdLgMnZLKMTGcpKXOSyWYoLNTJZFQEMDKVY1RIknsiRSEmWlg3Wd4aR0mZ/VwyBYF1HEF0T7FyJ/m5aGyZnSpob/BQXuvjEP68mHl9menqanp4evF4v5eXllJeX43afPB+TUvKf//mf7N27lx/96Edo2hMrnyYmJqipqTn2e3V1NQ888MBDtrv//vtZt24dlZWVfPrTn2b16tVP6DgeK3kxmee0eHSVr7xmMzf/aC8fv7ObeMbk5ue15GtmHgemZXPb7nE+9ZseUlmL976ojTdd2Pi0dZfNk+dscqxesiFfL3k28bpUGor89ORNePI8RZSWlnLDDTdwww03sLi4yB133MH73vc+JiYmeMlLXsIVV1zBmjVrUBSFyclJent72bBhA5FI5FGfq7jQzUtfUMFLX1BBNJ5j+64l7tk+z8JSjt0HlzEMyarWAKoiaG70k81aHOqJks7YFIYh4PdRXqqzGM0xN59lcdkg4FeprnB6Ss7OO2mzB7tj6LqgocaHS1coL9GxbegdSBIJabg9KrPzOVa1BEgkLVa3BggEVEbG0kjp1HN2H3Gij3WVNl6vh6k5k7DfYGxaY37RYE27H00Iigt0XLrgUJ8TxURKDvcmKC7Qaal3MzFrMDGdw7SdOke3W3Cgx6lTrC53gW0S8Dnzkr6hNJmsTW0FqJpkaEzQN5SmvclLOmNiS8ckZ92qAJPTGWYXcgT8Kp3NXnqOJMjmJBVlbipLdXbsc9xbm+u9BHwKew8595Q1bQGQkqJCHV0VHOiOk0pbNNd7kXaaxazCkRGT9mYP8ZRFfY2PpeUsiaRJcaGL8hI3lm1zuCdOU70ft66wHM0xPJamIKyxqi3E6Hia8ck06zvDfOz9HbhcKkVFRRQVOYuV8Xic6elpdu7cCUB5eTkFBQUUFhby+c9/nnvvvZfbbrsNXdcf83V9Ok7VWePBiyYbN25kZGSEQCDAXXfdxctf/nL6+/uf8LE8FvJiMs/D4tIU/vuaDbz/Zwf5/O/72Te2zKevXPe4e1E+2zAsm18dmOQLvz/C0HySjbUR/uOKtU9YC5Y8ef4W2TG0SGOxn9Kg52wP5VmP4+gaO9vDyPMspLCwkOuvv57rr7+eaDTKL3/5Sz7ykY8wNDREW1sbw8PD/OEPf8Dvf/wp2OGgixc+t4wXPreMbNZi5/4ldu5d4p7tC8zOZ6mt8hJLmJSXqAhsMoabgeEUQb9KOKRTFNGpLHNjWtBzJIEioKUxQDpjsa4jiKYJdu2PoiqClsYAvQMJ6mq8FBW4sW1JabGL2QWDuQWDjhY/9+9yxNbGzhCmJYmEIOSHkUkFyNFY58WleagoMckZJod7E9hSUBhR0DWFzlYv8aRFV78jQr1ehfv3OIJufUcAyxY01brxuBUO96ePbXOoL4nPq7C2PcADe502LotRSWmhC6/HJJ2R2JaNKiQuHXIGmIZJcaHGciyHYdjMzGVorvcyPJ7B51XYeyjGmvYAgyNJPG6F/YfjrG4LYuRMBkZSJFMWfp9CWY2P0mI38wsZlqNp5pdAYLFxTZh0xmZ4LEl9tQ+JoLrCS1d/nI6WADNzWTrbQ8zNZ4gjSKct1nWGcWmCv+5weo4+9/xiPnBzO17PQ1NUg8Egwf/P3n2HR1mljR//ninpvfeeUAKEXhQrIogKitjX7rK21V1fd1e3uL67+q67rltc27quvYsoKohYEek1dBJIQnrvyUwy5fz+mMAPIUACSSbl/lxXrmTmeeaZeyaZk+d+zjn38fcnPT2dtrY2ysvLefzxx/nggw8wGAz85z//6dGhrUeKi4ujqKjo8O3i4mJiYn5YFCggIODwz3PmzOGuu+6iurqasLCwXompO2SdSdElWmveXF/IHz/djb+XiSevGjuo5i72luY2O+9sKOTl1QWU1FsYHuXP/1w4jAtGRAzZxW17wYB/I6VtOpbV5mDcH75g/vhYHrt8tLvDGfL++WUu//gqh52PzMLXU65Dd8OAb5+O0i9OGrXWPPLII3zyySekpqayb98+Zs6cyfz585k2bVqPL9Vgd2iyd9axdnMtn31ZBjgxmT2ob7AxIt0PX28TO/Y20NbuJC3ZjwMFLaQl+RIS7MmOvY00tzgYMyKA7XsaCQ4ykZHqj9XqpLG5HaPJSF6BhbBQDxwOTX2jndHD/VEGaG5xYHdoyivbsdk1AX4QG+WD3Q5FZRYC/MxU1rSj0IwZ4Y/NDvvyWoiJMFBS4RpOmhhrwtPTA6PRgM2uyS9qw2SCQD8zNfU2QoPM2B2a+FgvjAbFjo7ezNAgE3V17cREaKrqTSTHebI7t4XYKE8cTgNWSzt1DXYSYrzw8TWwN7cZrV1Li8RFe7JpuysRTknwxtfbwPa9TWitGDvSD6fDVUnVy9OIh1kR4G/C02xAA7tzXBVm46Kg3WYkKtLVk7spu2NNyuF+mE0G9uQ2YW1zMjYzAKdTk5vXjK+PEQ+zgdAQD8orrUSFe7JtZwNJ8T5kpPrxwJ3p+Ph0vf168cUXee+99/jxj3/M8uXLyczM5P777+/Rvy0Au91ORkYGX331FbGxsUyaNIm33nrrB8NYy8vLiYyMRCnFhg0bWLBgAQcPHuzuuaSsMyncRynFj6YmMikphHvf3spNL23gx2cl84tZw/EwyRDNo5U3WHl5TT5vrS+kyWpncnII/zs3k/OHR8gwYSG6YFVuNRabg9mjTj7/SfS+4dH+aA05FU2MS5Bhx8K9rFYr3t7ebNiwAZPJhMViYfny5Tz33HPceeednHvuucyfP5+zzjqrR3qTTEbFuNFBYM/nnEnBYIzj2zXVrN9SR0OTnZ17m/DyNDB+dBDWjoI7Hh4G1mysQSmYPD6YtjYnyfHe+Pub2LC1HqMRUhN9yTvYSnqKLwG+JlqsTjw9DRSVWqhvtLt66sI8iY1wUF6tCA3yOpxsTcoKxGJ1UF3Xzqhh/mzb5Ro5MH50AE4ntFjaiAwzsWe/BbCTGOOkqtbIsGQf/P082LSjEVBEhnuwO7eF+j1NpCR4kxLrgc0JPp6KqmpNYRmMyvCkus61FEhJeRtjR/hSU2ekrsFORXUbkZgZkebLrhzX8h7rt9QzIs0Pm8NJbV0buXk2IsI8SEnwYe0mV8XVyHAPEmK9yc1vITevhTEj/Nmd00Rqkjdmg4XqehPVtQ6io1y9uckJ3oQGebDvQDNNLQ78fAxMHR/Ern1NNDbbiY/xIizYg5IKK9t2NpA1MoCmZjujRwRgNhm6nUi++uqrvP3223z88cf4+vpy5ZVXnvbf0fGYTCaefvppZs2ahcPh4NZbbyUzM5Pnn38egDvuuINFixbx3HPPYTKZ8Pb25p133uk3nRLSMym6zWpz8NjSPby+7iCZMQH89uKRTEuVAhl2h5Nv91XxzsYivtlXidaai0ZH8+OzUhgbH+Tu8Aaz/tGangZpm471P+9l88Xucjb/biZmmVPsdoU1rZz9xDf8af5orp3s3ureA8yAb5+O0u9PGtva2vjiiy/44IMP2LRpE2eeeSYLFizgnHPOOeX5bjabjY0bNxIZGUlqaurh+51OzZ7cJr5dXUVBUStrN7mGU44ZGUCrxYGPtxEPTwObOtZJHDsqiN05TcTHehEZ5kV9o53yKgshwV7kF1owmxVx0Z54exlpa3dgNChy8lzDT8eN8sfhhOIyK5FhnuzJdSWVw9J88PY0UlBixWw20NJix2J1EhxkIibCC7sDyqvacDg1La1O/Hw0be3g6WkgI9mHhhYoKLKSkexzeP3KxDhP7LZWGltMWNtc61nWN9pISfTF2uZkf34zRqNi1DB/7HYHu3Jcw2jHjfSnsdlGbn4LZpMiLtoLby8jTc12AgPM7NzbRHSkJyFBZlotdvIOtmIwwJRxwTS3utb3DA6wdwzjhQljArDbobauHafTSV2jDaNBkZLoA7iqwprNiqyRAdTW2ThQ0ILWmqkTgmlstLHvQBMj0gN48n9H49uNRPLtt9/m+eefZ+nSpfj5dX0ZuwGgV9ojSSbFKft8VzkPL9lJRWMbZ6WH8cCFw8gagklTYU0r724q5P1NxVQ2tRHm58kVE2L50ZRE4kN83B3eUDDgT9akbfohm8PJxEe/ZMaICP521Vh3hyNwnTSPfuRzFkyI43/njXJ3OAPJgG+fjjKgThptNhvffPMNixYtYu3atUyePJkFCxYwY8YMPDy6tnatxWJh48aNpKWlHTOP7Uhaa/YXtLAlu47Pv60k50AzWZmBZO9qIDjQxPB0f1panZRWWIiO9Gbn3iaUghEZ/ljbXGsqGgywdaerh3HMCD+KSpuICPVCKRN7D7gStogwD6IivGhqtlNWYSUowEx5VRtmk2JMZgDNzU5y8psZluLHvo7HjM10zberrLURFGhmb0chn8hQTUWNIiQQEmN9KCyz09BoJyjASW2DwsfbQNYIf9ZsrkcphbeX4XD1VYtVMzzF5/C6nWWV7fh4KSqr20mK9yYq3JN1W1xrcGak+KAUtLdrisssJMR5U1PbTkKcN8qg2LbDNYQ1JhLARESYLwrYua8JuwPCQswEBpjw9jKwN7eJ4Wn+7DvQzPB0fyxWOxWVbTQ02slI9SU4yMS6jvUmJ40N5o8PjsDPt+sXERYtWsQ//vEPli5dSmDgoFuuTYa5iv5lVmYU52SE88a6gzzzzX7mPbOaWZmRPHDhMNIjB29hGavNwfr8Wlbuq+K73Cr2V7om2Z83LIKrJ8Vz3vAI6UkZxJRSs4F/AkbgRa3140dtvx74VcfNZuBOrXV230Y5sK3Pq6XBYmN2pgxx7S8MBsWwKH/2lktFVzFwmM1mLrzwQi688ELsdjurVq1i0aJF/PKXv2TcuHEsWLCACy+8EC+vzot8NTY2snnzZsaMGXO46ufxKKVIT/YjPdmPqy+Lp7LayvrNdQQHmmm1OA4P7xw7KojSCiujR/jj52tm8/Y6bHbIGhHA1h0NZKT64eer2LKjCVCYzRqDspE1MoCSMgtenka2725Ea83EMYG02zSNzTbSk/3Y3DGvcGJWEDa7k6BAE7GRXoeHwA5P86Wp0bVEh9FoYNtuV+9meKiZLTubUUqTGm+ntd0b0ISHmFmzsZbEeB/a2p0E+ZvYvL2B4CAz6Ule7NvfjMXqmps5aWwgTU12KqvbCPAzsXZzLeGhHiTF+bC/oJm6BjsGBeNGu4bn1jfaiGr3ZG9uE4mx3piMFppbzVRU23E4LLRYHPj7GUmK86at3cmunGa01owfHYjTqfHyNFJRaaWtzUlMpBchgXY8zYp1G+sIC/Fg/Jgg7r8jHT/frqc6H3/8MU8++eRgTSR7jfRMih7RZLXx3+/zeXFVPq3tdi4bG8t9F6STGDqwF7jWWlNY28rOkkZ2lTawvbiBjQW1tNmdeJgMTEkO4ez0cC7JiiY60Nvd4Q5VfXblXyllBHKAmUAxsBG4Vmu9+4h9zgD2aK3rlFIXAY9oraec6LjSNv3Qbz/awQebS9j68Ey8zL1TPU9030OLd7BsRxnbHp7Zb+bqDACD7Y0aFCeNDoeDNWvW8MEHH/D111+TmZnJ/Pnzufjii/HxcY0oqq6uZseOHUyYMOEHlTRPhd2h2ZPTyI49jXz1fXVHr2UA2bsa8fYyMHZUINW17eTmtZAQ60lpuZUAfzOJcT40NLmGgwKMGu6P0wkOp8bLU5G9q+nw/QDWNicOp6a41IrdoYkK9yAkyANQVNS00d7upKnZTlCgGYfdSWiIJ2EhnlRUtVFS0Uagv5OWVgN2B8RGOvEwG8gvdr2GrBH+aCA3v+XwepUeZgOeHgY8PQ1s3+1KWLNGBqAU7C9owWRUGAwKi9VJeooPRoOBrTtdCe/oEf4YlaK41ILF2o7RaKShyUFqog+hwR4UllqoqmknNcmX3PwW0pJ8CAsxs25zPVpDZLgnMVFeVFa1UVxmISszgKrqNsJDPTAaFf/361HdSiQ/++wzfv/737Ns2bJ+USG1l0jPpOi//L3M/OyCDG6clsTzKw/w2toClmSXctXEOO45P53YoP6baFltDorrLJTUWyjt+Cqpt1Bca2FPeSNNVjsAJoMiPdKf66ckcnZGGFOSQ/H2kBPdIWYysF9rnQeglHoHmAccTia11muO2H8dENenEQ5wTqfm810VnDc8XBLJfmZEtD9vbyiktMHar9t0IU7GaDRy1llncdZZZ+F0Otm4cSOLFi3i0UcfJT09ncTERPLz83nzzTfx9j79v3WTUTF6RCCjRwRy3fx4Kqvb+G5dNVqDzaZZv6UOpxNSE71wOloI8PekpdVBXX07hSUWhqf5EhTowYat9TidMHqEa93ErJEBaK3ZnduE3Q5hIR74+5nIHOZPRbUVo0Gxa1/HcNp0f4xGRVu7A6UgJ6+VltZWFIriMivhIU7iov04WGrrWCvTn737m4mPNmA02Mje1YgGAv2NDE/3Z3O2q0d1eKofNbVtjBnuT3V9O3mFrTQ1211DYlP9qKlrp6bO9TzbdtYzIs0fs1mxb38T1jbX0iLJCZ54eXpSUNSCyWRgw7Z6ACaPC6KtzYm3lwGzSbFucz1hIR7ERXtRV29ja8fw2KkTgmlutlNVbcXP18Q/H83qViL55Zdf8rvf/W6wJ5K9RnomRa+obLTy7LcHeGt9IQDXTUng3hnphPh2bY5Cb2izO9hUUMe6vBoKaloprmulqNZCdXPbD/YzKIgK8CImyJthUf6Mig1kVEwgGVF+eJrk5LYf6sueyQXAbK317R23bwCmaK3vOc7+DwDDD+1/1LaFwEKAhISECQcPHuy9wAeQzQdrueK5tfzzmrHMGxvr7nDEEXaWNHDJv77n71dncfk4uUbSRdIzOYA4nU4eeughFi1aRHBwMLGxscyfP5+5c+cSHNw7VYzLK618taqKlWvKKSxpoblF4emhyBweiN3mZH9BM+kp/mTvasDP18ToEQHUNbiK3MTHeFNZZSXQ30x0pCfWNs2e/c0YlCYjxY92mxNfXxMmk2Lrjo6ew8wA9u1vJjnBh+AgD3Lym6mtczAy3ZvduZaO6rOB1Nfb2XegmbhoL6pr24iL9qShsR1Ps43CUoW/r4Hhaf7kFbZSU2fDy9NAdKQXfr4mmppt+PoY2bXPNYx28tggLFYHOXnNBAaYsVrseHkZ8fFqw8PTm5w813nYmBH+WKwOPD0NGI3/v+c1JdEHPx8DDU0OSsstxER6UVZhJSPNH28vAxu2uIYQjxoewOO/G0VQQNfnSH777bfcf//9LF26lOjo6J781fZH0jMpBo6IAC8emZvJj89O4emvc3l93UEWbynmf+dl9ulJSEF1C9/uq+S73GrWHqjBYnNVR4sN8iY+xJsZwyOIC/YmLsSb2CAfYoK8iArwwiRzHkXnOmuIOz25UkqdB9wGTO9su9b6BeAFcF3o6qkAB7rlO8vxMBo4f3iEu0MRRxkRHUCgt5nV+2skmRSDUlVVFfX19ezevRsPDw927tzJBx98wMyZM4mIiOCKK65g3rx5Pdp7FRXhxTlTFPHhFsIix/DdunoOFLQcrgw7NjOQVquDrMxADAYO3z8ywx+TSeHl4U1lTRvlVW2UlltJTvAhKtKL3fsaaWi0k5UZwLYdDaQm+BIe5snBEgsWqwOjUbFmo+tY40b7o7WBpHhvvDwV6zrmd6Yl+xLoZ6S8ykpuvoWsEa5iQUnxdhob29i5r4F2G6Qnmwnwc60tqZQia6Q/ldVtZI30x2ZzsCm7DodDExnuSVyUF1U1VgpLrGSkeJGbZyE92Y/QEA+27ajHYnWSluxLabmVkRl+GIDSCgsH8m0YFIwdFYjDAVU1bYBmw5Y6YiK9SO9YR7I7ieT333/Pz372Mz799NOhkEj2GumZFH0ip6KJ33y4g40FdSyYEMcf5mXi49E71zIcTs3Xeyt56ft81ubVAJAU6sPZGeGcnR7OtNRQWXR7cOnLnslpuOZAzuq4/RCA1vpPR+03BvgQuEhrnXOy40rb5KK15uwnviEt3I+Xb5ns7nBEJ+54fTPbi+tZ/eD5Mm+yawbbmzR0ThqPoLVm3759fPDBB3zyyScEBAQwf/58Lr/8ciIiIk7rs5Cfn09ZWRmTJk06vHSJ1pr8wlY2b6/j61VV7NzbSFZmINt2NhAX4018jDflVVbyD7YSGe6Jp6eBoAAzLa02vDxN7NrXhMHgWt+ytdVBYamFiFBPDhS04HBoxowMwO5w0Nzcgo+vLwcOtuFwaBJjvWlrdxAZ7uqNdDrpmL9pYvQIf7bvaqSpxUFosJnwEDNms5G9B5pIjDGRm99OoD8kxXtSUu6kutZGXLQXDU124qK9UQaNxeIkv9A1/zNrpA/KYKa41EJkuCe7c5owGRVZmYHY7K45pmazIijQg5ZWBwmx3nh5GtjQsczK6BEBOByuP0eL1cHf/ziGsBDPLr/v69evZ+HChXz88cckJiae8u9vgBkaS4Mopa4EHgFGAJO11p2eYZ2somJn5ITNvewOJ//8Kpenv9lPargfT183juFRpzep/UjNbXYWbSri5TUFHKxpJSbQixumJXHx6GgSQmWJjkGsL5NJE64CPDOAElwFeK7TWu86Yp8E4GvgxqPmTx6XtE0uu0obuPip73l8/miukbUM+6XX1xbwuyW7+OaBc0kOG9gF1vqIJJODjNaavLw8Fi1axMcff4yHhwfz589n/vz5xMTEdDmxPJSgNjU1MX78eIzG40+jaWiysWlbHes21VJb386GrXVoDaNGBOBhNlBeaaWmto2kBF8qq9tIiPXB06wOzz1MS/bF4dAEBpixO1wJXatFExvlSX2jnbAQD8JDPahrsHGgoBWzWREf442nhwG7XePlZWDHniY8zAZGDffHarWza59rCOq4UYE4nJrmFjtmE+Tmt+J0QkKMxsfbTEm5xtruJCHWh/JKK2HBDkJDfNmyw7U8ybA0P2w2J/5+Zpqa26mrt1PXYCPAz0h6qj+tFge5B5rIHO5aZiU6wovEBG+KSywUl1mJjvTiX/83hqiIrs9t3bx5M7fccguLFy8mLS2ty48bBIZMMjkCcAL/Bh7oLJnsSkXFzsgJW/+wen81972zjUarjYVnpXDHuan4nUZP4Z6yRt7eUMiHW0poarMzPiGIW6cnMyszSpboGBr69GRNKTUH+AeuC1kvaa0fU0rdAaC1fl4p9SJwBXBoEqRdaz3xRMeUtsnlbyv28fQ3+9nwmwsI8+v6FWbRdw5UNTPjyZU8dvkorp8yZK7mnw5JJgcxrTWFhYUsXryYjz76CKfTybx581iwYAGJiYnHTSy11uzYsQOtNWPGjOlWz6bDocne3cDajTV8taqKyuo2/HyNJCf4YjBAfmELKYl+bNvZQFiIB2nJvtTV28jJayY6wovG5nba252MHOaP0WAkv8iC3eHEx9tERVWba43ICC+ydzVgsTrJHOZHXX07YSGelFe2YTRAaYWVhDhv4qK9yd7VQEurg4xUPxqbbESGe2Gx2Kmpb6em1obJCImxGjBRUmEnJdGH3TkWggLNDE9zHXvfgRZCg11VWH19jAQGmEE72dYxZ3L86EDa2jVaa7TTSW5BK3a7q4f1t/cPJyay64lkdnY2N9xwA++//z7Dhg3r8uMGiaGRTB6ilPqW4yeTXRpqdjQ5Yes/qpra+OOnu/k4u5QwP0/+58IMrpoYj9HQtb/z1nY7n24v4+0NhWwtrMfDZGDOqChuOiOJcQm9M0le9FsD/mRN2iaXC/++kmAfD979yTR3hyKOQ2vNtD99zYTEYJ65fry7wxkIBnz7dJT+edLYD2itKSsr48MPP2Tx4sVYLBYuvfRSFixYQFpa2uGE0el0smXLFnx9fRk+fPhpDZG12Zys21zL2s21LP2iHIdDk5XpWsfR02zAqZ3k5LVgs2lSEn3w8HDS0myl3WZGY6Cyug0vTwPpKX4YjYqiEgsx0d7s3NuEp4eB8aMDKKuwkl/YSoCfidAQD/x8TTS32AjwN5O9qxGTSTEhKwiLxUHOgSZ8fcwYja7XFBPpidms2LjNVXU1JUHRanHi42PCaDRxsKiddpsmIdabsFBPmlvsFBQ2k5Lkx97cZhJivYmL8Sb/YAtllW2kp/hSXtlGfIw3vr4mHrgrndiorieSu3bt4tprr+Xtt98mMzPzlN/3AUySySO2dbmiolRM7N+2Ftbx2NI9bDpYx7BIf+44N4UzU8MI8/PEcERi6XRq9lU0sfZADWsO1LAur4bmNjup4b5cNyWR+eNiCXZjpVjhVgP+ZE2SSciraub8J1fy+0tHcsuZye4OR5zA/e9t45u9lWz+7cwftNOiU4PtDeqfJ439UGVlJR999BGLFy+mtraWSy+9lNmzZ/Ovf/2L3/72t2RkZPTo89U1tPP9+ho+/ryMPTlNjMjwJ/9gC4nxPvh4Gykta6ai2oGfr5GQIA88PY34eBvQTs32Pa4ewKzMQCwWBx4eBhxOTW5eM3a7Ji3Fl5AgM3tzmmlstpOVGUhpuYXYKG+00uza24jd7lr7MTLcE6dTU1jSSkyUN3tzm/H31QxL86eu3smBg60kJ3hRUmYlOFDj76ew2z0oKG7HYICRGa7pTw6nxstDsXWnqwrt2NGBKKCmrp3WVjtP/2kccTFdTyT37t3LVVddxRtvvMGYMWN65D1fvnw59913Hw6Hg9tvv50HH3zwB9u11tx3330sW7YMHx8fXnnlFcaPd+tFuMFTzVUp9SUQ1cmm32itl3TlEJ3c12kDJxUT+7dxCcG8f8c0PttZzp+X7+Xn72YDYDYqogK9iA70xt/TxNaiempb2gFIDPXh0qxoLh8Xx6SkYCkCIcQg8Pq6gxgUzMrs7F+D6E/OTA1j8ZYS9pQ3khkT6O5whOiXIiIiWLhwIQsXLqSmpoY333yTiy++mIyMDN544w0WLFjAqFGjMBh6ZjpOcKAHl14YzaUXRlNU0srX31fR3u6kqclOaVkrza1ORqT74e9n5kBBC0WlFoan+7Mnp4mURF+iIjzYta+JhkY7qUm+1NS1MyLDH6vFgdXqYMOWFgyGjjUdWxw0tdixtjk4UNBCWIgncTFeWKxOtu9uxGSE9FR/7HYHibGagABfNmW7lgkZPcIfpRRJCSbq6ttpaNJU1bQTEQohQYqKqlaqauxkjQpkd0dS7Odj5EBBC7X1NkJDPPjXY2O7lUju37+fq666ildeeaXHEkmHw8Hdd9/NF198QVxcHJMmTWLu3LmMHDny8D6fffYZubm55Obmsn79eu68807Wr1/fI8/fn7glmdRaX3CahygG4o+4HQeUnuYxhZsopZgzOpoLRkSyvbie3WWNlNZbKWuwUFpvobC2lXOHhXNGahjTUkNlsWwhBpmDNS28se4gV09KIEY+3/3emWmuZRHW7K+RZFKILggJCWHp0qW88sornHHGGXzyySf8/ve/Jz8/n4suuogrrriC8ePH91hiGR/rw01XJ3LT1Yms/H4336+v42CpDy2tTvbk1qEUjB/jWmIjIswDfz8TazbWYTDApLFB2GyaknIL+QdbCA7ywNrmJCszAA8PI+s2u5YNyRzmj1O7ehzrG9ooKLRQXdtOdKQnCbE+VFRZKShqZdQwP3bubSE1yZfQEDOFRRbKq9oIDfbAx8dIoL+ZsFBPjAbFzr1NgJ30JGhsaCA02IjVaiOvoAWb3cmErCB+/pM0EuK6XlSxoKCAK664ghdffLFHewU3bNhAWloaKSkpAFxzzTUsWbLkB8nkkiVLuPHGG1FKMXXqVOrr6ykrKxt0y5AM1PURNgLpSqlkXBUVrwGuc29I4nR5mAxMTAphYlKIu0MRQvShJz7fh8lg4OcXpLs7FNEFUYFepIT7svpANT8+O8Xd4QjR7ymlWLJkCV5eXgDccMMN3HDDDTQ1NbF06VL+8pe/sHfvXmbOnMkVV1zB1KlTTzux1Fqzd+9e/LwtPPTzaRgMBkrKLKxcW82BghY+/6YCgDEjA6irb2fsqEDa2x3s2tdEq8VBcKCZpAQf2tqclFdYiI70YuPWOqIjvUiK86GkwkJhsWtZD60hLMSD6EjXz+u3uBLOrJF+gJH0ZD+UcrJ1RwM2myZzmD/eXkZKy63syW0kPcWPnAMtjEj3JzDQxI7djbS0OoiPMVDfYCUqAjzMZhb+KJqk+K5XkS4qKuKyyy7j2WefZfLknl1uqqSkhPj4/9+vFRcXd0yvY2f7lJSUDLpkst+VulRKXa6UKgamAUuVUp933B+jlFoGoLW2A/cAnwN7gPeOLM0vhBBiYNhWVM+n28v48dkpRAR4uTsc0UVnpoaxIb8Wm8Pp7lDEIPP++++TmZmJwWDgRHPJly9fzrBhw0hLS+Pxx0+6OpzbHUokj+Tv788111zDe++9x/r165k+fTrPPPMMY8eO5d5772XlypU4HI5uP5fWmp07d9Le3v6DHs/YaG+umx/P7+4fzgcvTeGBu9JRSlFUaqG+wcbBYgvhoZ6MGx1ATJQXW3c0sDvHtSyHw+FKAkODzazfWkthsYUR6X7ERnvh420kv7AZi9XJ7n1NRIZpJo31p7C0nezdjSgFldU2hqf5M2aEP3UNNjZl11NRbWX0iEC8PI1ERXpiNsG6TXVYrA4mjQ0iLNQHMNPYZObH10fQ3JDPt99+y+7du6mrq+NEdV9KS0uZN28e//jHPzjzzDO7/R525T0+2tHTrrqyz2DQ73omtdYf4lrs++j7S4E5R9xeBizrw9CEEEL0IK01f1q2hzA/DxZKD9eAckZqKK+vO0h2Ub2MJhE9atSoUSxevJif/OQnx92nK/PVBhpvb28uv/xyLr/8ctra2vjiiy94+eWXueeee5g+fToLFizgnHPOwWQ68am71prs7GxMJtMJlx2JDPfisotiuOyiGKpr21i9oYavV1VxoKAZh1NTXGo5XE31wMEWKirbGDXcn/35LQxL88fL00BZhZU9uc14eSrSkv1RShMWogkL8WHjNldRn0ljg7DbNR4eirJKKwpobLKTOdyfAD8T23a6liDJygykuMxCVmYgKNi5txGL1UlwoJmn/i+L5ARfIA273U5lZSV5eXk0NjYSFhZGdHQ0ISEhh5PmiooK5s6dyxNPPMG5557bg7+l/y8uLo6ioqLDt4uLi4mJien2PoNBv0smhRBCDA1f761kfX4tf7xs1GmtNSv63rTUUJSC1ftrJJkUPWrEiBEn3acr89UGMk9PTy655BIuueQS2tvb+eabb3jnnXf42c9+xpQpU1iwYAHnn38+Hh4/rGJ/aNkRPz8/hg0b1uVesLAQT+bNjmHe7Bjq6l1VYb9eXUl7u2bNxloAJo8Lot2mCQ3xpLGpnZIyB60WB5nD/PH1M7F7bwPNLa51KYtL2xgzMgAPs2L7ngba2jRhoR7v/mieAAEAAElEQVSEBLrmSXp5tmG3O1m7qQ6TSTFtQjDNFge2didNzTZKy614eBgYMzKQO29O7kgkXUwmEzExMcTExOB0OqmurqakpIQdO3awc+dOPDw8+M9//sOjjz7KjBkzeu6XcpRJkyaRm5tLfn4+sbGxvPPOO7z11ls/2Gfu3Lk8/fTTXHPNNaxfv57AwMBBN8QVJJkUQgjhBnaHk8c/20tKmC/XTIo/+QNEvxLk40FmTACrD1Rzn8x1FX2sK/PVBgsPDw9mzZrFrFmzsNvtfPfddyxatIhf/OIXjB8/ngULFjBz5kwcDgcrVqxg9OjRpKWlnfLzBQd5cOmsaC6dFU1js43VG2rYuaeR5V9X0NbuJD7WG4PBSEqCF43N7bS02tm1rwnQTBgTgN2uMBgV7TbN7pwmPMwGJozxQ6PYuacBh1OTnuxHXYONsaMC8TQr1nYU9UlJ9MFoVB1Ffdq54+YU0pL9jhurwWAgIiKCiIgItNZYLBYefvhhamtreemll/Dw8OD8888/5ffiREwmE08//TSzZs3C4XBw6623kpmZyfPPPw/AHXfcwZw5c1i2bBlpaWn4+Pjw8ssv90os7ibJpBBCiD73/uZiciubef5HEzAb+930fdEFZ6aG8dLqfFrb7fh4yOmE6LoLLriA8vLyY+5/7LHHmDdv3kkfP1Tmoh3NZDJx/vnnc/755+NwOFi9ejWLFy/moYceoq2tjYsuuohZs2b12PMF+Jm56PwoLjo/irtvTWXt5hrWbarl29VVVNdYCQv1oqnJRmKMJiwsgM3bXUNbR2T4YbU6yBwWQHOLay5mdW07vj4GsjICsVhdPZBREV6s31pPSJCZ9BRfGpsd7M1tws/XxFOPZZF+gkTyaA0NDTz22GM89NBDzJ8/nx07dmCxWHrsvejMnDlzmDNnzg/uu+OOOw7/rJTimWee6dUY+gNp/YUQQvSpmuY2nlyRw4TEYGZlRro7HHGKzkgL49/f5bGxoI5zMsLdHY4YQL788svTevxQmYt2IkajkbPPPpusrCy2bdvGOeecQ2trK9OmTSM9PZ0rrriCSy65BH9//x55Ph9vIzOmRzBjegQP3JnO5u31fP51Cas3tBAd6cfm7U0EBpgZme5HbYONg0WthIZ4oDV4exkZNyoQgwE2bqsHYGxmIBargzEjA7C2Odixx1VFNibKi0cfGkl6StcTyaamJubNm8c999zDFVdcAdBj60mKk5NkUgghRJ/RWvPA+9k0Wmz8YV7mkOhNGKwmJQVjNirWHKiWZFL0qa7MVxsq7HY7Dz74ILNnzwbgz3/+M9u2bWPRokX85S9/ISEhgSuuuIK5c+cSFBTUI8/p6WkkM8NEW3MN9y2cQG6+nZVrqikpt7B+ax1OJyTGexMc6Fqj8mBRMz4+RvbtbyYqwpOUBF9Kyi0cLLaQFO9DVU0bMZFeBAWZueOmFDJSup4At7S0MG/ePG677TauvfbaHnl9onvUicrqDjYTJ07UJyozLYQYkAZ8NjKU2qYXV+Xx6NI9/O/cTG46I8nd4YjTdP2L68irauHbX5yLp8no7nD6owHfPh2l108aP/zwQ376059SVVVFUFAQY8eO5fPPP6e0tJTbb7+dZctchfyXLVvGz372s8Pz1X7zm9+c8Li1tbVcffXVFBQUkJSUxHvvvUdwcPAx+yUlJeHv74/RaMRkMp1weZL+7tASIYsWLWLp0qVERkYyf/58LrvsMkJDQ0/5uPX19Wzbto1Jkybh6/v/i+M4HJrtuxv4bm0123bVk5vXgskIGWn+KEBr8PBQbNvZCEDm8ADMJkVTs53Kait//0MWw9O7nkhaLBbmzZvH1VdfzW233XbKr2cI6ZX2SJJJIcRAN+BP1oZK27SjuIH5z63m3GERvHDDBOmVHARW5VZxw3838Md5mdwwLcnd4fRHg+2PfMCeNP7yl78kJCSEBx98kMcff5y6ujr+/Oc/H7NfUlISmzZtIiwszA1R9h6tNXv37uWDDz7gk08+ITAwkCuuuILLLruMiIiILrfHdXV1ZGdnH5NIHs3pdBXg2bK9jk+/KKe03EpWZgB7cppJTfLF28dAYdGhuZRG/vHHMYzICOjy67FarcyfP59LLrmEO++8U/6fdI0kk6drqJywCTHEDPj/IEOhbWqy2rjkX99jsztZdt9ZBPl4nPxBot/TWnPl82sprrPw7S/OxcssvZNHGfDt01EG7EnjsGHD+Pbbb4mOjqasrIxzzz2Xffv2HbPfYE0mj6S15sCBAyxatIiPP/4YLy8vLr/8cubPn09MTMxxE7Pa2lq2b9/O5MmT8fHx6dbz7c9r4ds1VaxcW41Ta2pq27G2Ockc5s9dt6YyaljXE8n29nYWLFjAjBkzuPfeeyWR7DpJJk/XUDhhE2IIGvD/RQZ726S15mfvbuOT7FLe/ck0Jsm6hIPK6v3VXP/iehm63LkB3z4dZcCeNAYFBVFfX3/4dnBwMHV1dcfsl5ycTHBwMEopfvKTn7Bw4cI+jLLvaa05ePAgixcv5qOPPgJg3rx5XHHFFSQmJh5O1E41kexMQVErK9dUsXZTLXffmsLoEYFdfqzNZuOaa65h6tSpPPDAA5JIdk+vvFlSgEcIIUSvWrylhCXbSvmfmRmSSA5CZ6SGMjk5hGe+2c/Vk+Kld1K4zYmWHOmq1atXExMTQ2VlJTNnzmT48OGcffbZPRlmv6KUIikpifvvv5+f//znlJWVsXjxYm699VasVitz584lKiqKDRs28OSTT+Lt7X3az5kU70PS1YncdHVitx5nt9u54YYbGD9+vCSS/Ygs7iWEEKLXlDVYeOTjXUxOCuGu8059IW3Rfyml+PkFGVQ2tfHW+kJ3hyOGsC+//JKdO3ce8zVv3jwiIyMpKysDoKysjIiIiE6PcWiJkYiICC6//HI2bNjQZ/G7m1KKmJgY7rnnHr766is+/PBDqqureeCBB9i+fTtPPvkke/bs6XSdz952qNBSRkYGv/71ryWR7EckmRRCCNErtNY8+MEO7E7NE1eOwWiQf/6D1bTUUKamhPDcygNY2h3uDkeIY8ydO5dXX30VgFdffZV58+Yds09LSwtNTU2Hf16xYgWjRo3q0zj7C6UUBoOBVatWsWPHDpYsWUJ0dDS/+MUvmDhxIr///e/Zvn07Tqez12NxOBwsXLiQ6OhoHnnkEUkk+xlJJoUQQvSK9zYVsTKnigcvGk5i6PGr/onB4ecXZFDV1Mab6w+6OxQhjvHggw/yxRdfkJ6ezhdffMGDDz4IQGlpKXPmzAGgoqKC6dOnk5WVxeTJk7n44osPr994tOXLlzNs2DDS0tJ4/PHHj9mutebee+8lLS2NMWPGsGXLlt57cb0kPDycVatWER0dTWhoKLfddhuffvopX331FampqTz88MNMmDCBX//612zevLlXEkun08k999xDYGAgf/rTnzAYJHXpb6QAjxBioBvwlygHY9tUWm9h1t+/IzM2gLdun4pBeiWHhOtfXMe+8ia+++V5+HhIWQYGQft0lKFz0ngCDoeDjIwMvvjiC+Li4pg0aRJvv/02I0eOPLzPsmXL+Ne//sWyZctYv3499913H+vXr3dj1L2jsbGRpUuXsnjxYnJycpg5cyYLFixg8uTJp534OZ1O7r//fux2O0899ZQkkqevV9oj+a0IIYToUVprHly8A4fW/OWKLEkkh5D7Z2ZQ3dzO/e9m43BK3iEGpw0bNpCWlkZKSgoeHh5cc801LFmy5Af7LFmyhBtvvBGlFFOnTqW+vv7wnM3BJCAggGuvvZb333+ftWvXcsYZZ/DUU08xduxY7rvvPr777jscju4PfXc6nfzqV7+itbVVEsl+Tn4zQgghetS7G4v4LqeKhy4aTkLo6ZWQFwPLhMQQHr5kJMt3lfPbj3a6pVCHEL2tpKSE+Pj4w7fj4uIoKSnp9j6DjY+PD/Pnz+ett95iw4YNXHDBBfz3v/9l7Nix3HXXXXz99dfY7faTHkdrzcMPP0xVVRXPPfdcrySStbW1zJw5k/T0dGbOnNnpMjHgWnd09OjRjB07lokTJ/Z4HIOBJJNCCCF6zMGaFh5duodpKaFcP6V7Zd/F4HDr9GTuPi+VtzcU8vcvctwdjhA9rrOLJEcXhenKPoOZl5cXl156Ka+++iqbN29m7ty5vPXWW4wbN44f//jHLF++nPb29mMep7Xm0UcfJS8vjxdffBGjsXeWGnr88ceZMWMGubm5zJgxo9N5r4d88803bNu2jcE2HaWnSDIphBCiR1htDu54YwtGg+KJK8fI8NYh7IELh3HNpHie+no/r64pcHc4QvSouLg4ioqKDt8uLi4+vKRId/YZKjw8PJg9ezYvvvgiW7du5ZprruHjjz9mwoQJ3HzzzXzyySe0tbWhteYvf/kL2dnZvPrqq5hMvTfvesmSJdx0000A3HTTTXz00Ue99lyDnSSTQgghesTDS3ayp6yRf1w9lrhgGd46lCmlePSyUVw4MpJHPtnFJ9ml7g5JiB4zadIkcnNzyc/Pp729nXfeeYe5c+f+YJ+5c+fy2muvobVm3bp1BAYGEh0d7aaI+w+TycSMGTN49tln2bZtG7fccgtffvklkyZNYvLkyXz99de89dZbmM3mXo2joqLi8O8jOjqaysrKTvdTSnHhhRcyYcIEXnjhhV6NaaCSUmtCCCFO23sbi3hvUzE/PT+N84Z3vhi4GFpMRgNPXTuOG1/awM/e3QbApVlDs2dGDC4mk4mnn36aWbNm4XA4uPXWW8nMzOT5558H4I477mDOnDksW7aMtLQ0fHx8ePnll90cdf9jNBo555xzOOecc3A6nbz11ltccskleHh49MjxL7jgAsrLy4+5/7HHHuvyMVavXk1MTAyVlZXMnDmT4cOHc/bZZ/dIfIOFLA0ihBjoBvxYyoHeNu0qbWD+s2uYmBTMa7dOwSjDW8URmtvs3PrKRjYV1PLnK8Zw5cT4kz9o8BhsH4ahc9LoRsuXL+e+++7D4XBw++23H14T85Bvv/2WefPmkZycDMD8+fN5+OGH3RHqgDVs2DC+/fZboqOjKSsr49xzz2Xfvn0nfMwjjzyCn58fDzzwQB9F2eNkaRAhhBD9S6PVxl1vbiHIx8w/rxkniaQ4hp+niVdvmcyZaWH8YtF2Xl930N0hCdFvORwO7r77bj777DN2797N22+/ze7du4/Z76yzzmLbtm1s27ZNEslTMHfuXF599VUAXn31VebNm3fMPi0tLTQ1NR3+ecWKFYwaNapP4xwIJJkUQghxShqtNn7y2mZK6iw8c914wvw83R2S6Ke8PYz858aJXDAigt99tJMXV+W5OyQh+qWurGEpTt+DDz7IF198QXp6Ol988cXh3t/S0lLmzJkDuOZVTp8+naysLCZPnszFF1/M7Nmz3Rl2vyRzJoUQQnRbab2FW17eyIGqZp64cgwTk0LcHZLo57zMRp69fgI/e3crjy7dw4GqFn49Zzj+Xr1baEOIgaSz9SnXr19/zH5r164lKyuLmJgY/vrXv5KZmdmXYQ54oaGhfPXVV8fcHxMTw7JlywBISUkhOzu7r0MbcCSZFEII0S27Sxu55ZUNtLY5eOWWyUxPD3N3SGKA8DAZeOqaccQF7+PFVXms3FfJ/80fzbnDpGiTENC19SnHjx/PwYMH8fPzY9myZVx22WXk5ub2VYhC/IAMcxVCCNFl3+VUcdW/16JQvH/nNEkkRbeZjAZ+PWcEi+48Ax9PEze/vJEH3s+modXm7tCEcLuurE8ZEBCAn58fAHPmzMFms1FdXd2ncQpxiPRMCiGEOCm7w8mz3x7gn1/lkh7hx8u3TCI60NvdYYkBbHxCMEvvnc6/vtrPcysP8PnOcs5MC+OsjDDOTg8nPkTWKhVDz5FrWMbGxvLOO+/w1ltv/WCf8vJyIiMjUUqxYcMGnE4noaGhbopYDHWSTAohhDih/ZVN/M972WQXN3BpVgz/d/komecmeoSnycgDs4Yxe1QUr689yKrcKpbvcq0LlxTqw8SkELLiAhkTF8TwaH88TUY3RyxE7+rKGpaLFi3iueeew2Qy4e3tzTvvvHPMUFgh+kq/W2dSKXUl8AgwApiste508TWlVAHQBDgAu9Z64smOPdDXchNCdGrA/wftr22T06l5aXU+T3y+Dx8PI49eNpqLx0S7OywxiGmtyatuYVVOFatyq9laVE9tSzsAZqMiMyaQ2aOiuHh09EDpuRzw7dNR+tdJo+iWW2+9lU8//ZSIiAh27tx5zHatNffddx/Lli3Dx8eHV155hfHjx7shUtFLeqU96o89kzuB+cC/u7DveVprGSQuhBA9bO2BGv7y+V62FtYzY3gEf7piNBH+Xu4OSwxySilSw/1IDffj5jOT0VpTUm9he3ED2cX1rDtQw+Of7eXxz/YyLiGIS8fEcMmYaCIC5G9TiJO5+eabueeee7jxxhs73f7ZZ5+Rm5tLbm4u69ev58477+y0kqwQR+p3yaTWeg8cW7lKCCFE79taWMeTK3L4fn81kQGePLFgDAsmxEmbLNxCKUVcsA9xwT7MGe3qFS+saeXTHaV8kl3GHz7dzaNLdzM9PZz542K5MDMSH49+d2ojRL9w9tlnU1BQcNztS5Ys4cYbb0QpxdSpU6mvr6esrIzoaBmRIo5vILe4GlihlNLAv7XWL3S2k1JqIbAQICEhoQ/DE0IMRkqp2cA/ASPwotb68aO2q47tc4BW4Gat9ZY+D7QbyhusrM+v4ZPsUr7cU0morwe/vXgEP5qaiJdZ5qiJ/iUh1Ie7zk3jrnPT2F/ZxEdbS/lwawk/e3cbvh5GZo2KYmpKKFlxQaRF+GE0yIUQIbqiszUuS0pKJJkUJ+SWZFIp9SUQ1cmm32itl3TxMGdqrUuVUhHAF0qpvVrr747eqSPJfAFc85JOOWghxJCnlDICzwAzgWJgo1LqY6317iN2uwhI7/iaAjzX8d0tnE6Nxeaguc1OXWs7tS3t1LXYqGlpY3txAxvyaymsbQUgyMfML2YN4+YzkvD1HMjXGsVQkRbhzwOzhnH/zAw2FNTy4ZYSPttZxuItJQD4ehgZFRvIsCh/IgO8CPf3JMLfkwh/LwJ9zPh7mfDzMGGQhFOILq1xKcTR3HK2oLW+oAeOUdrxvVIp9SEwGTgmmRRCiB40Gdivtc4DUEq9A8wDjkwm5wGvadd/5XVKqSClVLTWuux0n/xAVTO/+XAHWuP6QuPU4HBqbA5nx5em3e7EanPQ0m7HanMe93jBPmYmJ4dw0xlJTEkOYUR0gPTiiAHJYFBMTQllakoof5o/mvyaFrKL6skuqmdbcQMfbi2hyWrv9LFKgZ+HCV9PEx4mg+vL6PpuNCgMChQKpVz7Pnf9BIJ9Pfr4FQrR+7qyxqUQR+t31VwPUUp9CzzQWTVXpZQvYNBaN3X8/AXwB6318pMcswo4eMRdYcBgK+Ajr2ngGIyvyx2vqVprPbsvnkgptQCYrbW+veP2DcAUrfU9R+zzKfC41vr7jttfAb86ui07cgg+MAzYd5Kn749/L/0tpv4WD0hMXdHf4oGei6nP2ichukIplQR8qrUe1cm2i4F7cE3TmAI8pbWe3LcRioGm341jUkpdDvwLCAeWKqW2aa1nKaVicM1PmgNEAh92dL2bgLdOlkgCaK3Dj3quTV1ZUmQgkdc0cAzG1zUYX9NROuu2O/qKXFf2+cEQ/C49cT98b/tbTP0tHpCYuqK/xQP9MyYhTpdS6m3gXCBMKVUM/B4wA2itnweW4Uok9+Oa83+LeyIVA0m/Sya11h8CH3ZyfymuP3A6hphl9XFoQghRDMQfcTsOKD2FfYQQQog+pbW+9iTbNXB3H4UjBgmDuwMQQogBZCOQrpRKVkp5ANcAHx+1z8fAjcplKtDQE/MlhRBCCCH6m37XM9nHujzEbACR1zRwDMbXNRhf02Faa7tS6h7gc1xLg7yktd6llLqjY3tvDhPqj+9tf4upv8UDElNX9Ld4oH/GJIQQ/U6/LcAjhBBCCCGEEKL/kmGuQgghhBBCCCG6TZJJIYQQQgghhBDdNuSTSaXUE0qpvUqp7UqpD5VSQe6O6XQppa5USu1SSjmVUgO6tLlSarZSap9Sar9S6kF3x9MTlFIvKaUqlVI73R1LT1BKxSulvlFK7en4u7vP3TENBl39HCulCpRSO5RS25RSx6zL66aY+uRzq5QKUUp9oZTK7fgefJz9ev09Otlr7ijI9FTH9u1KqfG9EUc34jlXKdXQ8Z5sU0o93MvxnLDd6+v3p4sx9el7JIQQA9GQTyaBL4BRWusxQA7wkJvj6Qk7gfnAd+4O5HQopYzAM8BFwEjgWqXUSPdG1SNeAQbTItZ24H+01iOAqcDdg+T35G7d+Ryfp7Ue2wfr4p00pj7+3D4IfKW1Tge+6rh9PL32HnXxNV8EpHd8LQSe6+k4uhkPwKqO92Ss1voPvRVPh1c4cbvXZ+9PN2KCvn2PhBBiwBnyyaTWeoXW2t5xcx2uNeEGNK31Hq31PnfH0QMmA/u11nla63bgHWCem2M6bVrr74Bad8fRU7TWZVrrLR0/NwF7gFj3RjXw9cfPcRdj6svP7Tzg1Y6fXwUu66XnOZmuvOZ5wGvaZR0QpJSKdmM8faoL7V5fvj9djUkIIcRJDPlk8ii3Ap+5OwhxWCxQdMTtYiRJ6deUUknAOGC9m0MZSjSwQim1WSm10N3B0Lef28hDa3h2fI84zn69/R515TX35fvS1eeappTKVkp9ppTK7KVYuqq/tvf96T0SQoh+Z0isM6mU+hKI6mTTb7TWSzr2+Q2u4Xpv9mVsp6orr2kQUJ3cJ2vZ9FNKKT/gA+BnWutGd8czEPTQ5/hMrXWpUioC+EIptbejx8VdMfXo5/ZE8XTjMD36HnWiK6+5L9uzrjzXFiBRa92slJoDfIRriKm79Mf2vr+9R0II0e8MiWRSa33BibYrpW4CLgFm6AGy8ObJXtMgUQzEH3E7Dih1UyziBJRSZlyJ5Jta68Xujmeg6InPsda6tON7pVLqQ1xDHE85UeqBmHr0c3uieJRSFUqpaK11WceQyMrjHKNH36NOdOU192V7dtLnOvKCj9Z6mVLqWaVUmNa6updiOpl+1973w/dICCH6nSE/zFUpNRv4FTBXa93q7njED2wE0pVSyUopD+Aa4GM3xySOopRSwH+BPVrrv7k7nqFEKeWrlPI/9DNwIa4iOe7Ul5/bj4GbOn6+CTim57SP3qOuvOaPgRs7qpZOBRoODdHtBSeNRykV1fHZRSk1Gdf5QE0vxdMVffn+dEk/fI+EEKLfGfLJJPA04I9r6NM2pdTz7g7odCmlLldKFQPTgKVKqc/dHdOp6CiMdA/wOa6iLu9prXe5N6rTp5R6G1gLDFNKFSulbnN3TKfpTOAG4PwjSujPcXdQA93xPsdKqRil1LKO3SKB75VS2cAGYKnWerk7Y+rjz+3jwEylVC4ws+N2n79Hx3vNSqk7lFJ3dOy2DMgD9gP/Ae7qyRhOIZ4FwM6O9+Up4JreHJnTWbvnrvenGzH16XskhBADkZJ2UQghhBBCCCFEd0nPpBBCCCGEEEKIbpNkUgghhBBCCCFEt0kyKYQQQgghhBCi2ySZFEIIIYQQQgjRbZJMCiGEEEIIIYToNkkmxYCilLpXKbVHKfVmNx93j1Jqv1JKK6XCeis+IcTQdRrt05tKqX1KqZ1KqZeUUubeilEIIYToSbI0iBhQlFJ7gYu01vndfNw4oA74Fpiota7uhfCEEEPYabRPc4DPOm6+BXyntX6up+MTQgghepr0TIoBQyn1PJACfKyU+pVSao1SamvH92Ed+xiVUn9VSu1QSm1XSv0UQGu9VWtd4MbwhRCD2Gm2T8t0B2ADEOe+VyKEEEJ0nfRMigFFKVUATATagVattV0pdQFwp9b6CqXUncAFwNUd20K01rVHP156JoUQPa0H2iczsB64T2u9yg0vQQghhOgWk7sDEOIUBQKvKqXSAQ0cmmN0AfC81toOcOSJmhBC9JFTbZ+exTXEVRJJIYQQA4IMcxUD1R+Bb7TWo4BLAa+O+xWukzchhHCXbrdPSqnfA+HA/X0SoRBCCNEDJJkUA1UgUNLx881H3L8CuEMpZQJQSoX0cVxCCNGt9kkpdTswC7hWa+3swziFEEKI0yLJpBio/gL8SSm1GjAecf+LQCGwXSmVDVwHh0v2F+MqbLFdKfViXwcshBgyutU+Ac8DkcBapdQ2pdTDfRqtEEIIcYqkAI8QQgghhBBCiG6TnkkhhBBCCCGEEN0myaQQQgghhBBCiG6TZFIIIYQQQgghRLdJMimEEEIIIYQQotskmRRCCCGEEEII0W2STAohhBBCCCGE6DZJJoUQQgghhBBCdJskk0IIIYQQQgghuk2SSSGEEEIIIYQQ3SbJpBBCCCGEEEKIbpNkUgghhBBCCCFEt0kyKYQQQgghhBCi2ySZFEIIIYQQQgjRbZJMCiGEEEIIIYToNkkmhRBCCCGEEEJ0mySTQgghhBBCCCG6TZJJIYQQQgghhBDdZnJ3AH1p9uzZevny5e4OQwjRs5S7Azhd0jYJMWhJ+ySE6I96rG0aUj2T1dXV7g5BCCGOIW2TEKK/kvZJCHEiQyqZFEIIIYQQQgjRMySZFEIIIYQQQgjRbZJMCiGEEEIIIYToNkkmhRBCCCGEEEJ0mySTQgghhBBCCCG6TZJJIYQQQgghhBDdJsmkEEIIIYQQQohuk2RSCCGEEEIIIUS3STIphBBCCCGEoLalnf2VTe4OQwwgkkwKIYQQQggxxNU0t3H5s6uZ+/Rq6lra3R2OGCAkmRRCCCGEEGIIs9oc3P7aJsoarLS2O3h5db67QxIDhCSTQgghhBBCDFFOp+bn725jW1E9/7x6LLMyI3llTQFNVpu7QxMDgCSTQgghhBBCDFGPL9/LZzvL+c2cEVw0Opp7zkun0WrnjXWF7g5NDACSTAohhBBCCDEEvb62gBe+y+PGaYncNj0ZgNFxgZydEc5/v8/DanO4OULR30kyKYQQQgghxBCTU9HE7z/exQUjIvj9pZkopQ5vu+e8NKqb23lng/ROihOTZFIIIYQQQogh5qXv8/EwGXhiQRZGg/rBtsnJIUxOCuHf3+XRbne6KUIxEEgyKYQQQgghxBBS29LOh1tLuHxcHMG+Hp3uc9d5qZQ1WPlwa3EfRycGEkkmhRBCCCEGCKXUS0qpSqXUzuNs/4VSalvH106llEMpFdKxrUAptaNj26a+jVz0J29vKKTN7uTWM5OOu885GeGMjg3kuW8PYHdI76TonCSTQgghhBADxyvA7ONt1Fo/obUeq7UeCzwErNRa1x6xy3kd2yf2bpiiv7I5nLy+9iBnpYeRHul/3P2UUtx9XioFNa18vquiDyMUA4kkk0IIIYQQA4TW+jug9qQ7ulwLvN2L4YgB6LOd5ZQ3WrnlBL2Sh1w4MopQXw++2ivJpOicJJNCCCGEEIOMUsoHVw/mB0fcrYEVSqnNSqmFJ3jsQqXUJqXUpqqqqt4OVfSxl1fnkxzmy7kZESfd12BQTEkJYX1eLVrrPohODDSSTAohhBBCDD6XAquPGuJ6ptZ6PHARcLdS6uzOHqi1fkFrPVFrPTE8PLwvYhV9ZGthHVsL67lpWiKGoyq4Hs+U5FBK6i0U11l6OToxELk1mVRKzVZK7VNK7VdKPdjJdplELoRwC2mfhBAD3DUcNcRVa13a8b0S+BCY7Ia4hBu9vLoAf08TCybGd/kxU1NCAViXV9NbYYkBzG3JpFLKCDyD6+rYSOBapdTII/eRSeRCCHeQ9kkIMZAppQKBc4AlR9znq5TyP/QzcCHQaUVYMTiVN1hZtqOMKyfG4+dp6vLj0iP8CPH1YF1eV6fqiqGk639JPW8ysF9rnQeglHoHmAfsPs7+MolcCNFXpH0SQvRLSqm3gXOBMKVUMfB7wAygtX6+Y7fLgRVa65YjHhoJfKiUAtf531ta6+V9FbdwvzfWHcShNTefkdStxxkMislJIazPl55JcSx3JpOxQNERt4uBKZ3teMQk8nuOuPvQJHIN/Ftr/cJxHrsQWAiQkJDQA2ELIYaAXm+fpG0SQpwKrfW1XdjnFVxLiBx5Xx6Q1TtRif7OanPw1oZCZgyPJCHUp9uPn5oSwvJd5RTXtRIX3P3Hi8HLnXMmO5v1e7wyUTKJXAjRl3q9fZK2SQghRF/5JLuU2pZ2bu3CciCdmdIxb3K9DHUVR3FnMlkMHDn7Nw4oPc6+MolcCNGXpH0SQggxKGiteWVNARmRfkxLDT2lYwyL9CfIxyxFeMQx3JlMbgTSlVLJSikPXCdkHx+9k0wiF0K4gbRPQgghBoVNB+vYVdrITWck0TFnttsOzZtcJ/MmxVHcNmdSa21XSt0DfA4YgZe01ruUUnd0bJdJ5EIIt5D2SQghxGDxyuoCArxMXD4u9rSOMzUllBW7KyiptxAb5N1D0YmBzp0FeNBaLwOWHXXf80fdfgWZRC6E6GPSPgkhhBjoSustLN9Vzm3Tk/HxOL3T/ikpIQCsz6th/vi4nghPDALuHOYqhBBCCCGE6CVvrj+I1pobpiae9rFGRAUQ6G2WIjziBySZFEIIIYQQYpCx2hy8tb6QC0ZEEh9y+st5GAyKSTJvUhxFkkkhhBBCCCEGmY+zS6lrtXHzKS4H0pmpKSEcrGmlrMHSY8cUA5skk0IIIYQQQgwiWmteWV3AsEh/pqWc2nIgnZkq602Ko0gyKYQQQgghxCCy6WAdu8tObzmQzoyIDsDfyyTrTYrDJJkUQgghhBBiEHl/UxG+HkYuGxfTo8c1dqw3uT5feiaFiySTQgghhBBCDBKt7XaWbi9jzujo014OpDNTU0LJr26hvMHa48cWA48kk0IIIYQQQgwSn+8qp6XdwRUTemctyGmprnmTa/Oqe+X4YmCRZFIIIYQQQohBYtHmYuJDvJmcFNIrxx8R7Vpvcu0BmTcpJJkUQgghhBBiUCitt7DmQA3zx8VhMPRc4Z0jGQ2KKckhrJFkUiDJpBBCCCGEEIPCh1tL0BquGN87Q1wPOSM1lOI6C0W1rb36PKL/k2RSCCGEEEKIAU5rzaLNxUxODiEh1KdXn2taahgAa2WJkCFPkkkhhBBCCCEGuC2F9eRXt7CglwrvHCkj0o9QXw+ZNykkmRRCCCGEEGKgW7S5GG+zkTmjo3v9uZRSTE0NZe2BGrTWvf58ov+SZFIIIYQQQogBzGpz8On2Ui4aFYWfZ8+vLdmZaSmhlDdaya9u6ZPnE/2TJJNCCCGEEEIMYCt2V9Bktffa2pKdOePwepMy1HUok2RSCCGEEEKIAeyDzcXEBHoxLSW0z54zOcyXyABPmTc5xEkyKYQQQggxQCilXlJKVSqldh5n+7lKqQal1LaOr4eP2DZbKbVPKbVfKfVg30UtelNLm501B6q5JCum19aW7IxSijNSw1iXJ/Mmh7K+GVQthBBCiJNqszsoqbNQ1LF+W1FtK01tdswGhclowGRUmA0GIgO9mJQUTEaEf5+ePIp+4RXgaeC1E+yzSmt9yZF3KKWMwDPATKAY2KiU+lhrvbu3AhV9Y31+DTaH5pyM8D5/7mkpoXy4tYTcymYyIv37/PmF+0kyKYQQQnRBm91BfauNutZ26lpsNFjaAUWAlwl/LzP+Xib8vUx4mAwYlMKgFEqBQSna7A6arHaarHaa22w0Wu1UNbZRXNdKUZ2F4rpWiusslDdaOfICv4fJQICXCZtDY3c4sTk0Nqfz8D4BXiYmJoUwKSmEs9LDyIwJQClJLgczrfV3SqmkU3joZGC/1joPQCn1DjAPkGRygPsupxovs4EJicF9/tzTOuZNrtlfLcnkECXJpBiQ7A4nJfUWDta0crCmhYKaVorrWmmy2mlps9PcZqelzUFrux2lFIaOEzqDwfWzyeC6wm80KEwGhdFgQGuNw6lxaI3TqbE7Xd8dHffbna7vRoPCbDQc7ikwGxV+niYCvM0EeJsJ9DYT4GUmKsCTmCBvYoO9iQ3yJtDbLCd5QgwgbXYH6/Jq+XJ3BV/tqaC0wdrjz2FQEB3oTVywN2ekhhEX7E1CiA8JoT7EB/sQ4e95TM+j1pqiWgsbC2rZdLCWDfm1fL23kj8vh7QIPy4aFcXsUVGMjJbEcgibppTKBkqBB7TWu4BYoOiIfYqBKZ09WCm1EFgIkJCQ0MuhitO1KreKKcmheJmNff7c8SE+xAV7szavhpvPTO7z5xfuJ8mk6PccTs2Bqma2FdWzvbie7KIG9pY3YnP8/8v3XmYDccE+BHmbCfLxIC7YB19PIz4erj9xp9Y4tcbh5HCi6HA6sTk1DofrtkGB0eBKOI3KlWgeSjaPvM+VWDp/0FPQ1Gan0WKjpN5Co8VOg6X9B/EB+HmaSIvwIzMmgMyYQEbGBDA8yt8tjb8Q4vi+3F3Bh1tLWJlTRXObHW+zkbPSw7huSgJBPh4E+3gQ7GMm0MeM1nT0NtppstpostpptzvRaJy6o+1xajxNxo6eSzN+HT2Y4X6eRAV6YTZ2r3yBUoqEUFfCeahyY01zG5/tLOfT7aU8881+/vX1fhJDfZgzOporxseSFiE9BkPIFiBRa92slJoDfASkA51dWeh0opvW+gXgBYCJEyfKZLh+rLTewoGqFq6d7L6kf1pKKCt2V+B0ahl2PwS5NZlUSs0G/gkYgRe11o8ftf1cYAmQ33HXYq31H7ryWDGwVTZa+WZfJV/tqWTNgRqa2+wA+HuaGB0XyK3Tk0kN8yMx1IekMF8i/D371RV4rTU1Le2U1FkorbdQUu+a/7S3vImPs0t5c30h4EpeJyQGMyszigtHRhIf4uPmyMUh0j4NPS1tdh5esosPthQT4e/JpVkxXDgykmmp7rni3x2hfp78aGoiP5qaSHVzG1/sruCzneW88F0ez317gKz4IBaMj+XSrBiCfDzcHa7oRVrrxiN+XqaUelYpFYarJzL+iF3jcPVcigHs+9xqAM5K7/v5koeckRbK+5uL2V3WyKjYQLfFIdzDbclkNyaCyyTyIaKswcK7G4v4ak8lO0oaAIgJ9GLe2BgmJAYzJi6IlDDfAXHVSylFmJ8nYX6eZMUH/WCb1priOgu7ShvYXtzA13sr+eOnu/njp7vJjAngwpFRzB8fK4mlG0n7NPTsLm3knre3kF/dwn0z0vnp+WmYutlj2F+E+Xly7eQErp2cQGWTlY+3lbJoczG/W7KLP366hwszI7ltejLjEvp+fpXofUqpKKBCa62VUpNxVe6vAeqBdKVUMlACXANc57ZARY/4LreKCH9PMiL93BbDtJQwANbl1UgyOQS5s2fydCaCyyTyQWR/ZTP/XnmAj7aV4HBqxiUE84tZw5gxIoJhkf79qsexJyiliA/xIT7Eh9mjovnl7OEUVLewYnc5n++q4B9f5fDPr3KYPSqK26anuGVCvZD2aajQWvPGuoP8cekegrzNvHX71MMFJQaDCH8vbj8rhdumJ7OrtJEPthSzaHMxn24vY1JSMD8+K4ULRkQOiIt0wkUp9TZwLhCmlCoGfg+YAbTWzwMLgDuVUnbAAlyjXes22JVS9wCf4xo18VLHXEoxQDmcmu/3VzNjeKRbz5WiAr1IDPVhY0Ett5+V4rY4hHu4M5ns6kRwmUQ+CNkdTj7bWc67G4v4fr+rCtn1UxK5bXrykOyRSwrzZeHZqSw8O5XSeguvrzvIm+sOsmxHOanhvlw0KprLx8eSGu6+K49DTK+3T9I2uV+j1cYv3s/m810VnDssnCevzCLUz9PdYfUKpRSjYgMZFRvI/1w4jHc3FvHS9/ksfH0zsUHeLJgQx63Tkwn0Nrs7VHESWutrT7L9aVxLh3S2bRmwrDfiEn1vV2kD9a02zs4Ic3coZMUFsbGg1t1hCDdwZzLZlYngMol8ENpWVM9vPtzBrtJGYoO8uX9mBtdPSRi0J3HdFRPkza9mD+ee89L4aFsJn2aX8ey3+3n6m/2ckRrKDVMTuWBkZLeLdohu6fX2Sdom98qpaOInr2+mqLaV38wZwW3Tk4dM75yfp4nbpidz07RElu8q571Nxfzzq1xeXp3PwrNTuOXMZHw9pT6fEP3dqo75kmemuT+ZHBMXyMfZpVQ2WYnw93J3OKIPufO/xUkngssk8sGlodXGXz7fy1sbConw9+Rf147j4tHRQ+YErrt8PU1cPyWR66ckUtlk5f1Nxby1vpA739xChL9rTtSN0xIlCe8d0j4NYp9uL+WXi7bj62ni7YVTmZQU4u6Q3MJkNHDJmBguGRPDrtIG/rYih7+uyOGl1QXcdW4qP5qa2O8LDwkxlK3KrWJkdABh/eA8YGxHfYjtRQ1cMFKSyaHEnV0bG+mYCK6U8sA1EfzjI3dQSkWpjkHgR00iP+ljRf+htebDrcXM+Nu3vL2hkFvOSObL+8/h0qwYSSS7KMLfi7vPS+O7X57HizdOZER0AE99ncuFf/+Oz3aUuTu8wUjap0HI7nDy2NLd3PPWVkZGB7D0p9OHbCJ5tMyYQP578yQW33UGI6MDeHTpHi7420o2H6xzd2hCiE60tNnZfLCOs/rBEFdwtSFGgyK7uN7doYg+5raeSa11pxPBlVJ3dGyXSeSDQG1LO79ctJ0v91QwNj6IV26ZLJW+ToPRoLhgZCQXjIxkb3kjv3h/O3e+uYW5WTH879xMgn2l5H9PkPZp8ClrsPCzd7axPr+Wm6Yl8puLR+Jh6tnrqQ0WG/srm2ltt2M0KMxGAyaDwmQwEBXoRbi/+3sPTmZ8QjBv3D6FNfur+eUH27nq32u5f2YGd5yTilEu/gnRb6zPr8Hm0JztxiVBjuTtYSQ9wo/s4gZ3hyL6mHKd+wwNEydO1Js2bXJ3GENGab2Fa15YR3mDlV9dNJxbzkiSnsgeZnM4ef7bAzz1dS7hfp7856aJZMYMuWR9wP9RSdvUexxOV7XWv36+D4fWPHrZKOaPjzvt4za32Vm+s5zsonr2Vzazv6qZqqa2Ez4mLtibcQnBjIsPYlxCEJkxgT2e0PakRquNXy/ewafby7hmUjx/mj960FXX7gMD/g2T9ql/euTjXby9oZDs31/Yb4aj/2rRdj7fXc7W382UtqL/67FfkMywF73iUCJZ19LOOz+ZynhZz6xXmI0GfjojnXOHRbDw9U0seG4tz14/nvOGR7g7NCHcLruont98tIOdJY1MTwvj0ctGkRTme8rHczo16/JqWLS5mM92lmOxOfD3MpEW4ce5GeGkRviRFu5HkI8Zm0NjdzqxOzU2u5PC2la2FtazuaCWT7JdU2j9PU2cOzyCmSMjOXdYOAFe/auSaoCXmX9dO47EUB+e+eYAccHe3HN+urvDEkIA3++vZkpKaL9JJAGy4oN4d1MRRbUWEkKHXmX+oUqSSdHjjkwkX799yuFJ2aL3jI4LZMndZ3Lbq5u4443NvHbrZKakDJ618oTojqqmNv7+ZQ5vbygk3M9V7OuSMdGnfKXc5nDyn1V5vLmukJJ6C/5eJi4fH8uCCXGMiw/q9nHLG6xsKaxj5b4qvtxTwSfZpZiNiqkpoUxPC2NYlD/DovyJCvBy+9V9pRQPXDiM0norf12RQ0yQd4/07AohTl1pvYX9lc1cMyn+5Dv3oTFxrpFR24rrJZkcQiSZFD3qYE0LN/x3g9sTSa015Y1W9pU3YWl3YHNq7A4ndofG7tSYjQpPsxEvkwFPsxFPkwEPkwEPowGz0YDZqPAwGQjx9cDHY2B8TCICvHj11skseH4Nt7+2ifd+Mo0R0QHuDkuIPtPSZuc/q/L4z3d5WO1ObpqWxP9cmIH/afT4Haxp4b53trGtqJ6z0sN48KLhzBwZeVq9AVGBXswZHc2c0dE4nJqthXWs2F3Bil3l/OmzvYf3C/AyMSzKn+QwX6ICvYkK8CI60IvIAC+Swnz6rG1SSvHnK8ZQ3mDlwcU7GBEdIG2LEG70/X7XkiDT0/tH8Z1DhkX542kysL2onrlZMe4OR/SRgXGWLAaET7eX8uAHOzAaVJ8nki1tdlbvr2Z7cQM7ShrYVdpAdXN7jxzbx8NIuL8nYX6ehPt5khLuy7Aof9Ii/EgM9cWvH63HFuLrweu3TeGKZ9dw40sb+OCOM+TqoBj02uwO11qJX+ZS3dzGRaOi+MWsYaSE+53yMbXWLNpczCMf78JoUDx93TguGdPzJ0dGg2JiUggTk0L49ZwR1LW0k1PRRE5FE/sqmthX3sTKnCoqm9o4ssSB2aiYmBjC2RnhnJEayojogF6df+lhMvD0deO46J+r+OnbW/nknul4e/Sf4XVCDCWbC+oI8jEzLNLf3aH8gNloYGRMANulCM+Q0n/OgsWA9vLqfP73k92MTwjiqWvHERfc+wlMTXMbX+6pYMWuClbtr6bd7sRoUKRH+HHusAhGxQQwMiYQfy8TZqOroqKp47vN4aTN7sBqc31vszlpdzixOTQ2h9O13eaktrWdqqY2qpraqG5uI7eyiS/3VGB3/v+zujA/T5LDfEgK9SU53JfkQ9/DfPE09f3JVmyQN6/fNpkFz6/lzjc3s+TuMzEZ+2+RDyFOVWu7nbfWF/LCd3lUNrUxOSmEF26ccNpztNvsDh7+aBfvbipicnIIf796LLFB3j0U9YkF+3owJSX0mGHqNoeTqqY2yhutlNVb2V5cz8qcKv683NWT6WE0MDY+iFmjopg9KqpX4g318+TvV4/l+hfX859Vedw7Q+ZPCuEOW4vqTmmIfV/Iigvi3Y1F2B1OOfcYIiSZFKftUCI5KzOSf107vlevjrfZHSzbUcbbG4rYVFCLU7uSpx9NSWTmyEjGxgf1+tXydruTvOpm8qpaKKhpoaC6hYLqVr7NqeL9zcWH9zMbFRmR/oyKCWRUbACZsYGM6qPqjemR/jw+fzR3vrmF/6zK585zU3v9OYXoK81tdl5fe5AXV+VR09LOGamh/PXKLM5KDzvtk6tGq41bXt7I5oN13HNeGj+fmdEvlsQwGw3EBHkTE+QNCXDxmGgemjOCykYrGwvqDieXf/x0N3/8dDdZcYFcNDqaS8ZE9+jFvTPTwjgnI5zX1x3kjnNS+3U1WiEGo0arjdzK5l4ZKdETsuIDeWVNAfurmhkeJcPhhwJJJsVpeaUjkbxwZO8mkpWNVt5YX8hb6wupbm4jOcyXe85PZ1ZmJCOjA/r06pyHycDwqIBOG8kmq42DNa0cqGpmT1kTu0obWLG7nHc3FQHg52nirPQwzhsewXnDInp13bmLRkczKzOSf3yZw+xRUSSfRhVLIfoDm8PJC9/l8Z9VedS32jg7I5x7z09jYlJIjxy/yWrjppc2sKO4odvDWlvb7WwvbmBbUT0Opz48vzEq0IvoQO9eu8gVEeDFxWOiDyeX+dUtfLazjOU7y3n8s7088fk+Lhsby93npZ7WsN8j3XJmEje/vJGlO0q5fJwU4xGiL2UX1aM1jEsIcnconRoTFwTA9qIGSSaHCEkmxSkprGnlqa9zWbS5mJkjI3n6ut5JJLOL6vnv9/ks21GGQ2vOGxbBTWckcVZaWL9cs9Lfy8yo2EBGxQYyb6zrPq01pQ1WthfV811uFV/vreSzneUAZMUFMntUNHPHxvTKsLQ/zhvFjL+t5FeLtvPOwqn98j0ToisKa1r56TtbyS6q5/zhEdw7I71H52U3t9mPSCTHM3tU1An311rz1Z5KVuZUsaWwjr3lTTicx1+3eUR0ANdOjmfe2FgCvXtvCZDkMF/uOjeNu85No6i2lZdXF/DWhoN8uLWYuVkx3HN+GmkRpzfP6uz0cFLCfXl5dQGXjY3tl0PthBisthbWo5RrGY7+KDnUF39PE9nF9VzVz6rNit6htD7+P7/BRhbePX1lDRae+iqX9zcVYzAobpyayC9nD+/RRNLmcPLl7gpeWp3PxoI6/D1NXDkxnhunJZ7WGnH9hdaa3WWNfLO3ki/3VLKtqB6AyckhXDY2lkuyont0vbn3NxXxi0XbeeTSkdx8ZnKPHbcfGfBnstI2ndiSbSX85sOdKAWPzx/DxWOie/T4zW12bn5pA1uL6nnmunHMHnXi4685UM2fP9tLdnEDfp4msuIDGZ8QzLiEIMbGB+PjYaSswUpZg4XyBisldRY+313OzpJGvMwGLh4dw9WT4pmYGNwnF3iqmtp4cVUer609iNXu4PKxsTx86UiCfDxO+Zivry3gd0t28cGd05iQ2DM9w4OUtE+iR93y8gZK6i2s+Pk57g7luK5/cR2NFjuf/HS6u0MRx9djbZMkk6JL7A4nr6wp4O9f5GBzaK6dHM9d56URGeDVY89R29LO8ysPsHhLMdXN7cQFe3PrmclcNSm+X1VM7WmFNa0s2VbCh9tKyKtqwdts5Pazkrnn/LQeKeCjteamlzeytbCOtQ/NGIzvpZysDVJ2h5PHP9vLi9/nMzExmH9cM7bHi3u12R3c+spG1uXV8q9rxzFn9PETybyqZv5v2V6+3FNBTKAXP5+ZweXjYrtcZGJHcQNvbyxkydYSWtodRAV4MXNkJLMyo5iSEoK5l4tV1La088J3eby4Ko9QPw+eWJDF2Rnhp3SsljY7U//0FecPj+Cf14zr4UgHFWmfRI/RWjPuj18wa2QUf14wxt3hHNefl+/lxVV57Hhk1mktoyR6VY+1TYPurFL0vHV5NTzy8S72ljdx7rBw/jB3VI8vN/H13gp+9cEO6lramTEigqsnxXN2evgpVQLTWlPb0k5+dQtFda202504nODUGqfWOJwaq82J1ebAandgbXdVdW21ObC022lpc9Bqc9Bmc+DraSLI20ygj5kgbw+CfcxkRPkzNj6oxxLphFAffjojnXvOTyO7uIGXvs/nX1/vZ8WuCp64cszh+QenSinF/TMzuOyZ1by3sYhbpw/K3kkxyFjaHdzxxmZW5lRx8xlJ/PbiET1eGbDN7uBn72xj9f4anrwy67iJpNOp+euKfbzwXR5eZiO/nD2MW89M7vZJ0ui4QEbHjeY3c0bwxe4Klu8sZ9HmYl5fd5AALxMzRkRyZloYwzuWHurpk7AQXw8evGg4l4yJ5ufvbuPGlzZw47REHrpoRLfndPp6mpg3Nob3NxXTYLH16tBdIYRLQU0r9a22fjtf8pCsuEBsDs2eskbGnWZ1bdH/STIpjquswcJjS/fw6fYyYoO8ee561zyinpwf09Jm59Gle3h7QyHDo/x59ZbJjIzp3oRtp1Ozan81H28rZX9lE/nVLTRa7V16rKfJgLeHES+TER8PI94eru+B3ma8/D1pabdT3mhlb3kTDRYbzW3//7iRAZ5kxQWRFR/EucPCT7sQkFKKsfGupVUuGxfDQ4t3cPmza7jjnBTunZF+Wr2UY+ODmJgYzEur87lxWqKU6xb9WrvdyR1vbOa73Cr+NH80105O6PHnqGtp5yevb2ZDQS2/u2QkV0zovJCMzeHkf97L5uPsUhZMiONXs4efduEsX08Tl42L5bJxsVjaHazKrWLF7gq+3FPBh1tLADAoSAz1JSPSj6QwXyL9vYgM8CIywLPju9cpTy8YFRvIJz+dzl+W7+Ol1fl8n1vN368e2+05WFdNjOeNdYV8ur2U66cknlIsQoiu23KwDqDfJ2iH2pLtxQ39PlZx+iSZFMdotzv5z6o8nv56Pw6tuXdGOneek9rj1Qg3H6zl/veyKaxt5Sdnp3D/hRndSpiqmtp4f3MRb28opKjWQpCPmVExgcwbG0tymGudx4RQH7zNRgxKYTCAQSmMSuFlNuJpMnR7vpLV5mB3WSPZRfWur+IGVuyu4InP95EQ4sNFo6OYMyqaMXGBp5VYnj88khU/D+Gxpbt55psDrNhVwb+uG3daldFuPyuFO97YzIrdFSccyieEO9kdTn727lZW5lTx+PzRXNMLiWReVTO3vrKR0gYrT107jrlZnVdttbQ7uOvNzXyzr4pfzR7eK0vseHsYuTAzigszo3A4NQU1LeSUN7G3vImciib2lTfx9d5KbI4fTknxMBoYFuXvWnYoxlX0a0S0f5fbUC+zkYcvHcmMERE88H42V/17LS/dPIkz08K6HPvo2ECGR/nz7sYirpucIIV4hOhlW4vq8PM0kRbRM5WZe0tUgBfh/p5kF9e7OxTRB2TOpPiBNruD21/dxKrcai4cGcnvLhlJfEjPDmkFV0GNn7+7jZggb568MuuYBbpPZG95I898c4DlO8uwOTRTU0K4bkoiszIje2SOYXdVN7fx5e4Klu0sZ83+auxOTWyQN3PHxnDd5ITTfv++3VfJLxdtx+HUvHfHNFJPsby/w6k5/8lvCfH14MO7zjytmPqZAX8GK22Ti9Op+dUH23l/czG/vXgEt5+V0uPPsS6vhjve2IxBKf5z44TjFo9pstq47ZVNbDxYy2OXjea6KT2f1HaV1pq6VhuVTVYqGtuoaLByoLqZXSWN7ChpoMFiAyDQ28wV4+O47azkblWHrmlu4/oX15Nf3cLLN0/ijG4klIcK8bx+22TOSj+1+ZeDnLRPosdc/NQqgn08eOP2Ke4O5aRuf3UjBTWtfHl//y0UNMRJAZ5TIQ3iyT3x+V6e+eZAr/UIaK15cVU+//fZHiYlhfDfmybi38XKpTkVTfzzy1yW7ig7XOH1uikJ/eoKXUOrjS/2VLB0eykrc6rQwPnDIrhhWiJnp4efcuXG/OoWFjy3hhBfD5bccyY+Hqc2qOD5lQd4/LO9bPjNDCL8e654kpvJydogoLXmj5/u4aXV+dw7I537Z2b06PHb7A7eXFfI/y3bQ0KoDy/fPInE0M6rQ7fZHdzy8kY25Nfy96vHculxei4PcTg1+dXN7ChpYGdJI212B0HeHgT5mAn0NhPk40FUgBdJYT5dbu+6SmtNcZ2FHSUNLNtRxue7ylEorp+awN3npRHm17UhuTXNbVz3n/WU1Fv44M4zGBbVteVD2uwOZjy5ErPRwNJ7p59y2zSISfskekRru53Rj6zgrnNT+Z8Lh7k7nJN66qtc/v5lDtt/f2GPt3uiR0gBHtHzdpc28u+VeVwxPq5XEsl2u5PffbSTdzcVMWd0FE9eObZLQ2f3Vzbxz6/28+n2UnzMRn56fhq3TU8+rbL2R7PaHDRabDRa7TRabTRZ7bS22Qn18yQ22JtIf88uzTMM9DGzYEIcCybEUdZg4a31hby9oZCvXq4kKdSHH5+dwpUT4rs91yk5zJd/XjOOG15az++X7OKJK7NO6XUO7zhBPFjTOpiSSTHAaa156qv9vLQ6n5vPSOLnF6T32LErGq28ue4gb20opLq5nXMywnnq2nHHLRjjdGrufy+bNQdq+NtVWcdNJNvsDl5clc83eyvZXdZIa7sDAC+zAR8PE/Wt7XS27GSYnwdJob4khfmSGu7HsCg/hkUFEBPodUrDRJVSxIf4EB/iw5zR0ZTUW3jqy1xeXVPAuxuLuPOcVO46Lw3jSS5khfp58sqtk5j39GpufWUjH919ZpfmhnqajPxlwRiu+896Hv9sL3+YN6rbr0EIcXI7ihtwOHW/L75zyJi4QLSGXaWNTO3G6DMx8EgyKQDXPKVffbCdIB8zv7tkRI8fv761nTve2My6vFp+en4aP78g46S9dJWNVp5ckcP7m4vwMhu585xUfnxWCsG+J04iW9rsFNW1UlRroazBQkubA0tHdVaLzUFru4O6lnaqW9qpbWmjprn98Ing8RgNiqgAL+KCvTk7I5x5Y2NOukRBdKA3/3PhMH56fjqf7SzjpdUF/ObDnTz7zQF+en4aV0yI69ZSANPTw7jnvDT+9fV+pqWGMn985wVDTiSpoyemoLqFSUmyNpxwP0u7g99+tJMPthQzf3wsD18y8rTn3mmt2XywjlfXHuSzHWU4tOb8YRHcfGYS09PCTnj8v3y+j6Xby3joouHH/YxtL67ngfezyaloZlxCEFdNjGdUbCCjYwNJDffFZDTgdGqa2+00tNqoa22ntN5CfnUrB2tayK9u4bucKhZtLj58TH9PExlR/gyP8mdkTAAjowMYHhXQ7bnqsUHe/HnBGBaek8JfP9/Hk1/ksOZADf+8duxJLyBFB3rz35smcdW/1/Lj1zbxzsKpXaooe0ZqGLdNT+a/3+dzwYjIU15uRAhxfFs71qQeGz8wCtpkxgQCkkwOBZJMCgBeWp3PjpIGnr5uXI/2+AEU1bZy40sbKKmz8Lersk6aBLW223nhuzz+vTIPu9PJLWcmc9e5qYQeZ7hWZZOVJVtL+WxnGQU1rdS2tHe6n5fZgLfZiLfZSJCPB6F+HqSE+RLi60GIrweB3mb8vUwEeLm+e3sYqW5up6TOQkl9KyV1Fg5UtfDE5/t44vN9TEoK5rJxsVw8OvqE75mHycC8sbHMzYphZU4Vf/8ylwcX7+CZb/fz0/PSmT++6+vU3TcjnfV5tfz2o52MiQvq9hDf2GBvjAbFwZrWbj1OiN5woKqZu97YQk5lE/fOSOe+GemnPBQcXBegPthSwqLNRRyoasHfy8RNZyRx47TE4w5pPdLbGwp5fuUBrp+SwMKzj52v2WZ38NRXuTy/Mo8wPw9evnkS5w2P6PRYBoMiwMtMgJeZ+BCfTpf4abDYDhfZOfT1cXYpb64vdB1DQUq4H6NjAxmXEMS4+GCGR/t36SJUargfz/1oAu9vKuJ3S3Zy8VPf869rx530pG50XCB/v3osd765mV8u2s4/rxnbpeT+F7OGsTKnil8u2s7nPzubQB8Z1tZblFIvAZcAlVrrY7qClVLXA7/quNkM3Km1zu7YVgA0AQ7ArrWe2CdBi9O25WAdSaE+hJzkgnp/Ee7vSWSAJ7tKGtwdiuhlMmdSUFjTyoX/WMn0tHD+c+OEHq3IV93cxlX/Xkt1Uxsv3TyJiSfoDbM5nHywuZi/fZFDZVMbF4+O5pezh3V6EmhzOPl6byXvbSzi25wqHE5NVlwgI2MCiQ/xJj7YNewrJsiLAC8zniZDj72uotpWlmwr4aNtpeyvbMZsVFwyJoZ7Z6STHHbyE1atNd/sq+QfX+ayvbiBUbEBPHPd+C6d7AKUN1iZ89QqIvw9WXLPmd0uOnTOE98wOjaQp68b363H9WMyJ2mA0VqzZFspv/lwB55mI/+4euxp9WZ9u6+S19YeZGVHWzAxMZirJsZz8ZhofD27ds30u5wqbnllI9PTwvjvTROPucCzp6yRn72zjX0VTSyYEMfvLhnZK2srHpoDubuskd2ljewqbWR7cT2VTW2AazmjMXGBnJMRzk1nJHVpLtLe8kbuemMLBTUt/HpO1wobPf11Ln9dkcO/rh130jmjh+wobuDyZ1dz8Zho/nnNuC49Zgjo8fZJKXU2riTxteMkk2cAe7TWdUqpi4BHtNZTOrYVABO11tVdfb6h1j71R1prJv/fV0xPC+PvV491dzhddusrGymps/D5z892dyjiWDJnUvSc51buR2t49LJRPZpIFta0cuNL6ylvtPLarVOOm0g6nJqPs0v4x5e5HKxpZVxCEM/9aHynVRbb7U7eWn+QZ789QGVTGxH+nvz4rBQWTIjrs0I88SE+3HN+Onefl8buskbe31TMuxuL+CS7lGsmx3PvjPQTDidTSnH+8EjOGxbBsh3l/OajHVzzwjreXTiNhNCTV36NCvTi/y4fxR1vbOHrPZVc1M1lPsL8PI/beytEb3I6NRsKanlxVT5f7qlgYmIw/7puHNGBXa88eqR2u5PHlu7m1bUHifD3ZOHZKVw5IY6UblY83lJYxx1vbCY9wo+nrxt3TCK5v7KJq/69Fm+z8YS9kT3hyDmQszKjANeJZGmDla2FdWwtrGfzwTr+uiKHl1YX8NPz07huSsIJLyoNjwrg459O5xfvZ/Po0j0EeJm5alL8CeO445xUlu4o5x9f5nDJmOgu/W8YHRfIvTPS+dsXOZw/PIJ5Y2O79+JFl2itv1NKJZ1g+5ojbq4Duj8nQvQrJfUWqpraGD9A5kseMiomgJU5VVhtji4NmRcDkySTQ1xdSzuLt5Qwf3wsUYE9V5BlV2kDN720EbvTyZu3T2VC4rFj/J1OzfJd5fztixz2VzYzMjqAF2+cyIwREcecuDidmk+2l/LkihwKa1uZkhzCY5eP5rxh4V0eItrTlFJkxgSSOTeQu85N5amvc3lnQxEfbC7htunJ/OSclBP2GiiluHhMNMlhvlz34jqu/c863lk4tUtLiVwwIpIQXw8+31Xe7WTS5nDi7yUffdF3impb+WBLMR9sKaao1oKvh5FfzR7OwrNTTloY5ngqGq3c9eYWNh+s4/bpyfzqouHdmoN8yL7yJm55eSPh/p68dtvkYz6zNc1t3PLKRjxNRhbfdcZJ50p3pqXNTk1zOxabA2vHl8XmwM/TREKID+H+nidM1pRSxAZ5ExvkzSVjXL2E24vrefyzvfzvJ7v57/f5PHDhMOZmxRx3mLCfp4mnrh3Hra9s5Dcf7SA1wq/TdvkQk9HAj89K5v73svl+f3WXl/2469xUvsup4qHFOwj39+SM1K4vMyJ6xW3AZ0fc1sAKpZQG/q21fqGzBymlFgILARIS3LcsjnDZWlgPwLiEgTFf8pCRMYE4nJq95U2MjQ9ydziil8gZ5RD3wZZi2uxObj4juceOueZANQtf20yAl4l3Fk4jLeLYEvPZRfX8+sMd7CptJC3Cj2evH8/szKhjToS01nyXW82fP9vL7rJGRkQH8MotkzgnI7xfLZAdEeDFo5eN5vbpKfx1xT6e/mY/724q4qGLhnP5uNgTxjoyJoA3bpvCdf9Zx3UvruOdhdNOukacyWjgnIxwVuZU4XTqbs0za7c78XBTAi6Glk0FtTy5Ioe1eTUoBWekhnL/zAxmZUad1hISGwtquevNLTRb7Tx17TjmdnEY5tFW5lRx/7vb8DQZeOO2KceMKLDaHCx8fTOVjW28+5NpXUokGyw2thXVs6u0gV2lrqGq+dUtJ3yMp8lAXLA3CSE+jIwJ4JyMCMYlBJ0wOR4TF8Sbt09hVW41j3+2l5+9u423NhSecLkls9HA09eOZ+4z33PnG5v59KfTiQg4/kXEi8dE83/L9vDK6oIuJ5Mmo4Fnrx/Pj/67nptf3sgz141n5sjILj1W9Cyl1Hm4ksnpR9x9pta6VCkVAXyhlNqrtf7u6Md2JJkvgGuYa58ELI5ra2E9XmZDl5fs6S9GxQYAsLOkQZLJQcytyaRSajbwT8AIvKi1fvyo7TKJvJet2F3BiOiAHmugVuwq5563tpIU5sOrt04+Zvia06n5z6o8nvh8H+H+nvz96izmZsV22juxPq+GJ1fksKGglrhgb/5x9dgTXnk/ms3hpLTeQnVzO/Wt7dS12qhvbae2xfVV0/L/f65rbcfp1BgNCoNSKKUwG109j2emhXJGahgZkX4nTWCTwnx5+rrx3H5WPb//eBf3v5fNm+sL+d+5mYyKDTzu40bFBvLG7VO4/sX1XPvCOt77ybST9hSfkxHOh1tL2FHSQFY3Gul2u7PbS5MMRdI+nbr86hb+/Nlelu8qJ8LfkwcuzODy8XEnvUjSFa+tLeAPn+wmLtib12+bzPCogG4fo93u5MkV+/j3d3kMi/Tn2R+NP2ZEgNaaX32wnc0H63j2+vEnPRHaWdLAq2sKWJJdSrvdCUBcsDeZMQFcPi6WmCBvvM1GvMwGvDq+N1rtFNe2Uljrqj59sLaV73LzeOabA/h7mjgjLZSzM8K5YEQkkZ0kfUopzs4IZ3paGIs2F/PrD3fwo/9u4LVbJx93Pmegj5l/3zCBy59Zw51vbuHtH089bnvgaTJy3eQE/vXNfg7WtHR5XndEgBfvLpzGza9s5I43NvPXK8dw+TgZadmXlFJjgBeBi7TWNYfu11qXdnyvVEp9CEwGjkkmRf+ypbCOMbEnvsDUH8UGeRPobWZXaaO7QxG9yG3JpFLKCDwDzASKgY1KqY+11ruP2C0fOOeISeQvAFOO2H5edyaRix+qbWln88E67jwntUeOt2xHGfe+vZXM2EBevWXSMRVOi+taeWjxDlblVjM7M4o/XzHmmIp/WmvW5tXw7DcH+H5/NRH+nvzv3EyumRx/wjlB1c1tfLWngpyKZvKqmimocZ2gOTpZ6M1oUIT4ehDaUcU1MyaAYB8PjAaFU+uOL7C2O9hcWMeXeyoA1/pwZ6aFcd3kBCYnh5wwsRwbH8SHd57Boi3F/PmzvVz69PfcODWRh+aMOO68gTFxQbx262R+9OJ6fv7uNt5eOPW4xwc4OyMcpeDbfVXdSibbJJk8KWmfTo3TqXlixT7+810eHiYD98/M4PazkntsIfv3Nhbx8JJdzBgewd+uHntKBXByKpr4xaLtZBfVc/2UBH53ychjPpNOp+Yvn+9jybZSfjFrGHOOM5S8ze5g+c5yXlt7kM0H6/A2G7lyQhwXj44mMybwlCqaNlptrNlfw8qcKr7LqeLzXRU8vGQXF4yIYOHZqZ0OTTUYFFdNiifIx8zdb23hRy+u552FU49bfGh4VABPXDmGe97ayv8t28MjczOPG8/1UxN59tsDvLb2IL+7ZGSXX0ewrwdv3j6Fha9t4ufvZmO1Obm2F9YvFsdSSiUAi4EbtNY5R9zvCxi01k0dP18I/MFNYYouarM72F3ayM1nJrk7lG5zTQcKYFepVHQdzNzZMzkZ2K+1zgNQSr0DzAMOn6zJJPLe9cTn+9BaM3fsqQ0RO0RrzX+/z+exZXsYnxDMy7dMIuCIYVYOp+aVNQU8uWLf4UI/109J+EEy5nRqVuyu4Llv95Nd3ECYnye/vXgEP5qaeNzky2pz8NWeShZvKT5c0dXLbCAp1JeR0QFcPDqaxFAfwvw9CfbxINjHTJCPBwFepm4NkS2ua2XN/hpWH6hmZU4VS7aVMiExmDvPSe10fuchBoPiqonxzMqM4u9f5PDKmgJK6i38+4aJx50nNi4hmLvOS+OJz/dR2WQ9YSGfEF8Pgn08qGyydvm1ALQ7nHhKMnky0j51k9aa3y7ZyVvrC7lifBy/umjYSdc17I6i2lYe+WQXZ6aF8u8bJnR7rnSj1cYz3+znv6vy8fMy8dz14zudb9xgsfGL97NZsbuC66YkcNe5nV9s+2ZfJb/9cCcl9RaSQn343SUjWTAh7rQrvAZ4mZk9KorZo6LQWnOgqplFm0t4Z2Mhn++qYEpyCHefl8ZZ6ceul3lhZhTPXT+BH7++iYeX7OLJq7KO+zyXjIlhY34tr60t4PopCaRHdj46JTLAixkjIvh0eym/vXhEt9pOP08TL908iTvf2MxvPtxBVIBXrxYvGiqUUm8D5wJhSqli4PeAGUBr/TzwMBAKPNvx+zo0OiIS+LDjPhPwltZ6eZ+/ANEtOeXNtDucjIk7/uim/mxUbCCvrCnA5nAOuJ5V0TXuTCZjgaIjbhfzw6v6R5NJ5D1oY0Etb28o5PbpyWQc5ySiKxxOzR8+2cWraw8yZ3QUf7tq7A+Sv0arjXvf3sq3+6o4f3gEf5iX+YN5RzaHk0+yS3n22wPsr2wmMdSHxy4fxRXj446bRO4rb+KVNQV8ur2UJqudqAAvfnxWCpeNiyEjwv+01qnrTFywD1dN8uGqSfFYbQ7e21TEv1fmcftrmxgW6c+d56ZyaVbMcRPEQG8zj8zNJCXcl4eX7OJPy/bw2xNc4Z+S7Kpiu72ogQtGHv9k3OHU1LW2H3f9zeOROZNd0uvt02Brm97eUMRb6wu545xUfjV7WI/OadZa89DiHSjgLwuyupVIttkdvLGukKe/zqWu1caVE+J4aM6ITtdq215cz91vbaGs3srvLhnJrWcmHfM66lra+eOnu1m8tYTUcF9evmUS56SHH7fd0Vqzp6yJnIomyhqsVDRaKW+wUt5oxWxUxAf7EBfiQ3ywN/EhPoyICjjco6mUIi3CnwcvGs5Pz0/j7Q2FvLgqnxtf2sCZaaE8e92EY3o/LxgZyU/PS+Opr/dzZlroCdf1/dkFGXywpYQnV+Tw/A0TjrvfzJFRfL6rgp0ljYzu5gmtl9nI09eN56p/r+Wet7bwwV1nnNLQZPH/aa2vPcn224HbO7k/Dzj+FQbRL+3oWKdxTGyQewM5RZkxAbTbneyvbGZEtHz2ByN3JpOd/eftdJK3TCLvWW12Bw8t3kFskDc/n5lxysdpbbdz79vb+HJPBQvPTuHB2cN/cEKVX93C7a9u5GBN6zG9kTaHk3c3FvH8ygMU11kYHuXPU9eOY86oqE5PFA8Nf33huzy+3VeFl9nAnFHRzB8fx7TU0FOuCNldXmYjN05L4trJCXySXcpz3x7gZ+9u4/mVB3hkbuYJFwS/cVoSeVUtvPh9PklhvvxoamKn+2XGBGI0KLKL67ngBIUr6lvb0RpCu7mAscyZ7JJeb58GU9tUVNvKY0t3c2ZaKL+c1bOJJMD7m4r5fn81f5yX2eV5l4cqQD/x+T6K6yxMTwvjwYuGdzp3WWvN6+sO8uinewjz8+Ddn0w7Zjip1pqlO8r4/ZJdNFhs3Ht+Gnefn9bp8HunU7O1qJ7lO8tYvqucolrL4W3+niYiA72ICvDC5nCyPr+Wj7aVcGhEvsmgOCMtjItHRzFzZNThpNfX08TtZ6Vww7RE3t1YxB8/3c2C59fwyq2Tj3lP7p2Rzrq8Wn770U6y4oNIPc5SKcG+Hvz4rBT+/mUO2UX1xx0uf96wcAwKvtxT0e1k8lDs/71pEvOe+Z7bXtnER3efSbh/9y6CCTFU7ShpINDbTHzI6c85d4fMGFebsau0UZLJQcqdyWQxcORCV3FA6dE7ySTynvfvlXnsr2zm5ZsndXlB76NVN7dx26ub2FFczx/nZXLDtKQfbF+9v5q73tyCQcHrt01hWur/T7J2ljTwi0Xb2VPWyNj4IB65NJPzh0d0emXf5nCyfGc5L3yXx46SBsL8PPifmRn8aGoiwd1MonqS2Whg/vg4Lhsby7KdZfxp2V6ueWEdF4+J5tdzRhz3hPd3l4yksLaV33+8i4QQn04Xavf2MJIR6U928YnnGNR0rBUZ6tfNZNIhyWQXSPvURU6n5heLslFK8ZcFWT0+MqCi0cofl+5mcnII10/p/ALM0fKqmvn5e9lkF9UzIjqA124d3elnDVyjJx76YAdLd5Rx/vAInrwy65i2pcFi48EPtvP/2Dvr8KbOvw/fJ6m7e0sLLRQtUtxhG4zB2MZgAhM2YMzdXX7vXJgxYWyM4QzY2HB3aSml7u5uaZMmOe8faULTJKUFhua+rl5AzsnJSWifPl/7fLbGF9O3RSzL2KaotK6JJQez+Ot0ASW1ciylAiNDPXh8XCiRwW74ONvgYGTNVSjVFNU0klsp43B6BVviinj5zzhe2xjP8K7uzBocyNS+vkgkAtYWmoRWqJcDjyyP5o7vD/Prg0Po5Xf2fiykEhbd058piw7y5MoYNj4+wuTM+cOjQ1h2NJvPd6by+0NDjJ7j7mDNwCBXdieXnHcC0sfZhiX3D2bmj0dYsDyKVfOHmX3nzJjpAPEFNfTxd7qiFOw7Q4iHPbaWUhIKa7hz0HU9DXLNcjmDyZNAmCAIIUABcDdwb+sTzEPkF5/00jq+3ZvOLf18z3t2Ja9Sxn2/HKe4tokf74s0kH1ffiyHd/5OoJunPUvuH0yQu6atVa5UsWhXGj8eyMTd3oof7xvETb28jS6QeZUy1kXlsTYqn+LaJrp62PN/t/fljoH+ndqAyJUqGuQqZAoljQoVMoUKuVKNvbUUJxtLnGwtcbS2OO8NsEQiMLWfHxPDvfnxQAaL92WwO6mEpyd2N+qhJ5UIfH3PAO5cfITHV5xi27NjjAae/QOd2RJXjCiKJn+BlNfLAYy265lCpRZRqUWspOZN3Dkwr08dZE1UHscyK/l4Rt+Lotbaljc3xaNQqvl4Rr8O/ZzuSCjmmTWnsbKQ8PnMCG4f4G/yeUfSy3llQxwF1Y28cnM4C0Z31TtXFEX2JJfy3j+JFFQ18vLkcOaPDjHonsgsq+fXw9msjcpDqRaZGO7FlL6aNbYjM5RWFhK6uNvTxd2e0WGevDy5BwmFtWyJK+LfFmGzJQczeWtqLyKDNW3wI7p5sG7hcOb+epJZPx7l17mDGdxyDMDX2ZZP7oxg/u9RfLY9hddvMd5a72BtwUMjg/lsRypZ5Q2EeBhXbJ3Y05uPtyVTUN143v/PfQOc+equ/iz84xRvbIrns5nmjkszZtpDoVRrvHBHBV/uWzlvpBKBXn5OJBSYFV2vVS5bMCmKolIQhCeA7Wik95eKopggCMLCluPmIfKLTFOziidXncbB2oK3p3Vcla81WeUNzP75GPVyJSvmDdNrBRNFjQLi4n0ZTAz34qu7++v8zk7nVfPiuljSSuuZOSiAN27pZTDro1Cq2ZZQzJqTuRxO1/jSjQnz5P3b+jDRROVSS7NKzZn8alKK60kvrSe9rJ6M0noKqhtNPkeLIGhaz0K9HOjt50wvPyd6tdildDRwtbWS8swN3ZkZGch7mxP4eFsy2eUNfDSjr0Ew6GBtwXezBzLx8/3sTCjmwZGGHp+eDtbUNjW3+5q5FTIAAlw6bqIuEcBSKtDYrOrwc65HzOtTxzmYVkaQmx2zIgPPfXIn2Ztcyo7EEl6a3MNkkNOav04X8NzaWPr4O/PDnIEG1kRaqmUK/m9LEmuj8gl2t2PNgmG6IE1LTG4VH25N5kRWJcHudqxaMEwvWBNFkWOZlSw5mMmelFIsJRJuG+DHY+NCCTZxryq1SHFtE7kVMvIqZahFES8na7wcbfBytMbdwRqpRGNN1MffmT7+zrxwUw82xhTw6fYU7vzhKLdG+PHKzeH4udgS7uPEhsdGMHvJceb+epI/5g3VszC5sZc3c4YF8fPBLEaEejC+h/EE4qzIQL7ek853e9NNBni39PXlk+3JrDyew4uTwtv7b2iXyX18eWRMV348kMn80V2vOt88M2YuJakldShUavq2Yy12NdDbz4kNpwo67Ytt5urgsvpMiqK4BdjS5rEfWv3dPER+Efl4WzJJRbUsfTDyvFQW00rqmL3kOEq1yKoFw3R98KBpdXu3RYjnniFBfHBbH6QSQaf0+n9bkvB2suG3uYMZ12ZDUy9XsvpELr8cyqKopkkzy3lDd+6MbN+XTqZQciC1jB0JJexOLqWmURN82VhK6ObpQGSwK7M8AnG2tcDWSoqtlQV2llKsLCTIFCpqm5qpbWymtklJZYOc1OJ6NsYUsPxYDqDJpg0KcmV8uBfjwz3p4e14zjYTfxdbfpgziM92pPDd3gzCvB2YN7qrwXndPB0IcLXlWGal0WCysVmFraW03ddLLq7DzkpKgGvHqwSCIODhYK2rapoxjXl96hjZ5TK6edpf9BasRoWKdzZrOhzmjTL8GWrLqhO5vLYxjqEhbix5YLDRdlJRFNkSV8zbfydQJVPw2LhuPDUxTC9pVFTTyAf/JvHvmSI8HKx4f3pv7h4SpFMhFEWRg2nlfL07jaicKtztrXhyQhhzhgUZrKsyhZI9yaVsjS8msbCW/CoZzSrT47ESAbp7O3JDT29u6OVNP39nJBKBGYMCuLmvDz/sy+DHA5nsSCzmpUnhPDQqBF9nW1bOG8asH4/y8G8n+fep0XoetW/c0ouo7CqeXxvLljbHtHg52TBnaBd+O5LFY+O60dXIjGWQux039fLmj2O5LBjT7YJUaxeO7cYfx3L4Zk8a39478LyvY8bMtY5WfOdqDyb7+Dnz+9EcciplHUoMmrm6uKzBpJlLx76UUn49nM2DI4KZEG5a1MUUiYW1zPnlOFKJwJoFw/Rk5FVqjbn3+uh85o8O4bUpGvl4pUrNO5sT+ONYLjf38eHjO/vpWYaU1cn59XAWy4/lUNekZFhXN/7v9r6M7W5aGVGuVLErsZSNMfkcTCtHrlTjYmep2Xz19KKPvzP+LrbnnflSq0XyqmQkFtYSm1/DgdQyPt6WzMfbkvF3sWVcD0/uHBTAgCBDrzctgiDw/I09SC+t5/+2JNHNy8FoRWBoiDt7U0qNZuq0wWR7pJbUEebdefVaczBp5mIhiiK5lTKGhLid++RO8vG2ZHIqZKycP/ScM75LD2Xx3j+JjOvhyQ9zBhntKKiWKXhp/Rl2JJbQ19+ZZQ8N1kuINavU/Ho4i692paFSizw1MYwFY7rqglJty+vXe9KJzavG19mG96b3ZlZkoN7ryRRKdieVsiWuiL0ppTQ1q/FwsGZoiBuT+/gQ5GZHkJsdga52SKUCpbVNlNbJNV+1TURlV7F4fwbf7k3H09GaG3p6ceegAAZ1ceO5m3owMzKQdzcn8N4/iTQpVTw2LhQfZxuWPhjJrd8e5slVp1g5f5gu+NWqqU775hDPrIlhxbxhRgXLHh3XjVUnclm0O41Fdw8w+jk/OSGM7QmH+PlAJi9M6nHu/0QTuNpbcf+IYH7Yn8EzpfWEehkXCDJj5nonrqAGJxsLgtw63oF0JaKd6U4orDEHk9cg5mDyOqC8Xs4L687Qw1sjMd9Z4gtqmPPLcWwtpaycP0xvIVAo1Ty79jT/ninimRvCeHpiGIIgUNfUzBMrY9ifWsbCsd14aVIPXdDTrFLzw74MvtmbTrNKzc19fFgwpptee1ZbEgprWBeVz6bTBVTLmvFxsuHeoUHc1MuHwcGunfacM4VEIuhml27u68srN4dTXNPEvpRS9qaUsjGmgBXHc+kf6MLckcFM6etr1DdJIhH48q7+3Ln4KE+tjGHDYyMMfNyGdXXjz1P5pJXWG7R6NSrU52yxTS2pY8J5zL16OlpTUts5b0ozZoxR2aCgXq686BudQ2nl/HYkm7kjgxnRzaPdc3cmlvDeP4lM7u3D1/cMMBp4xuZV89iKU5TWNfHalHAeGqk/93giq5I3NsWRWlLPhHAv3r21N4Et70kURQ6klfPZ9hTiCmoIcLXl/27vy4xB/nqiNgXVjSw7ks2q47nUyZV4OlozKzKQKX19GRzsZlJx2lj3RbVMwb6UMnYmlbA5tohVJ/K4Z0ggr9zck0A3O368L5Ln1p7mk20pWEklzBvdlVAvRz6a0Y+nVsXw6fYUXpvSU3e9UC8H3pvemxfXn+HbPek8fUOYwWt6Olpz/4gu/HQgk8fHhxq1jOrj78y0CD9+OZTF/cO74OV0/j6i80aF8NvhbL7bm86Xd/U/7+uYMXMtoxHfcb5qxXe0dPd2xFIqEF9Qy9R+F+ZtbubKwxxMXge8uSme2qZmVswb2mn1vKzyBu79+RiONpasmj9MJ6YDmk3WM2ti2BJXzOtTejJ/jKYVrV6u5O6fjpFcXMeHd/TlniFnPfQqWlRgT+dVc0s/X164yfQsVEW9nE2nC1kfnU9SUS1WUgk39fZmZmQgo0I9LpkdiI+zDXcPCeLuIUHUy5X8GZ3Pb0eyeXr1aT7ckszTN4QxKzLQ4H7srCxY8oCmWjD/9yh2Pz9O7xytjcjxrAqDYLKpWYWNpekAuVqmoLxecV4ZfQ8HK13rjBkzF0J2y9xuF/eLF0zWNTXz4vpYunna8/Lk9pNfORUNPL/2NH39nVl0T3+jgeRfpwt4cd0ZPB2tWb9whJ79hVyp4t3Niaw8nou/iy0/3TeIG1uJgkXnVPHJtmSOZ1US4GrLJ3f24/YB/noJpJjcKpYezmZLXBEAU/r6MntoULsB5LlwsbPitgH+3DbAH5lCyVe70lhyMJPdSaX8cN8gBga58vnMCJpVaj74NwlXOytmDArg1gg/TmZV8tOBTIaGuDGx59kulDsHBXAko4JFu1MZ1MWVUWGGQfojY7rxx9EcPt6azJIHIo1uYJ+/sTtb44r4dm86703vc17vDzQKsfcN78KSg5k8MSHUpH2JGTPXKwqlmuSiOuaODL7ct3LBWFlI6O7tSEKhee9xLWIOJq9x4gtq2BpfzLM3dO+00IFSpeaZNacBWL1gmC5Tr+Xng5lsiSvmlZvDdYGkSi3y9KoYkovr+Pn+QXottXmVMh5YeoLCmka+u3cgt/TzNfqaB9PKWRuVx66kEppVIhEBzrx7a2+m9/fDxe7cyqWiKFJSKyezrJ68KhmiqJl/tJRKsJBqpPXDfRwJcLXtdLbPwdqCB0YEc9+wLuxLLeXbPem8uiGOk9mVfD4zwuB6fi62vDm1J0+vPs3pvCoGdTnbDhjgaouFRKCoxrBK2KxSG614aqmWaeZDPRw679XW3duRtVH5lNQ24X0BlQUzZrLLGwAuatvS5ztSKa5tYuNjI9tNfjUqVCz84xSCIPD97IFGrS/WnMzllQ1xDAl244c5g/QsP6oaFDzyRzQnsiqZPzqEZ2/sjp2V5ldiakkdn2xLYVdSCR4OVrwzrRf3Du2iC1bVak3L6+L9GUTnVOFobcHcEcE8ODKYANeLW6W1s7LgtSk9mdbPj8dXnuKen47x+awIpvbzY9HdA6ioP85bf8UzJMSNQDc73pjak5PZlby2MY4dwW662UZBEHj/tj4kFNbw6Ipo1j4y3MDexM3eimdu6M7/tiSx/FgO97exfAII9rBnxsAA1pzM46mJYee1Bmm5rb8/Px3IJLmozhxMmjHTBq34jjFv3KuR3n5O7EoqbVel3szViTmYvMb5fl86jtYWPHgema3v92UQm1fNN/cMMAgkj2VW8PG2FG7u48MjY86KY3y5M5XdyaW8P723XiCZUlzH/UuP06hQ8cfDQw2UE0VRZH10Pp/tSKGkVo67vRUPDA9mZmTgOYPgsjo5+1JKOZxeTnpZPVllDTQozq1W6uWo8U4b1MWVgV1cGRDo0uH5Q4lEYEK4N+N7ePHVrjQW7U7D09GaV2/uaXDuuB5eSCUCe5JL9YJJQRBwsLGgQa40eI5aBEk7i61cqQYw6R3XHtr5thNZlUyLMLebmDl/ssobkEoEg/XhfDmTX82yo9ncN6xLu23voijy2sY4kotr+fXBwUZf//ej2bz1VwJjunvy45xB2Fqd/VnJLKvnod9OUljdxKK7+zO9vz+gSYb9sD+Dr3alYmMp5cVJPZg7MlgXZDar1GyOLeSH/RmkltTj72LL29N6MTMy0KjgjynUapHCmkbqmpRIBAGJoFlTJIKAt5O17vVa0zfAmU2Pj2TB71E8sTKG4pom5o3uyuezIrj5q4M8vzaWVQuGYW0h5eMZ/bj9+8N8uCWJj2b0013DwdqCX+cOYcb3R7h/6Qk2PDrC4LN7eFQIRzLK+eCfJAYGuRrdyC4Y25W10Xn8djj7gmYnvZw0gWhFg3mG24yZtsRfI+I7Wvr4O+vs3kwpbZu5OjEHk9cwaSV1bI0v5vFxoZ1W3ovNq2bR7jSm9/czCDhKapt4YmUMXdzt+OTOfroM0+6kEr7dm85dkYHc1yqjHV9Qw+wlx7G2kLB24XDCffSz4Rll9by+MY5jmZUMDHLh3Vv7MCHcy6TohiiKJBbVsjuplN3JpZzJr0YUNTM/vXydiOziRjdPe7p6OhDkZoeFVECpEmlWqVGqRRrkSuILaojOqeJUbjXbEooBCHSz5Z4hQcyKDOxwtl0QBJ65IYzyejk/7s/Ey9GGh0fpq7M621oyqIsre5LLDCT17a0sqDcSTIqiiKSdMVC5UhMst9cKa4pevk7YW0k5nF5uDibNXBBZ5Q0Eudm1W0XvKEqVmtc2xuHpYH3OAOX3ozlsjCnguRu7G6hDA6w8nstbfyVwYy9vvr13gF7S5VhmBQv/iEYiCKycfzaxlVcp49k1p4nKqeKWfr58ML2PrpKpUKpZczKXH/ZnUlDdSA9vR766qz+39DM+M90auVLFyawq4gpqSCut01gXldYjM5HwsrGUMDHcm6ktXsCtq7Nu9lb8MW8oz6w+zf+2JNHT14mRoR68fWtvXlgXy5KDmTwythsRgS7MH62x35gW4cfI0LMtrf4utvz+8BBm/nCU+345zvpHR+itdxKJwOez+jNl0UGeXBXD1qdHG1SIu3k6MKmXD78fzWbhuG6dCqRb42pnhSBAeb3ivJ5vxsy1TFxBDY42Fhd1jOBy0rtFhCe+oNYcTF5jmIPJa5jv92VgYyHloTbBzbloVKh4du1pPB2see9W/ZmYZpWax1ecokGuZOX8oTofSe1GrLefE+9O7607v7S2iXnLorC3krLmkeF6WXC5UsUP+zL5bm86NpYSPryjL3dFBpqsDlbLFGyMKWD1iTxSSuoQBIgIcOG5G7ozPtyL3n5OHW6dGBDkqgt4y+rkHMkoZ9WJXD7ZlsKXO1OZ3Ecz9zQ0xO2c1xQEgfem96GiXsH7/yTi4WClq3RomRDuxUdbkymqadRbRB2sTVUmxf+sMmkhlXBzX1/+Ol3Iy5PD9Vr/zJjpDJntmNx3lt+P5hBfUMu39w7QU31uS1R2Je//k8jEcC+eGB9qcPyv0wW8vimOcT08+e7egXpJqT+j83llwxmC3Oz49cEhBLnbIYoi66LzeffvBCSCwJd3RXBbf38EQUCtFvknrojPtqeQWyljUBdX3pvemwnhXu2uC6W1TexNKWVPcimH0sp1nRI+TjaEeTtw1+BAwrwccbO3RC1qft5VahG1KBKTW82WuCL+jSvC3krKDb28eWBEMANbFKRtLKV8cVcEt35bzzNrTrPlqdHMGOjPzsRiPt+RyvhwL7p7O/LMDd3ZnlDMi+ti2fTESD3bku7ejix9MFLnT7lqwTC9gNDN3orPZ0Uwe8lxvtqVZlS4beG4bmxLKGbV8VzdmENnkUoEXO2sqDRXJs2YMSC+oIY+fle/+I6Wnr5OCIJGUPHGXp13FTBz5WIOJq9R8ipl/B1byNwRwbh1Mlj4YmcKmWUN/PHwUJzt9Dd13+5JJyqnikV399ep/WmEeE4DsHj2WVl+URR5clUMtU3NrF+o305VVifn/qUnSCqqZVqEH29O7WnS+zI6p4oVx3P490wRcqWaiABn/nd7Hyb19jFaQRRFkcoGBTmVMoprmnCxtcTb2QYfJxvsjWTQPR2tmd7fn+n9/UkvrWfF8Rz+jM5nc2whA4NceHtabz3RDmNIJQJf3d2f+5ee4IV1sfQPdKGL+9lN9vgemmDyYFq5nrm7vbWUBrlhhUItQnu/PuTNmmDyXJYJplgwpivro/P59Ug2z93Y/byuYeb6plmlJqu8nuEtQlIXQmWDgs93pDCmuye39DWcpdZSI2vm8ZWn8He15Yu7+hsknvanlvH82lgGB7uxePYgvZ+P1Sc085MjurmzeM4gnG0tUalFXlp/hj9P5TOsqxufz+qvU1dNLanjlT/PcCq3mnAfR36dO5hx3T1NbuzkShVb44pZfiyH6JwqAHydbZg+wJ+J4V5EtppfbI/bBwTw1tReHM+q5J8zhWyJK+bfM0WsmDeUoS2ftZ2VBd/eO4Dp3x7mjU1x/HhfJP+7vS83fXmA59fGsunxkdhaSfnmnoHM/PEI85dFsXL+ML31b1AXN76fPZD5v0czb9lJlj44WK+9dmSoB7MiA/j5YCYzBvobqFH3D3RhRDd3lh7OYt7okPPe8LrYWlLZYK5MmjHTmmaVmqTiOh4cEXy5b+WiYWdlQVcPe137rplrB3MweY3y25FsRFHsdFUys6yeXw9nc/fgQAO1v4p6OT8fzOSWvr56lbdD6eVE51Txf7f31VN7PZBWzvGsSt6/rY/OYwg0c0nPrIkhq7yeJfdHcoOJDFVaSR0f/JvE/tQyHKwtmBkZwL1DuuhdCzSB6e6kEg6ml5NV1kBupcxo6yiAo40F/i623NDTm1mRgXr3CxoJ/ben9ealSeFsiMnny51pTP/uMDMHBfDS5HA8HU23v9pYSvl8ZgSjP9nL7qRSvc/eq+V5bauQKhGjlVipREAlmjY3t7XSbJIbm889G2qM7t6OTOnrw5KDmUbN1s2YORcnsyppalYzJMS052pHWXooC1mzirem9mw3KPloWxLl9Qo2PTbSIDBLKqrl8RWnCPN25JcHIvVmJLcnFPPaxjjGdvfkp/sHYW0hRd0qkHx6osbWSCLRVCO/35fOot1pOFhb8Omd/bhjYIBJZdaimkZWHs9l1YlcyusVdPWw58VJPZgQ7kW4j+N5BVkWUgkjQz0YGerBq1N6Mu2bQ7y4/gzbnhmtC/jCfZx4fHwoX+xM5Ux+Nf0CXHj31t48uSqG349mM3dkCH0DnPn67gEs/COahX9E88sDg/UC7Anh3nwxK4Jn15zm4d+i+P3hIXptu6/c3JN/zxTx1e40vrt3oMF9Tu3nx2sb48ipkBF8HhXqpmYVeVUyc5XCjJk2pJbUoVBeO+I7WgYGubIrqcSov7aZqxdzMHkNUljdyPJjOcwYGICfEQ+z9vhwazI2llKev8lwZmnxvgyamlU826aS9e2edHycbJgx6GyAKYoiX+xMxd/FlrtaVeI010nncHoFH8/oazSQrGxQ8NWuVFYcz8XOSsrrU3py79Agvax6Rlk9OxJK2JlYTEyeZmbSz9mGHj6ODAlxI8jNji7udvg621LT2ExxbSPFNXJKaptIL63n+33pfLs3neFd3blrcCCT+/jozQXZWkmZPbQLt0b48e2edJYezmJrfDFPTQxl7sgQk3NSgW52BLvbcTi9XC+Y1AaGbTek8mYVNkYCVMuWOU9TaDfS1bLzz+i/OCmcHQklLNqVxv9u73ve1zFzfbIjsQRrCwljunte0HVqGptZdiSbm/v4EOplWmzrRFYlq07ksWBMV/oG6G+wSmqbeOi3k9hbS1n6YKSu/R7geGYFT66KoV+AC4vnaFRfRVHkzb/i+fNUPs/e0F3nuyhXqnhx3Rn+ji1kWoQf70zrhbuJ+enMsnq+2pXGv3FFqEWRieFe3D88mFGhHhd1k+RkY8mnd0Zw109H+XhrMu+2suOYOzKYpYez+HJnKr/OHcLUfr6si87n8x2p3NzHFx9nG27q7cOHd/Tl5T/jeH5dLIvaVHSn9/dHqRJ5fl0sn2xL5vVbeumOudlb8eDIYL7fl0FKcZ2BGNqAIBcAYvKqziuYPJ1XTbNKZHAbQbbrBUEQ/gSWAltFUVRf7vsxc+VwrYnvaBkS4sa66HzSy+qNetmauToxB5PXIN/sSUMURaPG1O1xJKOcnYklvDS5h0EFrrimieXHcrhjYICet2FUdiXHsyp5a2ovvfm9fSllxOZV8+EdffUy4SeyKvliZyq3RvjptXuCRoDjtyPZLNqdhkyh4t4hQTx7Y3ddm64oihxMK+eH/RkcyagAoI+/E89M7M6Nvbzp6dvxKkBRTSPro/JZG53HM2tO4/SXBQvHdeOhkSF6QaWjjSWvTunJXYMDef+fRP5vSzInsqr4bvYAk/OKo8I82HiqQM/eQ63WBIZt5yDlSrVR+wMLqQSFyvTewtlW85nUNjZ36P0aI8TDnjnDurD8WA5zR4acl2elmesTURTZmVjCqFAPo8qjnWH50Wzq5EoeNzL/qEWuVPHqhjMEuNryTJt1ralZxcPLTlLb2MzahcP1ZpKTimqZ93sUga62/NrSximKIh/8m8SK47ksHNuNpyZqXrdapmDB79GcyK7klZvDeWRMV6PrSXFNE4t2p7E2Kg8rqYS5I4K5f3iwQZfDxWRIiBsPjgjm18PZTOrjw4humq4RRxtL5o/uyqfbU4jJrWJAkCsfTO/DjV/u593NCSyeMwiAuwYHUdnQzMfbknGzs+SdW3vrvbcZgwI4nVfNzwezGNTFlcl9zrYazx/dlWVHcli0O5XvZw/Su6/u3o7YWUk5nVvN7QMCOv2+TuVq2oEjgy+8un2VshiYC3wtCMI64DdRFJMv8z2ZuQKIK6jB0dqCLhdJKftKYWhIi792ZoU5mLyGuHAJPjNXFJll9ayNymf20C6d8jtTqUXe/ycJfxdbHhpp2Br75c5U1KLI0xP1N3Lf7k3H3d6Ke4YE6R4TRZEvd6US6GbLnYPObjCqGhQ8vTqGIDc7/nd7H73NjMYzLpoP/k1iQJAr254ezfu39cHN3gqlSs1fpwuY8vUh7l96gvTSel6eHM6RVybwz5OjefqGMHoZEd9Rq0VqZM2IRtpFfZ1teXJiGPtfGM/KeUMZHOzGJ9tSuOnLA2yLLzZ4TldPB36dO4T3pvdmV1IJjyyPpslEi+moUE8aFCpO51Wf/XxNVCabmlVGFVmtpJIOVibPP5gEeHJCKLaWUj7ZZt6/mOk4SUV1FFQ3XnB7YoNcyS+HspgQ7kVvP9MZ+MX7Msgoa+CD2/oYBK9v/5VAfEEt39w7QO8aWl9beysLfn94qE5o6oudqfxyKIsHRwTz8uQeCIJAboWMOxYf4XS+xgpp4dhuButJtUzBh1uTGPvpXtZH5zFnaBAHXhrPG1N7dTqQFEWRuqZm6uVKo+uTMV6aFE6wux0vrT+j1y7/QMtc/Je70gAIcrfjqYlhbI0vZk9yie68hWO7Mm9UCMuO5vD17nSD678xtScRgS68uO4MWS3+oQAudlY8NDKYLXHFJBbW6j1HKhGICHAhptVa1xkyShvwdrLukH/wtYgoirtEUZwNDASygZ2CIBwRBGGuIAidk2A3c00RV1BLb3+na64VNNDNFl9nG45nVV7uWzFzETFXJq8xPt+RipVUwmPju3XqeRtjCkgqquWbewYYVMpSiutYG53HvFEheiI6ycW17Esp48VJPfTmk/allnEmv4ZPZvTTawd94694KuoVbHhshF4bmlypqSwczazg/em99WxFUkvqeHJlDCkldYR6OfDJnf2Y3t/PoCqYU9HApphCciobKKxupLC6iaKaRppVIoFutowJ82R0mCcjQt31lCIlEoERoR6MCPXgUFo57/2TwMI/ormhpzcfzehrIPBz//BgLKUSXtsYxwf/JvLBbYbtoUNbfBxjcqt07VuKFvVViza/GBrkSqOVSalEQNlOZdLKQoK9lZTKC2hzBXB3sGbh2K58tiPVaBubGTPG2JlYgiBgct65o/xzppAqWTOPt7NeVTYo+H5vBrdG+BnYgOxNLmVNVB5PjA/V87VVKNXM/z2KpmYV6x8doRPVWX40m2/2pHP34EDemtoLQRBIL63j7p+Oo1SrWdGSWGrLgdQynl1zmkqZgtv7+/Psjd075K1Z29RMbF41MbnVZJc3UFzbpPmqadJZg9haSvFwtMLTwRpPR2um9jO0YwJN6/1nMyOY+eNRftifoRtFcLC2YMGYrny0NZnYvGqdLcimmALe3JTA8Oc8sLWSIggCr03pSZWsmS93peJqb8n9rdZaawsp3907gKnfHOKFdbGsXzhcF1A/PKorvx7O5pdDWXw+K0LvvvoHufDzgUzkSlWn1aXzq2QEdiLpeS0iCII7MAe4D4gBVgCjgAeAcZfvzsxcLppVapKKanlgeJfLfSsXHUEQGBLixtGMCkRRvGaUaq93zMHkNcTxzAr+jSvi6YlhnRJUUSjVfLUrlb7+zkztZ6ik+PXuNOytLAza0JYdycHaQsLsoUF6jy89lIW3kzW3Dzw7Q3kwrYx/zxTx3I3d9QbK1WqRF9ad4UhGBV/MiuCOgWcrmdsTinluzWlsrSxYPHsgk3r76GXpRFHkaEYFSw9nsTu5FAGN9L6fiy39A12Y0tcXZ1tLonOq2BRTwIrjuUglAgODXHh4VFcm9fbWW8hGhXmw5anR/HYkm0+2pzDpywN8N3sgw9qoVd4zJIgz+TWsjcrn6YndTYryWLQyisytlAHoVYurGhTUNimNbqbqmppxsGn/xzPI3Z7sVhWE82V6f38+25HKiawKczBppkMcTCujX4BLh/1YTZFWUo+tpVRne2HqtRQqtVExsR/2Z+DnbGPQ0v/zwUySi+tYcn+krpUqvqCG9/5JZEK4F/+7vS8SiUBxTRP3/nwcQYD1C4cbzGwqVWq+2pXGd/vSCfNyYPnDQw0EwFqjUKrZkVjMobRyTuVWkVZajyiCIICfsy3eTtaE+zgytrsnPk42CIJGQKysTk5ZvZz4glp2JpZgby3VC461RAa7MTrMk02nNR6b2vVr9tAgvt6dxh/HcogIdMHKQsL7t/Xh7p+O8f2+dF3gKZEIfHJnP2oaFby7OZEQD3tGh52deQ1wteP5G7vz5l8JHM+q1K19znaWjArz4GS2YTUhxN0epVqktFbeoQC7NY42luRXyTr1nGsJQRA2AOHAcmCaKIpFLYfWCIIQdfnuzMzl5FoV39EyJMSNv04Xnrdwl5krD3MweY2gUou8uzkRP2cbFo7tXFVybVQe+VWNfHBbH4MsUUpxHf/GFfHkhFC9ViSN52M+tw/w13s8raSOg2nlvDiph64qKVeqePuvBLq427GgjR/ZR9uS2Ryr8TvUBpJqtcii3Wks2p1GRIAzP9w3SG8OSqlSs+FUAUsPZ5FcXIe7vRVPjg9lzrAueDkZD6IVSjUxuVUcSCtjS1wxC/+IZmCQC69O6alXibCQSpg3uitjunvy6B/RPLD0BIvnDDTY2M0bHcLqk7ksP5rNc23EiuqaNC1oTq3UJtNL6wH05hIzWwLBrp6Gi2llg+Kcli6hXg7EtMwcXQgBrrZ4OFgTk1fNfcMv+HJmrnHqmpqJyatm4djz8xZsTW6ljEA323az0wfTynG2tTQQoojLr+F4ViWvT+mp1wGRVynjmz1pTOrtraucNipUPLU6Bnd7a76YFYFUItDUrGLB8iga5Eo2PDbSIJAsqW3iyVUxnMiqZFZkAO/e2kevA6M1+VUyVp3IZc3JPMrrFTjZWDAgyJVb+voxsIsLEYEu7XpnapEplMz68ShPrTrNn4+OMJrcmdrXl5f+PMOZ/BqdZZGjjSUzBgaw6kQuT0wIpYu7PcO6unP7AH++25vOwC6ujG+p6mpsjAYw4/sjPL7iFJseH0lXz7Pr0szIQL7alcYP+zP0Emn9A13YGl9MRb1cT5TIx1mz5hbXNnU6mPRzseFEVkWnnnONsUQUxS2tHxAEwVoURbkoipGX66bMXF6uVfEdLdrurRNZleZg8hrBPDN5jbA2Ko/EolpendLT5IbHGE3NKr7Zk0ZkF1fGGlFl/LpFHv/hNlWBNSfzaGpW80AbD6TfjmRjbSHRm6FcfjSHzPIG3pnWW6+l85dDWfx0IJMHhnfRbUzr5UoW/hHNot1p3DHQnzWP6AtqnMmv5tZvD/PSn2cA+OTOfhx+ZQLP3dTDZCAJmrbQoV3deXFSODufHcNHd/SloLqRmT8cZd6yKNJK6vTO7+7tyNpHhhPm7cCC36P5O7ZQ73g3Twdu6OnN78dyaFToz07WNmnmGJ1aVRbTS+txtrXEw+FsgKitKhozfe9IMBnm5UBBdaPB63cWQRDoH+iiN+NpxowpjmdWolKLjAz1OPfJ5yCvqrHdNkdRFDmUVs6oUA+DeeNfDmXiYG3BXUMC9c5/6694JILA29N66x5//99Essob+GJWBC52VoiiyKsb4jiTX8OXd/U3CNoOppUxZdFB4vJr+HxmBJ/cGWF0XT2SXs68ZScZ88leFu/LoH+gK8seGsLpt25i2UNDePqGMEaHeXYokASND9vP90diZyXl4WUnqaiXG5wzqbcPllKBf87or0lPTgjFUirh0+0pusc+uK0PPXycNKMCxWfXOAdrC5Y8EKlJni2LoqbV7LWNpZQHRwSzL6WMpKKzM5L9WwLXtuuENpgsqmnq0Htsjb+LLbVNSmouQEjsKucDI48dveR3YeaKIr6gFgdrC4Ldr81Aq5unA+72Vhy7vhNJ1xTmYPIaoLapmc+2pzA42NVom2p7LDuSTUmtnOdv6mGyKjl3ZLBe9VGpUvP70RyGdXWjp+/Zlq8aWTMbThUwvb+fLhBqkCtZvC+DkaHujA8/O++0L6WUD/5NZHJvH96aplEWLKpp5PbvDrM7uZQ3p/bi85kRuuCzQa7kvc2J3PbdYcrr5SyePZCtT49mVmSg0ZnD9rCQSrh7SBD7XhjPi5N6cDyzgklfHeCTbck0t5pTdHewZuX8YQwMcuXp1TGsPJ6rd50FY7pSLWtmfXSe3uPaYLL1XGh6aT2hXg56n3FWeQNSiWA0m18la8b1HKIUoV4OiKLGJuVCGRDkQmZZg96m0owZYxxKL8fGUsKgLhemwCmKInmVsnarWeml9RTXNjG6jedtUU0j/5wp4q7BgXqB2vaEYvamlPHcjd11tkg7EopZeTyXBaO7MqIlAP7lUBYbYzStojf19tG79rb4Iub+ehJ3Bys2PzmSGYMMVUpzK2TM/z2Ke5cc53ReNY+NC+XgyxNY8kAkY7t7XpBohq+zLT/fH0lZnZyFf0QjV+oni5ztLBkd5smWOH2hMC8nG+aNDuGfM0XEtgR89tYWOs/Nh5edpLxVcBroZsfi2QPJq5LxxKpTejPa9w8Pxt5Kyo/7M3SP9Q1wRioRTAaTJecRTGorohdjDbuaEATBRxCEQYCtIAgDBEEY2PI1Dri+h0jNkFRUS09fx2tOfEeLdm7yhFmE55rBHExeA3y7J51KmYK3pvbu1DBzaW0TX+9OY2K4F8O7uRsc/3F/BvZWUoOq5IG0MgqqG3mwTVVy/al8GptVetXK34/mUNGg0POtbFSoeG1DHN29HPnq7v5IJQIqtcijf5yiqKaJZXOH8PCoEN17EUWRx1eeYunhLO4dGsSu58dyc1/fCx7ctrWS8vj4UPa/NJ4ZAwP4fl8GH2/VVzV1srFk2UNDGNvdk9c2xulteiK7uNLbz4mNMQV6z6ls0IjiaBVXRVEktaSOsDbWGykldQS52Rl4Vjar1FTLFLh3oM0VzrbQXgja2Yyk4tpznGnmeudYZgWDg906LbbSlnq5knq5El9n0x0FJ1pm9LRWGFr+Pl2IUi0arEHf7k2nu7eD3uMf/JtET18nnrtJ449bWN3Ih1uTmdzbhyfazIGnldS1eFI68+ejI4z6Xm5PKObmRQc4nF7OS5N7cPiVCbwwqYdO5OdiEBHowqczIziZXcWGUwUGx2/o6U1BdaOe6ipoElyudpb8dCBT95ifiy1LWoLT//2bpHf+0K7uvD+9DwfTyvnzVL7ucWc7S2YMCmBLXLEuyLSzsiDMy4GENoqujtYW2FlJKa7tfDDZ3Vuzhmnb+q4jJgGfAQHAF8DnLV/PAa+d68mCICwVBKFUEIR4E8cFQRC+FgQhXRCEM4IgDGx1bLIgCCktx165KO/GzEVDrRZJKqqll6/p2exrgSEhbuRXNVJQ3Xi5b8XMRcBkMCkIgp0gCC8JgvCiIAg2giA8KAjC34IgfCIIgtmQ7gohq7yBXw9ncefAAAMj73Px+Y5UFCo1b07tZXCsRtbMv3FF3DEwwEC2/e/ThTjbWurNEYqiyJqTufQPdNHJ8zc1q/jlUBajwzz0BDaWHMyksKaJ96afbXtddiSb03nVfHBbH0a1qUKsPpnHvpQy3p7Wiw9u69vhlrGO4mZvxaczI7h3aBBLD2cZbGxsraS8d6vGKPxQWrnucUEQ8HCwpq2DR2pxHRLh7CxkWmk9VbJmvUqOUqXmWEaFbnagNQVVjahFCDjH/FGwuz1SiXBRgklpS2B+teRBZTIZn3zyCZ9++inm9enSoVSpySirb1eEpqNokyiqdqwxqloSM97O+kI/ZXVy7KykBlXNvMpGhoa4Y9Fy7aoGBbmVMm5rpQC9Ja4IlVrklZvD9TL/arWm9dXeWtNq6thmnVGrRb7cmcojy6Pp5uXAzufG8ti40AsOqk0xpY+mYlpiJEhzstW00CvV+p+do40l48O9OJpZoVe1jAh04Z4hQfx7psigdfauwYEEuNqyM7FE7/FQLwcUKjVVrboVXOwsqWvS714QBAF3ByujLbnnIsjNjq6e9myJKzr3ydcQoiguE0VxPPCgKIrjW33dKorihg5c4jdgcjvHbwbCWr4WoPGzRBAEKfBdy/FewD2CIBhuAMxcNvKqZDQoVHpdX9ciQ1r2PifN1clrgvYqk78B3kAI8C8QiSaTJtCyMJm5/Pzv30SsLaS8OLnHuU9uRUJhDWuj83hwRLDRAeiNMfnIlWrubjWPBJoAcWdiCZN7+2Blcfbb51RuNakl9dw9+Oz5G04VUF4v59FWgkCltU0s3p/B5N4+DG0Rd8irlPHp9hTG9fBken99Sfz8Khkf/JPIiG7uPNBKxv6/4OVJ4bjZW/H6pnhUbTZpgW62+LvYcjRDv8dfrlRh3aaymFhUSzdPB12gfCxT85zWYhan86qpkysZY2RONadF+fVc8xJWFhK6uNldlGBS65nZ2Zbhy8WDDz5ISUkJWVlZYF6fLhk5lTKaVSJhRip2ncXaQoIg0O7Mb12TEisLiUHAVtvUbJBUampWUdPYjFcrdeXElpm/1sHv5jNF9PF3Mlj31kTlEZVTxWtTeuoJzICmW+CJVadYtDuNGQMDWPvI8ItaiTSGhVSCg7UFtY1Kg2Pa9UlipDtjWFd3KhsUpLVZF+YMC0KhUrM2Kl/vcUEQGNvdk2OZlahbrXvu9prPQNtpAZrqpMzI/5e7vTUVDZ23KRIEgWn9/DieVUnxebTJXq0IgjCn5a/BgiA81/brXM8XRfEA0N4ufDrwu6jhGOAiCIIvMARIF0UxUxRFBbC65VwzVwhaL9eLkbC7kgn3ccLRxoLj5rnJa4L2gsnuoig+DzwO9AaebFnAXgIi2nmemUvEwbQydiWV8vj40E5ZgYiiyP/+TcLF1pInJoQZPb76ZB79ApwNjMT3pZTSoFAZ+KCtOZmLnZWUqS2Pq9QiPx7IICLAWa+F9vMdqTSr1Lxyc7jutV7fFI8gwP9u76vXuqoVyQCN0M5/PT/gbGfJG7f0IjavmpXHc/SOCYLAsK7uHMuq0NtwKZRqrC3bBJOFtXq/CI5lVuDvYqtXRTmQWoZEgJHdDEVMcio0rWvBHTBC7+blcFHmjZqUV1cwmZqayueff853330H5vXpkpFWovlea9uyfT4IgoCdpdRocKKltkmpJ2Sle7xRqavOaSmr01TGvJzOBoIJhZouA+06llcpIzavmqn99Nev0romPtySxNAQN2a2mZFUq0VeXn+GLXHFvDYlnM9m9rtkPyfOtpZGxWnULVXHtqJEAMNCNOvt8Uz9TVqolyPDurqx4niOQbIsIsCFerlSl8gCdHPvrSuOtlZSo8G/h4MV5fXn53k7LcIPUYR/r6/qpDaT4QA4Gvm6UPyB1sP8+S2PmXrcAEEQFgiCECUIQlRZWdlFuCUzHSGpqBaJgM7S6FpFKhEYEuzGcXNl8prgnDOToqZXZkvLn9p/m+5LMnNJUKrUvLc5kSA3Ox4aFdyp5+5KKuVIRgXP3thdN9fXmtN51SQX13H34CCDY5tji3C3t2JY17PtmXVNzWyOLeLWCD8crDUbvK3xReRUyHh0XDddgJhYWMva6DweGH62GroxpoADqWW8ZGTmaF10PgfTynnl5nA9f8b/kun9/RgZ6s4n21IordPPlI/o5k61rJnkVqqIcqUa61YV2qoGBYU1Tbp5B1EUOZZZaeBVuT+tnP6BLjjbGX7+2eUybC2lJv0rWxPq5UB2RYOeeMb5IG/WPN/G8uoao2753jKvT5eI9FLN9363ixBMAthaWSBTGFbetNQ1NRu0m4LxymSpNphslVhLLKzF19lGFxhpA5Zb+uoLlb3/TxJNzWr+746+BrPY7/+byIaYAp6/sTsLxnS74FntzuBoY6ET9GqN9sddauReAt1s8XO24Vim4SbtvmHB5Fc1sj+1VO/x3v6a9ap1i79Webq8dWXSRPDvZn9+ba6gWcN6+TqxuY1i9rWMKIo/tvz5rrGvi/ASxr5JxXYeN3aPP4miGCmKYqSnp2EHjZn/hradTdcyQ0LcyCxr0CUCzVy9tLdzjNLOHomi+JD2QUEQugF1Jp/VCc41CG4eIjfN7uRS0krrefXm8E7P7Hy7J42uHvZ69h2t2RJXhJWFhGkRhsqwB9LKuLGXt24mCWB/ahmNzSrubJXRX3k8l2B3O27sdVYpcfH+DBytLXiypRqqUot8si2F/oEu3GekhfXH/Rn0D3Rh9tAunXp/F4IgCDwypht1ciX7UvSzscEemoBWWwkURZGyOrkugAaIydP4PmorIfEFtVQ2KPSC7+KaJs7kVxttcQWNQIi/a/vee1oCXG1pVomUnedGTkuVTLNhbP1ermQiIyOpr9f9P5jXp0tEemk9fs42F+37xNZKQlOz6URIvVyJo5HKpEyhMrDq0M7y2be6t9xKGV1aVfiPZVbQ3dtBr0uguKaJzbGFzBsdQjdP/SD5TH41vx7O5sERwTwxQV+s579GFEVkCpVBFREgt6V7wc7acO0XBIFuXg5G299v6u2NlVTCgdRyvce1LfW5rSqTDi2fe33T2WDf2lJioC4L4OFgTWWDQq9rozNM7uPD6bxqo4HztUzLjLeTIAiWgiDsFgShvFUL7IWQD7SeUQkACtt53MwVQlJR3TU/L6lFNzeZba5OXu2YDCZFUZwniqLBbyNRFDOA0Rf6wh0cBDcPkZtgb3IpjtYWOlPujpJd3kBsfg13Dwk0UBHVklspo4ubnUFFoEGupK5JSZc2s3wJhbVYSgX6BbgAmtmlqJwqbujprWvDapAr2ZlYzK39/XTVuAOpZRTXNvHImK4G7VqiKJJf1cjgYNdLLo+9NioPOyspE1tZmQBsiy/GUiro/PXiC2oprZMzKuxsULgrqRQ7KymRwRqxnc1nCrGQCNzQ8+z/05+n8hFFuK2/0e4iFCp1hyuE2nkqYxXmzhBXUIOPk43BrNiVypIlS3BwMKyOmden/5a8qsZOG9O3hyi2L/rUIFdib2UYTGoqdvoVTW1AlN1K4dTbyUZXsQSwkkoM5gzzqjQB1BAjYlh7kksRBHhqYtglrUgCHE6vILdSZmD31NSs4o/juUwM98LDyM+rXKniVE6Vbg1qTWmdHIVKrRMH01LYoqjYujukvE6TYHJv5Y3brBSN/t7wdrJBqRbPa24S0M251jeZrlJfo9wkimItMBVNoNcdePEiXPdv4P6WhNcwoEYUxSLgJBAmCEKIIAhWwN0t55q5AqiWKSiobrzm5yW19PF3xtZSarYIuQY4545VEITHBUFwafVvV+DRi/DaHRkENw+RG0EURfallDEqzMNkQGgKrdH1LW1mhlpT0FIZa8vZNjL9DUxSS1uGVpAnKrsKhVLNyFaqrLuSSmhqVnNrxNkAas3JPNztrZjY0zAgrmlsRq5U4+3U8VnQi0FycS3/nCniwRHBeoGVUqVmY0wh43t46VrmdiQWIxHQBZ1qtciuxBLGdvfExlKKWi2yObaQMd09cW15jiiKrI3KY2iIm1HhI9CIfVhIOvb/WlEvx9ZSip2RDXdnOJ1XrTMlv5r47rvvMK9Pl478qvZ9ITuLKNJukFYvV+lVGrW42llRLdMPXALd7LC2kJBScrYwHeRmR35lo65i5mBtQb1cP2AxFkhp2ZdSRkSAi+5n/lLy+9Fs3O2tmNKmJXdjTAGVDQrmje5q9HnHMytpUKiY2NPL4NiZFo9IbeJPi7bbonVlVmv14dNqDVaoDGfEAd06fb4iOnYt/8fttTxfo2izgFOAVaIodmhXLQjCKuAo0EMQhHxBEB4WBGGhIAgLW07ZAmQC6cDPwGMAoigqgSeA7UASsFYUxYSL9m7MXBBJRZq163qpTFpKNX7FxzLNIjxXOx3Zsc4XRbFa+w9RFKuA+RfhtTsyCH7BQ+TXIsnFdRTXNjGuR+fnGDbHFhHZxbVdJcL8qkYCjASTxgQuwFBw5nBGORYtw9Va/j5diK+zDZEt9hgV9XJ2JZVw+wB/PVVYLbqNTDsedP8FX+5MxdHaggVj9DdqB9PLKa+X6xmYb08oZkiImy5QPFNQQ2mdnBtbqsVROVUU1TRxayuxohNZleRUyJgVqa+S2xqVWsSig9XYigYFHo4XttGtqJeTUyGjf5DLBV3ncvDzzz9jXp8uDXKlipJaudG14XwRRZH2vtVlCiUORlo5Xe0sdbYhWqQSgTBvB1JbBZOBbnYoVGpKWuafHWyMBZOaY75t1sTKBgWx+dXntc5eKPlVMnYllXD3kEC92SlRFPnlUBa9/Zz0Wudbsye5FBtLiYE3J0Bsfg0WEoFwH31xj4wyTTU3pFXF0tgarFCqsTKSwNSecz5ekwD2LS3LDXLTYkzXKJsFQUhGo0a9WxAET+CcH6IoiveIougriqKlKIoBoij+IoriD6Io/tByXBRF8XFRFLuJothXFMWoVs/dIopi95Zj//vP3pmZTpOkVZ++ToJJgKEhbqSU1BkkB81cXXQkmJQIrVLHLS1cFyNN25FB8AseIr8WFcm0s3zjehhmntsjpbiOlJI6bu1vuipZL1dSLWvG38Ww+qAVpGktcFFeL6e0Tq63+B1OL2dAkIuuolAtU3AgrYxpEX66ltUt8cUo1SIzTQRV2gx3e4bmF5u4/Bq2J5Tw0KgQA2/NP6PzcbWzZHzLZ55V3kBqST03tZoJ3ZlYjFQiMKGlUrk5thAbS4kuuARYG5WPg7WFQbWhNUqViIW0Y8Fkeb1cJ+F/vsTmVwMaRcerDbVazdW6Pl1ta1NBlaaCF3gRxbDUonF7Cy0NcqXRyqSznRW1TUoD4anuXo56wWRQSxU1t0LTympvbUF9k1LPg7GophEnGwuDOdCDaWWIYufX2YvBiuO5ANzbZl58X2oZ6aX1zBsdYrSiK4oiu5NLGNnNw6iAR1xBNeG+jgbH0kvr8XHSn4UtqWlCKhH0Wmk1gmOG19VWL883mNR2VrSn7HstIoriK8BwIFIUxWaggWuki8FM50ksqsXDwbpD4nvXCkNC3BBFzK2uVzkdCSa3A2sFQZgoCMIEYBWw7SK8dkcGwS94iPxaVCQ7lF5GuI9jp1tAD6drRBdaB0BtqW2RoW8ruw/oJOpdWimQZrXMJ4W2qDsqlGriC2r05o+OZVbSrBKZ1Pvs657IqsTfxZbu3sZVIbWCMK52l6a9LKmoloeXncTN3oqHR4foHTuRVcmWuCLuGBigq6IuO5KNRNAIWoBmjmnDqQKGdXXDxc6KqgYFm2IKuKmXj24zXFDdyOYzhUzv72cgHtKa2qbmDrWtNsiVxBfU6DbM58umGE3Q2y/A+dwnX2FMmjQJrtL16Wpbm7TzcBdzo9OsUiM1kThRqUVqGptxMjIPbNsSDMmV+sFkiIc9JbVynW+qtl2/sEYTCDtYW6BUi3qiP9WyZoPkEUBmS7XuYtigdIbonCp+OZTF5D4+eh0kFfVy3twUj5+zDbf0NZ4Q3J1USl5lo95aq6WwupGT2VVEdtGvaMoUSvanljGgTWdCakkdfi42evPsMoXS6NqlVX6tPE97EK3wjjGrk+uAnsBdgiDcD9wJ3HSZ78fMZSKpqJaevte2JUhb+ge5YGsp5VB6+blPNnPF0pFg8mVgD5o5pMeB3Wi83C6UjgyCm4fI26BQqonOqTKwmugI+VWN2FhK8HYyvRn0crTGUiqQV9locEwrQ69uldXXtppps9dFNY2oxbNiGKDxdoOzASdAcY2mldbUvJS2WvFfezyo1SIrj+cy64ejSASBVfOH6VkOVDYoeGpVDEFudjx7Y3cAMsvq+eNYDncPCdJZlqw6kUtRTROPj9coPi7en0G9QqmnAPnlzlQAHhtvWhVSqVKTVd5AVxPzlK1ZfiyHKlkzc0cGd/p9a4nLr+Hv2EIeHhVitAJ0pfPxxx+DeX26JGhbr1XixfmpFEWR6sZmXEyIRxXXNtGsEo221VbLFFhbSLBrE9hov4e1waT22m2Fqlp7N7raWRptsdIGVzG51Z14VxdGXqWMBb9H4etswwe39dU9rlCqefSPU5TVyfl+ziCjowFNzSre+yeRMC8Hbh9o2FX91a5UEGFem2TZH8dyDGYw5UoVh9LLGR2mn+Qoq5PjaUT0RxsEqtTnZ1G0PaEYJxuLq3Ju+0IQBGE58BkwChjc8hV5WW/KzGWhWaUmraT+uhHf0WJtIWVYVzcOpZmDyauZc+4eRVFUo1EpXHwxX1gURaUgCNpBcCmwVBTFBO0AeUvv/xY0g+npgAyY295zL+b9XanEF9bQ1KxmqBHlwXORVyUjyM2uXcELC6mEQDc7PUVELdoNg1J1djNZLdOvVmpb4VoL+BRUN+JoY6GnOFpSKzfIhOvdR4sATevXutgkF9fy+sZ4onOqGBrixhd39derBKjVIs+vPU1lg4INj43QtYB9uDUZawsJz96gCS5lCiXf7c1geFd3RnTzoLS2iWVHsrl9gL/OeDivUsaGU/k8NDKk3XnV9LJ65Eo1ffzbrxLKlSqWHMxkdJgHA4IMVRs7giiK/N+WJNzsrXhkbLfzusblRiKRIIqieX26BGgDGIXywjxNtdTJlajUosnuA21rahc3w8RKeb0CDwdrg7VM277Z2KzCBXSK1NqOC+0aVNvUrJvzc3ewprZJqZkHbBWkDQ52w0IicDijnFFhhvOHF5vimiYeWHqCZpWapQ8O1on+iKLIG5viOJFdyaK7+5sMuH46kElupYwV84YaCLOll9axPjqfuSND9Dx7GxUqfjqgWUcGdTm7jpzIqkSmUDGhTYtvaZ3caCJTEASkEuG8Eg0KpZpdiSXc0MvbaJB8jRMJ9BLFi5ShMXPVklFWj0Klvq7mJbWMDvNkb0oieZUXV+DNzKXjnMGkIAhhwIdoJO51fZWiKBqXkusEoihuQbMha/3YD63+LqKpNnToudcDx1uMqAefTzBZKevQvFOIuz3ZFYbBpHaD0txqTknbjqptE8tvCSYDWs1c5lfJ9AIoURQprm1qt01XF7ieZ6a7PRoVKhbtTmPJwUwcbSz4bGYEMwb6G2xMlxzKZG9KGe9P760L7o5mVLAzsYQXJ/XQtfv9fjSH8no5P8zR2Az+ciiLZpWap1r8NEFTuQR4aJR+VaAtZ/I1puF9z9FyujOxhPJ6BQ+f43rtsS+1jKOZFbw9rZeBAfzVQlpaGt27d1+PeX36z9EKr1ysYLK6wbBtvjXajgZjbdwVDXI9ywottlaae9S2sVpZSLC1lOraKI1VJrXXqWxQ6InN2FtrKmVHMv57pcH8Khn3/nycygYFv80drKeq+suhLNZG5fPUhFCmm7ATSiis4Zs9adzSz1dnXdSaz7anYmdlwWPj9JNGK47nUF6v4KmJYXqP70kuxdpConetpmYVNY3NBmreWqSCgOo8vjWOZVZQ26Tk5j6m58ivYeIBH6Doct+ImctLYuH1J76jZXRLsu5QerlJ/3MzVzYdSQP+iibrrwTGA78Dy//LmzJjml1JJfT0dTLqL9YeWt/GjmR9gj3syamQ0TZZqhWFaW2iXd3YjKVU0Knx5VfJkAj6CoAaddizr1vT2IxCqTa5KYFWLXXnaYJtDJVaZO3JPG74Yj8/7M/g9gH+7H5+HHcOCjAIJP+OLeSTbSnc3MeHOcM0IhhKlZr/bUnEz9lGF8TVNDbzw/4MxvXwJDLYjWqZgj+O5TC1n5/O+kOuVLE2Ko8J4d74tVOVBI1JuoO1BSHu7be5rjqRi7+LrUEbWkdRqtR8vDWZIDc7ZrcR+biamDt3LpjXp0vCxa5MnmsuOq9KhlQi4OtimHSqqFfgbsSuQztL2dhKyMXJ1kIXPOqCSdnZYFK7lpbXn/Wj1DIi1IO4/Gq98y82GWX13PXjMc3aMW8oka1UsHcnlfB/W5K4uY8Pz7R0QrSlqVnFc2ticbWz4oPpfQyOn86rZltCMfNHd9WzO2pqVvHD/kxGdHNncKvXFEWRvcmlDO/mrjcfqf182qp5a5FI9EcgOsrW+GLsrKS6DeV1hgeQKAjCdkEQ/tZ+Xe6bMnPpSSqqxcpCQkgHRlyuNUK9HPBxsjG3ul7FdCSYtBVFcTcgiKKYI4riO8CE//a2zBgjNq+a6JwqPauJjlLbqKReruyQrL+fiy2NLVloY7TeLlTLmnG2tdQFY2X1ctzsrfTalSobFDqBBoC6FmNqY8IaWjxaAs3Ukvpz3m9HOJRWzi1fH+SlP8/gZm/F6gXD+HRmhFH/uD+j83l6dQyDurjyyZ39dO/tf1uSiC+o5dUpPbGxlCKKIq9tiKOuSckLN/UA4N3NiTQp1brZSYDv9mZQXq8452zj8cwK1kblMyrUQ6d6a4xNMQUcTq9gzrAu5yVYoVaLvPV3AsnFdbw2Jfyqbi1rbGzEvD5dGlxsNT8rWr/ZC6XaiKBXawqrm1pmuA2/P4tqmvRUpbUoW5JPrXNDNpZSXaXSyUhlUrsmJhefVYHVcmNPb0Tg+XWxFzWxpeXP6HymfXOIxmYVK+cP02thXXMyl0eWR9PLz4nPZ0UYXRNEUeTVDXGklNTxyZ39dDZFrfl+bzqudpYGs5KrTuRSXi/n6TZVyfiCWrIrZNzQxv83t6VS7Ots+DtErRY1KtSdXI8q6uX8fbqASb19jKrPXge8A9wG/B/weasvM9cZSUV1hPs4YtFJ7/BrAUEQGB3mwaH08v9knTXz39OR79omQRAkQJogCE8IgnA7cOm10s3wxc5UXO0smTOs820AnfFtNKWUqN2Q2bSShq9ratZrkWxUqAyUSNuOaGpNr9tevzURAc4Eudmx4VT+Oe+3PdJL63jot5PM+eU4DQol388eyN9PjDQpYLQuKo8X1scyspsHv80dopu5WnE8h18PZ/PQyBCmtQTzK0/k8m9cES/c1IM+/s78HVvIxpgCnpoQRo8WH7f4ghq+35vO7QP8jbafaUktqWP+71EEutry0Yy+Js/LKKvntY1xRHZxZf7ozre4NjWreHzlKVYez2Xh2G5Mvspby2xsbDCvT5cGZztLurjbEdtifH+h1LcklRxNtFhXyxRGq5YNciXl9XK6eBh2WRS1eEb6tQp4FEo11i0JE0cbzdrUoDjrNdnTxwlvJ2t2J5UYXK9vgDPvTOvNrqQS3v473qBb43zJq5Tx+IpTPL8ulj7+zvz71ChdK71aLfLxtmRe/jOOEaEerJo/zKS68y+HstgYU8BzN3Y3amGSVyljZ1IJ9w4N0hPY0lQlMxjW1Y2hbdbCNVG5WFtIdOuclvYM1csb5CjVYqetnJYdyUbWrOLx8VfnzPaFIorifiAbsGz5+0ng1GW9KTOXHFEUSSyqpafP9dfiqmVUmAc1jc3EFdRc7lsxcx6YDCZbVMYA/gLsgKeAQcB9wAP//a2Zac3J7Er2p5bxyNhuJjdf7VHSEkx2xE5Eu/HSKiJq0f7bxurst01tk1K3QQON8IVtmwyzRBD02p+0x5va8RQTBIE7BvpzNLOCgmpDZdn2EEWRw+nlPLI8ipu+PMDJrEpevTmcnc+OZUpfX5MCRGtP5vHSn2cYFerBkgcidS1eR9LLefuvBMb18OT1W3oCmpaUdzcnMqa7J4+M6UphdSNvbIxjQJCLbmOkUKp5YV0sbvZWvD2tl8n7La5p4sGlJ7C2lPLb3CFGbQqgJRBccQprCwnf3Dug0xnMsjo5d/10jG0JxbxxS09entyjU8+/krjvvvsAmD59OpjXp0tG/0AXTl+kYLKuZY6x9frRmurGZlztDde6nBZhnmAjreAF1Y04WFvoWRs1Nat0CSytiJa2OwJAIhGY2NObA6llyJWGa9IDI4J5ZGxX/jiWy1t/JejmL8+HygYF725OYMLn+9idXMLzN3Zn1fxhumpfU7OKJ1fFsHhfBvcODWLpA5Em1/sDqWW6FtgnTChE/3YkG4kgcN+wYL3H10blUVIrN5iVbFSo+CumkCl9ffUE00Cz5pnywNP6AvsYqVqaQqUWWRedz5gwT0K9ri87BC2CIMwH1gM/tjzkD2y6bDdk5rJQWienskFx3Sm5tmZUS7L9UNqV77lsxpD2BHgGCYLQBZgN/IxGrfD5S3JXZgz4fEcKHg7W3D/8/ObbtJVJbyOtYW3Rthu19mLT/FuldxxaKpOtNh2NzWoDHzJNMHn237atFBfbY8bAAL7alcbGU/k8MSGs3XNBo9D4Z3Q+y4/lkFnWgKudJQvGdGPe6JBzzpiuOpHLqxviGNvdkx/vG6R7j5ll9Ty64hQhHvZ8c88ApBIBmULJEytP4WxryRezIgB4fm0sSrXIV3f11wV53+xJI7m4jl8eiDQZINY2NfPgryeobVKy5pFh7c60vrtZ05r669zBRlvN2iO1pI65v56kokHOD3MGGfWhu5qIjo4mJyeHFStWAFhiXp8uCf0DXfjrdCFFNY2d/h5sS52uMmn811CVTGG0CpbTIg5mTJinsLoRPxcbvYSRXKnWdVNYW0iwlAo0yJV6z7uxpzcrj+dyLLOSsd0N55BfnhSOQqnmtyPZbIkr4sVJPZgZGdjhNvNGhYqlh7P4YV8GDQolsyIDeeaG7nqdIpll9Ty9+jTxhTW8PqUn80aHmEx8ZZc38MTKU3T3duSzmcZbYMvr5aw8nsu0fr56ryNXqli8L4PBwa4Mb1OV3BJXRJ1cyV2DA9tejsTCWpOb3aKWYLIzlcmDaWUU1TTx5lTTibbrgMeBIcBxAFEU0wRBMHdWXGdoxXeMrXfXC+4O1vTxd+JAWnmH9ntmrizaCyZ/QGP+3RWIBgQ043LaPy9YLdFMxzicXs6xzErentarQ2b2xihtCSZNiSe0xsay/cqkrV4wqdTbQDQqlAaVSUHQF2awkEqwkkqQtVOZBAh0s2NIiBuf7UjF2dYSbycbfJxt8HGywcnWksyyBpKKakkqquVMQQ1n8qtpalYTEejC5zMjuKWf7znncFRqkc92pLB4n0ZE54c5ZwPJmsZm5i2LQioRWPrgYF2F4M1NCWSWN7Bi3lA8HKz56UAGRzMr+HhGX7q0VEti86r5fl8GMwYGMLHN7NHZz0rFwuXRpJfW8+vcwfT2M63g+md0PqtO5PHouG6MN9LO1h67k0p4ZvVpbKykrH1kOP0CXDr1/CuRhQsXMnnyZDIzM8G8Pl0ytDN9p3Or8e17ocFkM4IA9ibWtBqZcQ/KbK1liLuRYLKm0UA5unVlUhAEHKwt9CqTgEZsxlLK1rgio8GkRCLw9rTezBgYwDt/J/DKhjj+OJ7DvFFdGdrVDW9HG4OArqimkd1JpexNLuVoZgUyhYobenrz8uQehHmfrcSJosjqk3m8tzkRa0sJP90XyY29jK8ZAKdyq3hyZQxSicDP90ea9If9+WAmcqXKYGO2PjqfopomvXlwLWui8gh2tzOwnmpWqUkvrWeMkc8GWlcmOx5Mro3Kw83eymA28zpDLoqiQvv/IAiCBf+9vbKZK4zEIk0wGe57fVbotYwK9eSXQ5nUy5W6LhIzVwcm/7dEUfwa+FoQhMWiKD56Ce/JTCvUapEPtybh52xzQZLJ6aX1eDtZd0jkQKvWqFVv1VIvV2EllegJYsiVKqxbzVBKJQKKNvrwbvZWulkmLQGutsR3oDf+kTFdKa5p4s2/TNv0WVlI6OnrxD1Dgrh9gH+HgyWZQskzq0+zI7GEe4YE8c6tvXTvRRRFXlofS26ljJXzz1YM10bl8eepfJ6aGMaIbh6cya/mk20pTOrtzaxITTa/prGZx1acwtvRmrdMtLdWyxTMWxZFdG4VX8yKaFeVdfWJXF7bGMewrm48f6NxRUdjyJUqPtqazK+Hs+np68SSByLb9bi8mnjqqad46qmnePTRR1m8eLE5cLxE9PJzwkIiEFdQw819L2zeVq5UYyWVmBSbEgTjPrNiy17bmFCDWg1tH3awtqCy4WxrarCHPSezKxFFURdM2VhKuW2AH6tO5DG0qxu3Dwgwek99/J1Zt3A4m88U8cm2ZJ5ZcxrQ2KZ4O1vj62SLt7MNmWX1JLRUGwLdbJkxMIDp/f30lFpBI0DzyoY4diaWMDLUnc9n9jcZkFXLFHy8LYXVJ3PxdrTh94eGmuxkqGpQsPyoRlU61OuszYgoiiw7kk1ff2ddW5mW7PIGTmRV8uKkHgZB5pn8GhQqNf1MWBZllNVjbyXFzUQHRlsa5Ep2JZVy75Cgq1oA7CKwXxCE1wBbQRBuBB4DNl/mezJziUksqiXQzfaqtei6WIwJ8+CH/Rkcz6wwmYQ3c2VyztDfHEheXjbGFBBfUMuiu/tfkNpdTF61SbPrtuRVaTL/rb0iAWoaFQbKixpvsbO7Nz8XW4618WUbEOjCuuh8lCq1rgV0aoQf3+xJI6eiQVfNM8bEnt6M6+FFeb2cktomimuaKKltokrWTLCHPT19HAnxsO/0/GBJbRPzlkURX1jD29N6MXekvpjNp9tT2J5Qwhu39GRIS5Y+sbCWNzfFM6KbO09PDKNBruTp1afxdLTm4xlns/wf/JNIcW0T6xcON5g7Ak3F4oGlJ8gul/HdvQOZYmJTLooi3+1N57MdqYzp7sni2QM7/D4zy+p5clUMCYW1PDgimFenhOsF/dcKixcvvty3cF1hbSEl1MtBl0m/UEx0cQIQ4mFPVrmh3+2AQFdAU6GbEK6/4Qj3deRw+ll5eUEQiGgz53nnoABe3xhPbH6N3pr49rTe5FTIeGHdGZxtLQ2u3fqat0b4MbWvLwmFtZzKraKopomimkaKapqIzavG28maV24O54aeXnTzdDDarro3uZSX/jxDjayZN27pyUMjQ0wqtq6PzufDrcnUNDbz8MgQnrmxe7uZ+6WHs5ApVDwxQX+WMiavmtSSej68o6/BPf15Kh+JoBkvaMvBtDIEAUZ0My5cFldQQ29/53ZVqFuzL6UMhVLNzX2u7nb7i8ArwMNAHPAIGm/aJZf1jsxccpKuc/EdLYOCXbGxlHAwrdwcTF5lmOvIVzCNChWfbk8hIsCZaf06bweipaJeTk6FrMOVzZTierwcrXFuEzhWNTQbBJMSiYCqVQurv4stxbVNeoHjoGA3lh3NIa6ghgFBmo3gvUOCWHooizc2xfP7Q0NMzgaBptrp7WSDt5MN/YwXDDpFUlEtD/12kprGZn6+L5Ib2rSULTuSzff7MrhnSNBZP0lZMwv/iMbFzpJFd2tmJ9/dnEB2RQOr5w/TzUTuTS5lXXQ+j43rpnuvrUkvreeBpSeoaWzmt7mDGWFC4VWtFnl3cwLLjuZw+wB/Prmzn1GLBGP8GZ3Pm3/FY2Uh4ef722+ZM2Oms/Tyc9IL2C6E9sRRu3o4sDvZUGG1f6ALUolAdI5hMNnL14kNpwqoqJfrPBUHBLny7Z40GuRK7K0tuDXCjw/+SWL1iVy9YNLGUspP90dyz0/HePSPU3x770Bu6Ollcm2SSAT6BjjT10S1zhSldU28tzmRf84U0cPbkd8fGmJ0VkoURQ6ll/P5jlRO51UzqIsrH9zW55xzVTWNzfx2OJvJvX3o7q3fNrfmRB52VlIDpVa1WuTP6HxGhXkarYweTCunX4CL0dlvpUpNUlFtp/xqt8YX4W5vZVCpvd4QRVEtCMImYJMoimblkesQmUJJVnnDeVm+XWtYW0gZGuLOQbMIz1XHdd1fcqXz7d40imubeGNqrw5nfI0Rm18NaCqEHSG5uJZwIxuW6kaFzmtOi4VEQKXSr0yqxbOCPwCjQz2QCLAnuVT3mI+zDS9P7sHBtHL+PFXQiXdz/qjVIsuP5XDn4iOoRZG1jww3CCS3xRfxzuYEbujpzfvTeyMIAmq1yHNrT1NU08j3swfh6WjNP2cKWRuVz+PjQnXS+jWNzbyy4QzdvR14+gbDAfKY3Cpm/nAEuVLF6gXDTAaScqWKJ1fHsOxoDvNHh/D5zIgOBZLNKjUvrovV2Q1sfXq0OZA0c9Hp5etESa1cZ2J/3pxjSQvxtKe8XmHgd2trJaW3nxNR2VVG7w3O2lgADAhyQS1qWjVBY0UyLcKXv2MLqW8jxONgbcFvcwfTxd2O+b9Hce/Pxy+aFYpaLbLieA4TP9/PjsQSnruxO38/OdJocHgko5xZPx7lvl9OUFqrmW9c98jwDgl0LD+aTZ1caVCVrJcr2XymkGn9/AyqmkczKyisaWLmIMNsXW1TM6fzqhltYr1KL6unqVlNX/+OBdVNzSr2JpdyU2/v8/LJvRYQNLwjCEI5kAykCIJQJgjCW5f73sxcWlKK6xDF61t8pzWjwzzIKGvotIq/mcuLOZi8QjmaUcH3+zK4c1AAgy8wexuTW420JYt+LpQqNWkl9YT7GA6CV8uaDaqVEkHQGYUDBLpqWmNzW0QyAFztrYjs4sbW+GKUreYpZw/tQmQXV97/J5G4/P/OW0gURfallHLH4iO8uSme/kEu/PX4WV83LccyK3hq9WkGBLrwzT1nrTe+25vO7uRS3rilF4O6uFJQ3cirG+LoH+iiFzS+/08i5fUKPpsZYdBSml5ax5wlx3G0sWT9whEGr62lprGZub+e5N8zRbw2JZzXb+lYIqGpWcWjf0SzLjqfJyeE6tkNmDFzMdEGbFoFwguhPaWRrh6a9veMsnqDY4O6uBKbX41MoR8MajdkZwqqdY/1b5mhPpFVqXvsrsFByBQqVp/INbi2u4M1/zw5mnem9SK1pI7p3x1mwe9RHEorR32ehtr5VTJm/XiU1zfG08fPmW1Pj+apiWEG68Sp3Cru/uko9/58nNxKGe9P783eF8cxKzKwQ+tAVYOCXw5lMb6Hp8EasymmAJlCxV1DDJVa15zMw9HGwmjy6UiLkfjoMOPBpDZIN7WmteVQWjkNCtVVryh9gTwDjAQGi6LoLoqiGzAUGCkIwrOX9c7MXFK0ia9e5mASQCfyZbYIubowB5NXKL8dycLd3pr3p/e54GulFNcR4mHfISXYtNJ6FCo1PY2oijWrNIIZrfF1tiGr/Oxmr4+/EzaWEjad1q82zh4WRHppPR9vS9Y9JpEIfHJnP2wsJdz+/WG+3p2mF2xeKDKFkj+j87l50UEe/PUkxTVNfDErgj8eHmrQyhWTW8XDv50k0NWWXx4YrLM3OZRWzhe7Upne34/7h3dBrRZ5fu1p1GqRRXf311UM9yaXsj46n4VjuxoIADXIlSz84xQ2llLWPDKMYA/jM6L5VTLuXHyEk9mVfDErggVjOmbkXS1TMHvJcXYnl/L+9N48f1OP6zbjb+a/p7e/M4KgCXwuBFc7KxRKtUHlUUv/IBcspQLrovIMjk3t54tcqeZ//ybpX9PeikFdXFlyMIuKlsqpq70VI0Pd+flgJnmVmiTXwCAXRod58OHWZP49U2RwfSsLCQ+ODGH/S+N5emIYJ7IrmfPLcYZ+uJu3/4rnSHr5OdcqURQ5mV3JU6tiGP/ZPlKK6/hsZgQr5w+lq6eD3rlqtWY++s7FR8goa+Dtab3Y/+J47hse3OFZZ7lSxYLlUTQoVDx/k76HbGWDgi92pjIgyMWgQyW9tJ5/zhRyV2Sg0bn8Fcdz8XS0Ntq2D7AnqRRPR2td8H8u1kTl4W5vxYhuxoPT64T7gXtEUczSPiCKYiYwp+WYmeuExKIaHG0sCHA1J38Bwrwc8Hay5mDaxRmlMHNpMM9MXoHUNjWzN6WMe4cEGXg2ng85FTKjBt/G0FYIjSmiWllIDZRah3V1Z29KGaW1TXg52eBiZ8WsyEBWncjluRt76IK26f39ic6p4ueDWfT0deKOFpGHrp4O7HhmLG/9Hc8XO1NZfSKXJyeGMTHcCy+njsvMa2lUqNiXUso/cUXsSSqlsVlFd28HPp8ZwbQIP6PKgbsSS3hu7WncHaxZMW8YrvaaVt6imkaeWh1DqKeDTrDi54MZHMus5JM7++mEg7TtrT28HQ1MwEVR5NUNcWSW1bP84aEmq4WxedU8vCwKhVLFsoeGdHijVVCtEfPJrWhfzMeMmYuFs60lPX2cOJ5Zee6T2yGsRWU0vbSOQV0Muy+8HG2YPbQLy4/lMH90V70AbFAXN+aP7spPBzIZ38NLr139wzv6MvXrQ7z9dwLf3jsQgI/u6MfNiw7ywrpYVs0fhkQi8MOcQTyw9ARPr46hUqbg3iFBBkkYB2sLnr2xO4+O68bupFL+Ol3Amqg8lh3NwdXOkok9vekX4IyzrSWudla42FniaGPJ4fRy/jiWQ3JxHY42FswZ1oWHRoYYVV+tbFDw3NrT7EspY1qEHx/e0bfTsvi5FTJe2xjHyewqvrlngEGV8IN/E6ltbDYqvPP5jhRsLaU8Os4weZVQWMPBtHJenNTD6NpZ19TMnhSNKmtHKqeF1Y3sTirhkbHdrncVV0tRFA12y6IolgmCcH1Lel5nJBXV0dPXqV3diOsJQRAYGerB/pQyPcVtM1c25mDyCmRnQgkKpZpb+1/4QLYoiuRUNphsUWpLXEENDtYWhBgJPq2kgs42RMvwFnW/o5kVTO/vD8D80V1ZcTyXpYezeG1KT925b07VtI29siGObp4ORLRkyJ1bRG1u7OXNzwezeHVDHAD9ApyZGO7N2B6e+Drb4GRjiY2lRLe4KJRqcisbSC9tILO8noSCWvamlCJTqPBwsGLGIH9u6evHsK5uRhekRoWK/21J5I9jufTydeKn+wfpgl+5UsUTK2NoalaxeM4g7KwsiC+o4bPtqUzq7a03W6Rtb11y/2CDKsIfx3P5O7aQF27qzkgTM0c7Eop5anUMHg7WrF4wlFCvjnlNpRTX8cDSEzQolPz+8BCGdTWutGjGzMVmaFc3Vh7PNbAG6gxacZiU4nqjwSTA4+NDWRuVx5e70vjmngF6x56/qTuH0sp5+c8zbA0cjZejje66T00M5bMdqUztV8zkPj4Eutnx1rRevLT+DF/tTuO5G7tjb23Br3MH88jyaN7cFM+KYzm8cUsvRhlZK20spdzSz5db+vkiUyg5kFrG9oQSticUsz463+i99/Zz4qM7+nJrfz+TXSHROZU8sTKGinoFH9zWh9lDgzq1eZIrVfx8IJNv9qRjIRH46I6+BuI6B1LL2HCqgCfGhxLeRjHyTH41W+OLeXpimE6wqDU/H8jE3krKHBPiOruSNL+rpkV0LIm1+kQuIhoBtuscxXkeM3MNoVaLJBXV6mzFzGgYHOzGhlMFZJU3GHRxmLkyMQeTVyB/xxbi72LbYcGc9iitk9PUrKZLB1uQzhTU0MffyWiW2VIqoblNZbK3nzOO1hYcaxVMBrrZcUtfX1Yez+Xx8aE6ewxLqYTvZw9i2jeHWLA8is1PjNKrPk7t58ctfX1JKaljd1Ipu5JK+Gp3Kl/uStWdYyWV4GRrgbWFlOLaJj1bEh8nG24b4M/Uvr4MCXFr10YjobCGp1efJr20nvmjQ3hhUg/dprhZpeaJlTFE52iy/KFeDjTIlTy1KgZXe0s+vOOsDcihtHLWR+fz+PhuBjOpsXnVvL85kfE9PHlsXKjBPQAsPZTF+/8m0i/AhSX3R+LpaLihM0Z8QQ2zlxzHxlLCuoXDDTaJZsz8lwwNcefXw9mcya8575lufxdb7KykpJbUmTzH09Gah0aG8O3edBaO7Upvv7M/Y9YWUhbd3Z+p3xzixXVn+G3uYN3P5SNju7E1vpg3/4pneFd3nO0smTkogOOZlXy9Ow0nGwvmje6Ko40lK+YNZUtcMR9uTWLOL8eZEO7Fa1PCTSZ17KwsmNzHl8l9fFGq1FTJmqlpVFAta6ZK1ky1TEGolwP9A11MBoaiKLLkYBYfb0vGz8WWDY+ZnqM2xZH0ct74K57MsgZu6evLm1N7GbTvyxRKXtsYR1cPewNBHtBYILnaWTJvdIjBsfwqGZvPFPHgiGCDWXktm2OL8HO20dm1tEezSs3qk3mM6+5p0h/zOiJCEARjQ8cC0PmWHDNXJbmVMmQKlXlesg2DgzXrSVROlTmYvEowB5NXGLVNzRxKL2fe6JCLUt7PbvFp69KBX95aifcHhhvPQltZSGhqVuk9JpUIDAlx42BauZ4dyIIxXfk7tpCfDmTw4qRw3flu9lb8fH8kMxYfYdaPR/nhvkF6gZAgCIT7OBHu48Tj40Mpr5dzIquSKplG1bG2UUlNYzONCiUBrnZ087Knm6cDIR72OHbA8Le0tonlx3L4cX8mLnaW/PHwUL1KRKNCxbNrTrMzsYT3pvdmWoQfarXIaxvjyKpoYOW8Ybi1tMHWNTXzxqY4gt3teHKCfntrTWMzj604haejNV/e1d9ocL7kYCYf/JvE5N4+fHlX/w63NGeW1TPnl+M4WFuwesEw88bMzCVnUJcWr8ecqvMOJiUSgbAOeFbOH9OV5cdyeP+fRJY/PFRP2TjM25HXpvTk7b8TWHIwi/ljugKaxNXHM/ox/bvDvLrxDN/cMxCpRODjGX1palbxwb9J1DYpeWpCKBZSCbf082ViTy+WHcnm2z3pTPrqINP6+XLX4CCTnQ0AFlIJno7WHU4CgcZm6Pl1sexKKmFSb28+uTPCqB9tW1RqkYTCGg6nV3AwrYwjGRV0cbfjt7mDGdfDy+D8pmYVr/wZR35VI2sWDDOYh9waV8TBtHLeuKWn0bXzu73pCMBDowwDTdBYnBxMK2OuCX/MtmxPKKa0Ts5HJn6/XE+Ionjtmf6a6TTatc+s5KpPVw8HXOwsic6uMldtrxLMweQVhpVUgq2llPK6i9PpUtekUTt0NeIP1pYGuQqFUm1yrq+rpz0bThUYtLbNjAxk4R/R/HwwSzd308ffmTsG+vPd3gzCfZz0Wq96+Tnx7b0DeGNTPJO/Osgt/Xx5ZmIYYd6GlQAPB+sLngNUKNXsSS5lXVQe+1LLUKlFbo3w451be+sCQ4Dimibm/x5FfGENb03txf3DgxFFkbf/TuCv04W8OKmHrq1XpRZ5ZvVp8qoaWTlvqMFG7d3NCRTXNrF+4XCj3mxHMyr4vy2aQPK72QM7LJhT29TMvN+jkAgCK+cPNQeSZi4Lno7W9PF3Yl10PgvGdD3vxNeEcG++3JXKmfxqo3PaoJnRfP2Wnry0/gwvrT/D5zMj9IKX+4d30fw8bU3C18WGqS2evH38nXlpUg8+3JqMtUUsn82MwEIq4au7+2NtKeHr3WkcTCvjy1n9Cfawx8ZSyiNju3HnoAC+3ZvO+uh8Np0uJNjdjpmRgcwcFHBec9ytiS+o4dEV0RRVN/Hm1F48NDK43c9OoVTzb1wh2+KLOZZZqRMr6uHtyPM3dmf+mK5GRXPSS+t4YmUMycV1PH9jd519kZY9ySU8vfo0/QKcmTPMMLhbF5XHqhN5zB8dgr+L8d8H7/+ThIDA3YPPvdkTRZGfD2QS4mHP2O6Gga8ZM9cjSUW1SCUCYd7m6ltrJBKBQUGuROVc2Fy+mUuHOZi8wrCxlDItwpdNMYW8c2uvDlXb2kNr29GRYEUrrmMpNX7uhHAv/jiWy/HMSp18M8Ck3t6a6tquVG7q7U23lraED+/oS16ljOfXxeLrbKNnUD2xpzeRXdz4+WAmvx7OYktcEdMj/HhqYthFaWtQq0VO51fz75kiNsUUUNGgwMvRmgVjunLnoADdPWo5nVfNgt+jkClULLk/kok9vRFFkY+2JrP8WA6PjO3KY60EKj7bkaJTT227UdsWX8yGUwU8NSHUqAJiSW0TT646RbCHPZ/NiuhwIKkNYHMrZPwxb6hOAMiMmcvBQyNDeG5tLPtTy4xWxjp0jVHB/HYki0+3p7D84aEmz5sVGUhpbROf7UjF2daSt6f10gVhgiDw1d39ue+X4zy3Jha3Vkqhj4ztRrNKzWc7UhFFkc9naRSYv5jVn3E9vHhjYxxTvj7I4+NDmTO0C852lrg7WPP2tN68NCmcrfFFrDmZx6fbU/hiZypjwjy4fWAAN/b07pQ4miiKrD6Zx9t/J+Bub8WaR4brqrvGqGlsZtWJXH49nEVJrRx/F1sm9fZmZKgHw7u56+ZDjbE+Op83N8VjayU1WrXck1zCwuWn6OHjyPKHDBNhp3KreH1jPCO6ufPy5HCMsTe5lM2xhTx7Q/cOrddROVXE5tfwwW19zErTFwFBECYDiwApsEQUxY/aHH8RmN3yTwugJ+ApimKlIAjZQB2gApSiKEZeshs3o0diYS3dPO2NJoSudwYFu7I7uZTKBoVe0t/MlYk5mLwCuWtwEKtO5LE5toh7h16YUIF2ptDCRIDYGqVaG0wanzUc0c0DG0sJe5JL9YJJQRB477beHP2iglf+PMOaBcORSASsLaT8dF8kdyw+wvzfo1jywGC9DZSznSUvTOrBQ6NC+PFABr8fyWHT6UIiAl24IVyj0Bju49jhqkezSs3xzEq2JxTrWqospQI39PRmVmQgo8M8DOYo6+VKvt+bzpJDWXg7WfPHvKE6YZCvd6fz44FM7hvWhVcmh+vu46/TBSzel8G9Q4MMsvrl9XJe3xhHH38nnmyj7Kq9x8dXnEKmULFq/rBOqTZ+viOFPcmlvH9bH7PYjpnLztR+fny0NZlfDmWddzDpaGPJ4+ND+eDfJI5klLerYvz4+FCqZM38cigLJ1tLnruxu+6YjaWUJfcPZuaPR3jk92jWPDKcXn6a1rEnJoQhCAKfbk9BBL6Y1R+pRODWCD8iu7jyxqZ4Pt2ewnd705kVGcjDozSqq7ZWUu4YGMAdAwPIKm9gfXSeJkm0KgZ7KymT+vhw+wB/hnV1N7lmFlY3ciC1jG0JxexLKWN0mAdf3dXfqNiN9vwlB7NYczKXBoWKUaEefDyjH2O7e55zHWyQK3nzr3g2nCpgWFc3Ft09AO82ldQVx3N4668Eevk68cfDQw1mIUtqm1i4PBofZxu+u3eg0bnzBrmSNzbFE+blYFQB1hhLDmrGCmYMDDj3yWbaRRAEKfAdcCOQD5wUBOFvURQTteeIovgp8GnL+dOAZ0VRbF3mGW9MTdbMpSWpqJbBIRfmI36tEtkiyhadU2XU/9bMlYU5mLwCiQhwpoe3I2ui8i44mNQGiB3JBjcrtYGn8Y2RjaWUEd082J1colcZAI2M/5tTe/HCuliWH8vhgRHBgMbj7dcHB/PArye4+6ejvDWtN3PaKBa62Vvx6s09mTeqK2tO5rIzqZTPd6by+c5U/F1sGdvDkyA3OzwdNLNJHg7WONpYkFspI62kjrTSetJK6kkqrqWuSYmtpZRxPTyZ3MeH8eFeOBmp7qrUImuj8vh8Rwrl9Qpu6+/HW9M0ba8KpZp3Niew8nguMwYG8O6tvXX3G5tXzUvrzzAkxI13pvXWex+iKPLahjjq5EpWzepvdIP54ZZkonKq+PqeAUbbek2xObaQ7/dlcM+QIOZc4PeEGTMXAysLCfcP78JnO1JJLanTJWE6y5xhXfjlUBafbEth42PuJoMmQRB4fUpPahub+Xp3moGdhbOdJb/NHcKMxUd48NcT/PnoCF0b+OPjQxEE+GRbCmV1cj6e0Y9ANzv8XGxZ+uBgkopqWXIwixXHc/j9aDaT+/gwd2QIkV1cEQSBEA97XpwUzvM39uB4ViWbYgrYEl/EhlMFSCUCAa62BLvbE+JhTxd3OwqqGtmfWkZaqcaD18fJhhdu6s6j40JNrsX/ninilT/P0NisYlqEH/NGh+gJDplCFEXNjPc/iRRUN/LMDWE8OSFM73XUapGPtyfz4/5Mxvfw5Jt7BxokspqaVSxYHk29XMnyh4fqLJLa8vmOVAqqG1m/cHiH7D1yKhrYkVjC4+NCL4rVlRmGAOktvpQIgrAamA4kmjj/HmDVJbo3Mx2kWqagsKbJLL5jgn4BzlhKBaJyKs3B5FWAOZi8AhEEgVmDA3n/n0QSCms6tKEwhbYy2ZHanjbwFEXR5DkTwr3Yk1zKqdxqgzatGQP92RxbyMfbkunl56QT5gj2sOfvx0fxzJoY3twUz7GMCt6+tZdBq5anozVPTAjjiQlhlNY1sTe5lF1Jpfx9upB6udLkPTnZWNDd25Gp/fwY18OTMWGeJjctzSo1W+OL+XZPGqkl9QwOduWXBwbrbEpSS+p4cf0ZYvOqeWRsV16aFK6bz9K2wno4WLN49kCDjdSak3nsSCzhtSnhRjfW2xOKWXo4iwdHBHNrRMdtX3IqGnhxfSyDg131AlszZi439w7twjd70vl+bzpf3T3g3E8wgo2llKcnhvHKhjjWRuVx12DTyRKJROCjGf2QK9V8vC0ZC4mgE90B8HOxZdlDQ7hz8REeWHqCNY8M14njPDYuFHd7K97bnMikrw7w9MQw5o4MwcpCQk9fJz6fFcFLk3vw25FsVhzLYUtcMd29HZgzrAu3D/DH0cYSiURgeDd3hndz593pvdmXUkZ8QQ1ZFQ1klzcQlV1Jg0KFlVTC0K5uzIoMZGwPT8K8HEz+3CYV1fLNnjS2xBXTP9CFr+8eQJB7x2ahs8sbeHdzAntTyuju7cCaBcMZ0qbSkVcp441N8exPLWPOsCDemdbbIGEoV6p4ZvVpYvOq+WHOIHr4GE8MnMyu5LcjWcweGqQ3ttAe3+3V2JbcbxbeuVj4A3mt/p0PGO0RFwTBDpgMPNHqYRHYIQiCCPwoiuJPJp67AFgAEBRkTmBebMziO+1jYymlj78z0dlVl/tWzHQAczB5hXLnwAC+2pnKN7vT+eG+Qed9nQBXzaakI349Aa52uNlbsSe5lJkmFLSmRfjx3d50nl97mn+eGq2X3RYEgY9n9OPen48xZ8lxvr5nAJN6+wCaqsEvDwxm8f4MFu3SCF88f1MP7h0aZLSC5+Vow12Dg3Qbywa5kvJ6OWV1mq+axmYC3ewI83bA08H6nAFWUlEt66Ly+eu0Zn4y1MuB72cP5OY+PgiCxj9z8b4Mvt2bhoO1Bd/PHqgT/hFFkd+P5vDBv4l4Odrw69zBBm1qp/OqeeuvBEaFevDwqK4Gr18ja+b1jfH09nPS897sCF/vTkcU4Zt7DANYM2YuJ272VswbHcJ3ezOY3t+f8eHn1+5656AA/o4t5LWN8TjbWjG5j4/Jc6USgc9nRaBSi/xvSxIKlZrHx5+1veju7cjSBwdz3y8nuGPxYZY+MFjXBXDX4CBGhnrw9l8JfLg1mbVRebxza29Gh2na9r2dbHh5cjhPTghlc2whfxzL5a2/EvhoazK3DfBnxkB/BgZpqpU2llIm9/HRu1dRFCmvV+BgbdFuFU4URWLza1i8L53tCSU4WFvw9MQwHh8f2qGf8UaFiu/3pfPj/kysLCS8cUtPHhgRrLeWKlVqlh7O4sudaQgCvD+9N3OGdTFYK1OK63hxfSxn8jXCY6Y++4LqRh79I5pANztevtn4LGVbdiWWsDZKI9J0oeJFZnQY+2VnKgM8DTjcpsV1pCiKhYIgeAE7BUFIFkXxgMEFNUHmTwCRkZGmM8xmzovEQnMweS4iu7iy7GjOBfkZm7k0XJZgUhAEN2ANEAxkA7NEUaxqc04g8DvgA6iBn0RRXNRy7B1gPlDWcvproihuuRT3fqlwtrPk3mFBLDmYRY2s2aTP17no4++ERIDY/Bom9my/VcDKQsIdA/z57Ug2ZXVyo3L3zraWLLp7AHf/dJQ3N8Xz5V399Y77ONuw/tERPPTbSR79I5r3b+vD7BbDa4lE4PHxoUzq7cNrG+J4Z3MC3+xJY8bAAGYNDjQQxWmNvbUF9tYWnRKdKaxu1JmKJxTW6uYn7xwUwLgeXkglAiq1yPb4Ir7alUpqST3T+/vx1tReumCxXq7klT/P8M+ZIiaGe/H5rAgDddayOjkLl0fj5WTNN/cMMNrG9umOZCob5Pw2d3CnAsLMsno2xuTz0MgQAw85M/8N5vWpczw1MYydiSW8uiGO7c+O6ZDNRVsspBJ+vj+SOb8c56lVMfzyYKQuwDOGpVTCorv7YynVzEIqlGqeuSFMFyhFBruxasEw5i2L4o7vj/Dt7IGMbZnzDnC145cHB7MnuYR3Nydy3y8nGB3mwcOjQnSziXZWFrpkVmxeNcuP5bDxVAErj+fi52zD5D6+3NzXh0FBrnrKsoIgtGsTklcpY1NMARtPF5BZ1oCjjQVPTQzj4ZEhHVrjtS2t727WtLTe1t+P16b0NAjU4gtqeGXDGeILarmhpzfvTe+NXxtVVqVKzY8HMlm0Kw0HGwt+mDOQyX2MK2c3yJXMWxaFvFnN6gWRRkcH2lJWJ+flP8/Q09eJ52/qfs7zzXSYfKB1tjcAKDRx7t20aXEVRbGw5c9SQRA2ommbNQgmzfy3JBXVddpW6HpjUBc3fj6YRXxBDYO6mGdLr2SE9loa/7MXFYRPgEpRFD8SBOEVwFUUxZfbnOML+IqieEoQBEcgGrhNFMXEls1avSiKn3XmdSMjI8WoqKiL9C7+e6JzKpmx+Cjf3jtAJ3d/Pkz+6gA+zjb8NnfIOc9NL63jhi8O8MrN4Swca1pcYdGuNL7clcrnMyOYMchQVEGmUPL4ilPsTSnj6Ylhehs90MzwHEwvZ8WxHPYkl6JUiwwJduPOyABGdHPH38W20+2carVIfGENuxJL2JVUqmsj6ePvxJ0DA5je3183ByRXqth4qoAfD2SSVd5AsLsdb9zSixta9eanFNfx6IposssbeGFSDxaO6Wbgp9aoUPHA0hOcKajmz0dHGG1Jjs2r5rbvD/PgiGDenta7U+/p2TWn2RpfxMGXJph/6Zjmovb9Xo716Wpbm9pyJr+a278/wh0D/Pl0ZsR5X6dG1sxdPx0lp0LG8oeHnLOVUqUWefnPM6yPzuepCaE8d1MPveMF1Y08/NtJ0krreWdaL+4bHqx3vKlZxW9HsnWqqaFeDjw0MoQ7BvobKCzWNjWzM6GErfFFHEgtR6FS4+VozeBgN4Lc7Qh2tyPIzZ5gDzskgqDroiirl1Na28T+1DJOtrRsDQ1x4/YB/kzp59uhwAw07e7v/H22pfW96YZCXI0KFV/uSuWXQ1m42Vvx3q29mdzSfdGa5OJaXlx3hriCGm7p58t7t/Y2KQqkVoss/COaXUklLH3QuKdlW0RR5KHfTnIko4LNT44673naa4SLvT5ZAKnARKAAOAncK4piQpvznIEsIFAUxYaWx+wBiSiKdS1/3wm8J4ritvZe82pfn65Ebl50EC9Ha5Y9dO592fVKeb2cyA928erN4TzSzn7UzHlz0damy9XmOh0Y1/L3ZcA+QG+zJopiEVDU8vc6QRCS0MwKmBoyv+boH+iKs60l+1LKLiiY7BfgzM7EEkRRPGeAFurlyOBgV9aczOORdvzjnpgQypGMct78K55efk4GrRp2Vhb8dH8kr22IY9HuNEpqm3h7Wm9d65dEIjC2uydju3tSWtfEhlMFrDmZx0vrzwCa+ckBgS70D3Khn78LzraW2FhKsLGUYmMpRSJAdkUDaSX1GgGe0noSC2spr5cjETSm6q/cHM4NPb0I9Tq7kalsULAuKo9fDmVRWienr78z388eyKTePrqKokyh5If9mfy4PwNHG0tWzBum85dsTY2smYeXnSQ6t4qv7upvNJBUqUXe2BSPp4O1nvpkR0gvreev0wXMH93VHEheWszrUyfpF+DCI2O68v2+DKZF+OmpPXcGZztLlj88lLt+PMrcX0+yasEw+vibnhmXSgQ+mdEPqSDw9Z50bK0s9ER5/F1sWf/oCJ5eFcObfyWQUdbAG7f01M0M2lhKWTi2Gw+NDOHfuEJ+OZTFaxvj+HR7MncNDuLuwYEEe2i6IZxsLJkxKIAZgwKoa2pmT3Ip2xOKSSyqZXtCsc6GyRRhXg68OKkHtw3wN+ndaIymZhXf78vgh/0ZWEoEoy2tAIfTy3l1Qxy5lTLuGRLIK5N7GlQ7m5pVLN6Xwff70nGysdRr5zfFFztT2ZFYwptTe3VYtXfF8Vz2ppTx7q29r/dA8qIjiqJSEIQngO1orEGWiqKYIAjCwpbjP7ScejuwQxtItuANbGz5vW4BrDxXIGnm4qNQqkkvrdN1S5gxjoeDNSEe9pzMruKRsZf7bsy0x+WqTFaLoujS6t9VoiiaNN0SBCEYTRtGH1EUa1sy/w8CtUAU8HzbNjRjXI3ZtSdXxXAss4ITr008b+GVFcdzeH1jPBseG8FAI76HbdlwKp/n1sby2pRwFowxnQ0qqW3i1m8PIYrw8/2ROhGb1oiiyOc7Uvl2bzoeDlbMHtqF2cOCjPqkiaJIQmEtMblVxORWE5NXTVZ5g8F5bbG2kBDq5UB3b0dGh3kwroeXni+RWi1yOKOc1Sfz2JFQTLNKZGSoO4+ODWVk6Fn1yGaVmrVReSzalUZpnZyp/Xx5a2ovo7M+6aV1LFgeTX5lI1/d3d/khmzJwUw++DeJr+8Z0CnRHYCFy6M5kFbGwZfGm6wamAEufub/kq9PV+Pa1Ba5UsWkLw9gIZWw7enRJlWhO0JhdSMzfzhKg0LJ97MHtmsZApqkzXNrT/PX6UJen9JTT5RHe/yjrUn8fDCL3n5OvH5LT6PXFEWR41mVLD2Uxe7kUlQtHRO3D/RnSl9fky28SpWaopomsisayK6QIYCuhc3TQaNA3RklU5lCyYHUMrYnlLA7qYTaJiXTW1pa29p91Mia+XBrEqtP5hHiYc+Hd/Q1qFiq1SKbThfw2fYUCmuauDXCj7en9TrnuvLX6QKeXn2auwcH8uEdfTv0O6iiXs74z/bRx9+ZFfOGmgXDLvL6dDm4FtanK4mkolpuXnTwvPYF1xsvrItlT3Ip0W/cYF5LLj4X7QP9z4JJQRB2oZknasvrwLKObtYEQXAA9gP/E0VxQ8tj3kA5mqHz99G0mz1k4vmtFckG5eTknPd7uhwsP5bDm5viOfjSeJ3MfWepkTUz6asD2FtL+fep0ec0yFWq1DyxMoZtCcVGW1Rbk1pSx9xfT1JWL+eTGf24bYC/0fNOZFXyw/4M9iSXYiWVMDXClznDujAg0KXdBaKyQUFycS0NchVNzWe/lGqRIDc7wrwc8Xe1NZhTFEWRlJI6diSUsDYqj/yqRlzsLLl9gD93DQ4k3OdsJVXZovD6xc5UssobGNTFlVdvDjfZYvfvmSJeWh+LrZWUb+8daNLzMb6ghju+P8KY7p78fP+gTi2EOxNLmP97FC9O6qEnLmLGKJ1eEK+E9elqX5uMsSOhmAXLNbPS9w27MPXO3AoZc387QXaFjFcmhzNvdEi7P0PNKjXPrD7Nv3FFvDS5B4+NM/y5+edMIR9uSaagupGJ4V68OiVcr3OhNcU1Tfx5Kp8Np/LJKGtAKhEY1MWVIcFuDAhyoX+gy0VJ8mhFe9JK6kgpqeNwejkH08qRK9W42FkyMdybWZEBDG2zzoiiyNb4Yt76K4EqmYJ5o0N49obuBuv7wbQy/m9LMklFtfT1d+b1W3p2yKc2Nq+aWT8eJSLAhT/mDe3wrPcbm+JYdSKPbU+P7pT90TXMVb8DNgeTF5c/o/N5fl0su54bY3L9MaNh9YlcXtkQx+7nx7arq2HmvLjyg8l2X1QQUoBxoigWtcwe7RNFsYeR8yyBf4Dtoih+YeJawcA/oij2OdfrXo0LYnxBDVO/OXTBGaxDaeXM+eU4D44I5p1bzz23p1SpeWVDHOuj85k7Mpg3b+llMC+opaJezmMrTnE8q1Jnp2HKSy2zrJ5lR7JZF52PTKHC1c6SQV3ciAx2ZXCwK338nc9btatBruRIRgV7U0rZl1xKYU0TACND3blrcBA39fLW22hVNihYfTKXFcdyKahupIe3Iy9O6sHEnl5GN601smYW7U5j6eEsBgS58P3sgfg6G29XkymUTP3mEA1yJVufHqNXKT0X9XIlN36xHycbS/55apRJQ3QzOi52ZfKSr09X49pkDFEUufunY6SV1rPvxXEdngc0Rb1cyYvrYtkaX8wt/Xz5ZEY/7K1NT2coVWqeXxfLX6cLee7G7jw1MczgnKZmFb8ezub7venImlXcMySQpyaEmVQbFUWRuIIaticUsze5jJSSOp3lUpCbHd087fFwsMajxQPX09EaO0spgoDmCwFB0MwzVsmaqZIpqJYpqJI167xyq2TNutfzd7Hlpt7e3NTLh8HBrkYrvEU1jbz1VwI7E0vo4+/ER3f0M2gHzmqxDdmXUkaAqy0vTQ5nal9fk+t4azbHFvLS+jO4O1ix6fGReHQwaE4pruPmRQe4f3jHfs9cJ5iDSTN6fPBPIsuP5ZDw7qQL6uC4HtDqeHwyox+zBht3GTBz3lz1M5N/Aw8AH7X8+VfbEwTNbv4XIKntRk0QBN+WmSXQzAXE/7e3e/no4eOIjaWE07nVFxRMjgrzYO7IYH49nM2wrm4mVfu0WEglfDKjH042liw9nEVdk5KP7uhrdOFzd7Dmj3lDeXdzAj/uzySluI7/3d7X6FxQV08H3p3eh+du6sH+1DIOpZURlV3FrqQSACylAr7OtgS4ar/s8HG2wdpCgoVEglQiYCERUIsi+VWN5LS0leVWysirlKFUizhYWzAq1IOnb/BkXA8vvbYw7cbw96M5/B1biEKpZnhXd96c2pMbe/kYDYLzKmUsPZzFmpN5yBQq7hvWhTen9mo3U//e5kSyyhtY8fDQTgWSAJ9tT6G4tonvZg80B5KXB/P6dJ4IgsAbt/Ri2reH+H5vBq900ELCFFqbnh8PZPLJtmRSi+v48b5BJm2OLKQSvpjVH6lE4IudqVTUy3ntlp56CSobSymPjuvGrMgAFu1OY8XxXFafyGNKX18eGBHMwCD9bglBEOgX4EK/ABdenBSOTKEkLr+G03nVxORWk18tI6mojooGOc2qjiVnbSwluNpZ4ediy+Q+PoR5OdLd25Hu3g54Opq2OqqXK/lpfwY/HcwE4LUp4Tw0MkRvXZYplHy3N52fD2RhZSHh9Sk9uX9Elw4l6ZQqNZ9sT+GnA5lEdnHl+zkDOxxIiqLI+/8k4mhjydNGgngzZsxoSCyqJdzH0RxIdoCuHg642FkSlVNpDiavYC5XMPkRsFYQhIeBXGAmgCAIfsASURSnACOB+4A4QRBOtzxPK7H/iSAI/dG0kWUDj1zSu7+EWEol9PV35nTehRu3vnJzODG51Ty/NpZQL0dCvdpvGZBIBN6c2hNnW0u+3JVKXVMzi+4eYLRN1lIq4YPb+hLu48R7/yQy4bN9PDwqhIXjuhmtTjjbWnJrhJ8uQC6vlxOdU0VsXjV5VY3kV8nYm1JGWZ283Xt0tLagi4cdvfycuKWvLyO6uRMZ7GYQ6OVXyfjrdCGbYgpIK63HzkrKrMgA7h8ebFIg4nReNT8fzGRrXBESQeDWCD8eHh1iVGinNatO5LL6ZB6PjuvGiND2Z73acjK7kmVHs7lvWJcOzbea+U8wr08XQN8AZ+4Y6M/Swxpz+/Ntz9ciCAILx3ajr78zT6w8xfRvD+tZfbRFKhH47M4I3OysWHIoi1O51Xx77wADWyF3B2vem96Hh0eFsOxIDuui8vg7tpA+/k48MDyYW/r5Ymdl+CvSzsqCoV3djbad1jQ2U14vp1GhRkREFEEtiqhFsLWU4mpviaud1TlHDdqiVKlZG5XPFztTKa/XzHO/PDlc77MVRZFt8cW8/08ihTVN3DHAn1emhBudTzdGVYOCJ1fFcCi9nDnDgnhrau9O2RjtSS7lUHo5b0/rpVPNNmPGjD6iKJJUVKvz4DbTPhKJwKAgV6JyLnwPbOa/47K0uV4urtZWjQ+3JPHr4Wz2vDCWANcL25gV1TQy9etDSCUCX93d/5zCFlp+PZzFu5sT6eHtyGczI+gbYDqgKqhu5LPtKWyMKcDeSsr0Af7cOSiA/gEuHWqxak1Ts4rSWjkKlRq1KKJUiboWM39XW1ztLE1m8ZuaVexLKWPViVwOpJUhihoT3OkD/Jne389okCtTKHVm5XEFNTjaWHDv0CAeHBFssqW1NbsSS1j4RzQjQz345YHITmUeY3KrmP97NLZWErY9Pabddj4zepjbyK4wimoaGf/ZPiaEe/H97EEX7boF1Y3MWxZFWkkd/7u9D3cNDmr3/B0JxbywLhaVWuTNqb24a3CgyfWiQf7/7d13eBzltfjx79lVr1aXLNvq7r0bY7Bjm5YEQ4DQQguEQCABclPIzS8NkguBhHtDEgKEEhJMKAGCAZtqwMYNV1nuluQmS1bvfXff3x+7doxxUVvNrvZ8nmefbTO75x3tvJoz8xYHr20+zHOr91NY0USQTRibHsuM7HhmZMUzNTO+1812u+Nov++Ve6p4ft0BDlS3MDUjjv/+8qgvnGgqrmziF0u2s3JvFSNTo7n/krFMO8O0Ksc7UN3Mjc+u53BtK/dfMuaM2/VEnU4X5/+fe6rCd+8+R1tUfJ7WT+qYsvpWZj2wnPsWjeH6E6YqUif32MeFPPTObjb+vwU6GGHf8u8+k1bx1wqxpLaFhY+sYFZOAk/fMLXXI1rtOtLAdxZvYl9VM9+dl8v35ud1Ken5aHcF9766laqmDr4zN4fvfinvtGeutx2u57nV+1mSX0q7w0VUaBDj0mMZPzSWiUMGMTY9lsGDvjh4Tm9UN7WzfFcF7+8oZ+XeKlo7naTEhHLltGFcMWXIKa+S7ClvZPHaA7y26TCN7Q5GpERz7cxhfG3yEKK6mNSt3FvJzX/bwKi0aJ6/ZQbR3TjwfGPLYX74r62kxITy7I3TtFN+9+jBmg/60/K9/O69PTx70zTmdXFKia5oaOvkjsWbWLm3im/NyeLeC0edtg45XNfKD17OZ01xNXNHJPHrS8ae9qTc0RFdV+6tZF1xDfkldcear6bEuPtFxkeGkBAZQkJUKDFhwUSG2okICSIixE5EiJ2o0CCiw4KJCgvyPA4iNMh22hNfdZ7+lNsO1/NpYRWrCqupanK3zJgwJJY75uWycHTK5z6jtcPJnz8q5MkVxYQG2fj+ecO5bmZGl09i7Sxr4MkVxSzJLyUixM6zN04749yeJ/OPNfv52Rvbeer6qZ+bq1cBWj+p4yzfVc43/7aBV26b1a0TPoHss301fP2JNTx53RTO0yu6fUmTyZ7w5wrx6BQTf75mMl8ef/r+jl3R3O7gF0u286+NJUzNiOO3l4/v0khZ9S2d3PfWDl7dVMLIVPdVytPNA3d0nZWFlXy2r4b8knp2ljbQ4XQB7iZpydGhpMWGkTYonLSYMBKiQkmIch+sxUeGEBcRQkiQjSCbEGR395s0nj6TB2taOFDdwsGaZnYfaWTLoTpcBtJiw1gwKoUFo1OYnZNw0oOrioY2luSX8u8th9l2uIEQu42LxqXyjZkZTMmI61bSvq64mhue/YysxCj++a0ZDIroWjMvl8vwfx/u5dEP9zI9M57Hr5vS7T6WSg/WfFG7w8lFf1hJh9PF+/ec2+2mnafjcLq4/60dPLfmAPNHJvOHqyed9qSPy2X4x9oDPLBsJ06X4bLJQ/jO3FyGJZy5pUdbp5NNB2vZfriB3eWN1DR3UN3cQU1zO9VNHbR0OLsUs00gNMhOWLDt2H2Hw0VtSyetnZ//jMSoEGbnJnJ2biKzcxMZfJL+5+/vKOdXb26npLaVSyel85MuNmk1xrC2uIYnVhTx8e5KIkLsXD19GLfMyepS64sTNbU7OPehj8hNjuLFW2fq8P1f5PcbZCDWT1Y5epKt4JfndeuEcyBr63Qy/pfvcdPsTH5y0SirwxlINJnsCX+uEB1OF5c+tpqy+jY+/P65X5iMuqde31zCz9/YTrvDxXfn5fLtc3O61E/mw53l/OS1Aqqa2rls8hDuWpDX5Sa47Q4nu8oa2VHWQGldK6V1bZTVt1JW775v63R1uxwJkSFkJkZydm4iC0enMGZwzEkPahraOnl32xHe2FLK6qIqXAbGD4ll0cR0Lpk4uEdNKDYfrOUbT60jbVA4L946s8sDVrQ7nHz/5Xze3lrGFVOG8OtLx/Z4JNsApwdrPmpNUTVX/3Utl08ZwsOXj+/zROMfa/bzyzd3kJsUxVM3TD1j/8zSulYe/6SIF9cfwukyLJo4mDvm5fZqyHmny9DS4aClw0lzu4PmdidN7Q7PrZPGNgeNbQ5aO5y0O5y0O1yeKY5cBNttxEUEE+c5aRYXEUxmYiQjU6NPuq2MMazYW8WTK4pYVVjN8JQo7ls0tktTfRRWNPL21iO8XVDKnvImEiJDuGl2JtfNzOzV/5M/fLCX//1gD0vunM34IYN6/DkDmNZP6pg7Fm+i4HA9K340z+pQ/Mplf1mNMYbXvjPb6lAGEk0me8LfK8Rth+u5+E+fcuW0oTzwtfF99rkVDW386s0dvF1QxvCUKB742nimZJx58Jf6lk4eXb6Xf6w9gDGGa6YP4zvzcr8wqXZ3GGNo6XB+7ux/bXMnDpeLTk9/SYfLYIwhfVA4wxIiGBYfcdozfK0dTt7bcYS3tpbxye5KOpwuhsVHcMnEwSyalN7jA0ljDK9uOsyvlmwnPiqEl789q8tlb+t08p3Fm1i+q4J7LxzJt8/J1jP6Pef3G87f66bT+d/39/CHD/eecu7H3lq5t5LvLN5EiN3G49dN6VLTsfKGNp5cUczidQfocLg4d3gSiyams2B0SpebtfendoeTN7aU8vTKfewubyQ5OpRbz8nmhrMyT9s/saS2hVc3HmZpQRm7yxsRgWkZ8SyaNJjLJg/p9dXitk4nsx9czsShg3j6xmm9+qwBTOsndcw5D33E2PSYPu1LHggeWLaTZz7dR8Evz+/TVi4BTpPJnhgIFeL/LN3JkyuK+f7C4Xz3S7l9moB8sKOcn72xjSMNbVw/M4MfXTCyS4PAlNW38uiHhby84RA2gTl5SZw3OoUJQwcxPCW6T/tEdpXLZdh0sJY380t5ffNhGtocpMSE8pXxg/nK+DQmDh3Uq213qKaF/369gJV7q5iWGcf/XTXppFOhnMzB6hbueMF9dvI3l47l2hm9m9xd6cGaLzPG8L0Xt/Bmfinfm5/H3fPzuj0Q15kUVTZxy3MbOFTTwr0XjuTms7O6tH9XNbXz7Kp9vL7pMKX1bYQE2Zg7PInzx6QyLTOetEFhlg0m0+5wsvlgHZ/ureLlDYeoaGxnZGo035qTzVcnDD5tC5Ka5g7+tLyQ59ceoNPlYlpGPBeNS+XCcWm9Otl3otc2lfD9l/NZfMsMZndz5OoAovWTAtwn4Cfc957XTqwNZB/sKOeWv2/gpVtnfmEkbdVjfj/PpOqhH54/gqqmdh55fw9HGtq47+IxfTZX0YLRKczMSeB37+7muTX7+XhPJb+/YsIZB2RIiw3nga+N47Zzs3l21X4+2FnO8l0VAESE2BmXHsu49FhSY8NIig4lyTOxd2JUKLHhwX12YOlwuvhsfw3vbDvCO9uOUNHYTojdxgVjU7lq+lBmZiX0+rucLsOzq/bx+/f2YBP41cVjuG5mRpc/913P6JKAdiZXAUFE+N0V4wkNsvHoh3spqmzid5dPIDyk784u5yRF8e87ZvOjf+Xz67d3sra4ht9dMf6MfZcTo0L54fkj+a+FI9h0sJa3C8pYWlDGezvKPbFDUlTosf7coZ5+jh0OFx1OF+0OF8YYRASbgE0EmwgRIXYSokJJjPrPQD1xESHEhAcRGx5MbHgw0WHBGGNobHNQ39pJQ1sn9a2d7Cht4NPCKtbvr6Gt04VNYHZuIr//+gTOzk08bZLc0uHgmU/38cQnxTR3OPj61KF8d35el090ddcL6w6SnRjJWTl6cKfUmRQcrgdg3BnGmVBfdLS13IYDtZpM+iC9MumHjDE8/O5uHvu4iAWjUvjj1ZP69MAM3APK/Ncr+ZTWtXLrOTncszCvy/35jDHsr25hy6Fa8g/Vs/lQHTvLGuhwfLEvpN0mx0ZGTPQMvJMUFUpyTCjJ0WEke0ZPDPEMvGO3CUE2wWkM+6qaKaxoorCiib3lTew80kBdSydhwTbmDk/mwnGpfGlkcq87uRtjKKps5qNdFby++TA7yhqYPzKZ+y8Ze9KBMU7G6TI8uGwnf125j/FDYvnzNZN7Pf+eOkbP/PsBYwxPrijmwXd2MS49lge+Nu6Mc7b25Dv+tno//7N0J8nRYTzwtXHMyTt9AnYil8uw80gD2w7Xf64/d2ldKw6XIcRuIyTIc7PbsIlgcM8laYy7KX5zu5Pq5nZqmjtw9eBfbF5yFLM9g+/MyD7zlCStHU5e2XiIPy0vpKKxnfNGp/CjC0Z4dVToPeWNnPe/K/jpRaP41jnZXvueAUDrJwXAXz4u4rfv7GLLzxd2eZA+9R8LH/mE9Lhw/nbTdKtDGSj0ymQgExF+dMFIUmLC+OWb27n2qbU8fcO0Pp0oekZ2Au/cfQ6/fmsHj39SxMe7K3jk6xMZPTimS/FlJUaSlRjJpZOGAO6DrIY2B5WN7VQ2tlPV5L6v9oyIWNXUQXVzOwcONlPR0E77SRLPU4kKDSI3OYrzRqcwd0Qyc0cknXSy8a5yOF2U1rVRWNnIij1VLN9VwcGaFgBGpETz6NWT+Or4tC4foDqcLn7wSj7/3lLKdTMz+H9fGaUD7aiAIyJ8+9wccpKiuPulLXz50U+ZmhHH9WdlcsGY1C4N/NWV77hpdhaTh8XxvRc3c/0znzEzO54fnj+yS/3AwT1J9pjBsX2S6DpdhroWd//vuhb3lcf61k4aPPciEBseTEyY+2plTHgwmQkRJHexKWp9Syd/X7Ofv63eT3VzB9My43js2sk9mt6ju15Yd5AQu43Lpgzx+ncpNRBsO1zP0PhwTSR7aFpWPG/ml+J0GUu6T6lT0yuTfm5ZQRl3vbSFtNgwHr58AtOz+v4gYvmucn78agG1zR3ccFYmdy3I8+rk3f9JPNuoaGinqrkDh9OF0+U+6+/0/GYz4iPJTY4iJSa0x/0fS+taWVNUTX5JHfuqmjlY08LhWvcVCIDQIBuzcxOZNzKZeSOSujxi7VEdDhd3vbiZZduO8MPzR3DHPO0n4QV+/19lINZNp1Pf0skrGw/xj7UHOFDdQlJ0KFdPH8b1szK6PBrymbQ7nPxz3UH+9FEhVU0dLBiVzA/OH8HI1DOfEPN1FZ4BhF747CAtHU7mjUji9rm5TMvs3pRGPdXW6WT6bz7g3BHJ/PHqSV7/Pj+n9ZMCYM5DyxmfPog/XzvZ6lD80uubS7jnpXyW3TWHUWn+X4/7AL0yqdwuHJdGUnQod7+0hSufXMONZ2Xyo/NH9mmz1y+NTOG9u+N46N3dPLNqH0vyS/npRaNYNHGwVw5cRORYv6K+bqbV1ulk5d4qVu6t5NPCKoormwGIDLGTnRTF2PRYvjwujYyECDISIpkwZFCPt2VjWye3Pb+RVYXV/Owro7n57Ky+LIpSfis2Iphb5mTzzdlZfLK3kn+sOcAfl+/lryuKuX5WBt86J7vXSWVokJ0bZ2fx9WlDeXbVfp74pIgL/m8lC0en8M3ZWczMjve7EZQP1bTwxIoiXt5QgtNluHjCYL59bna/J8jPrz1AQ5uDa2cM69fvVcpf1bV0cKimlWum64B7PTU1w32xZMP+Gk0mfYxemRwgmtsdPPTOLp5bc4DMhAgevmJCl4bI766tJXX87N/byC+pZ2Z2PL+6eCwjUr3XL6cvOJwuVhVVs2RLKe9uP0JTu4PwYDszsuOPTQo+IiW6T0eYrGhs46Zn17PrSCO/vWw8l2tTMG/yr4zgJAZy3dRVRZVN/Gl5IW9sOUxokJ3rz8rg1jnZPZr79WTqWjp4dpW7SWh9aye5yVFcNzODSyene7WlRV8orGjksY+LeGNLKTaBy6cM4bZzc8hIiOz3WGqaO5j78EdMHBbHczdN87uE3AJ+v4G0fuq9T/dW8Y2n1/H8zTM4O09HPu4JYwyzHljO9Kx4HtUWEX1BpwbpiUCoEFcXVfGjf23lcF0rN8zK5K75eX3alxLc/YBeXH+Qh97ZTX1rJ4lRoYxKi2ZUWgyj0qLJS44mJiyYyFA7kaFBhAbZ+v2Ao63Tydriaj7cWcHSgjKqmzuIDgvigjGpfHXCYGZmJ/RJH62T2VfVzPXPrKOqsYPHvjGZeSOSvfI96hg9WBtACiua+NPyvbyRX0p4sJ3bz83h1nOz+6yfcVunkzfzS3l+7QHyS+qJCLEzb0QyZ+UmcFZOIpkJEZYnSB0OF1tL6lhbXM3qomrWFFcTFmTnmhnDuGVOFmmx3hmdtSt+/sY2Fq87yLK75jA8xbdPJPoIrZ8Uj31cyEPv7Cb/5+cRG+HbJ6982Z0vbGLTgVpW/2S+1aEMBJpM9kSgVIjN7Q4eXLaL59cdIDIkiJvPzuKWOVm9HtX0RNVN7fx7Syk7yxrYWdbA3vImOpxfHDgnyCZEhwWRHhfO0LgIhsZHMDQunIyESMYPie2zzuiHalr4eE8lH+2qYHVRFW2dLsKCbcwfmcLFEwdz7vAkr092u+VQHd/823oAnrlxGhOHDvLq9ylAD9YGpMKKJn7/3m6WbTtCVmIk9y0aw5y8pD79jvxDdbyw7iAf76mgvKEdgMGxYczKSWREahSJnmmMjk5lZBehpdNJa4eD1g4XLR0OWjudtHU6ae100trhorXTCbj7W4cE2QgNshEaZCckSAi22zw39+O2Thc1zR3UtXRQ09JBTVMHO480sPFALW2d7rp0ZGo0541O4YazMvvsKm1P7S1v5II/rOSa6cO4/5KxlsbiR7R+Unxn8Ua2HW5gxY/mWR2KX3tu9X5+sWQ7q+79ktemPAog2mdSnVpkaBD3XzKW62Zl8Mh7e/jDh3t5bs1+7pyXyzdnZ/VZc86EqNDP9QPsdLrYV9VMcWUTjW0OmtsdNHc4aW53UNfayeHaVnaXN/LhzorPJZ15yVFMyYjjnOFJzB+V3KUrEMYYdpc3smJPJRsP1LLlUN2xg8Fh8RFcNW0Yc0ckMTM7wesJ5FEf767g9uc3kRgdwnM3TSc7KapfvlepgSg3OYq/fGMKn+yp5BdvbOO6pz/jy+PS+PUlY/ustcWEoYOYMHQQxhiKq5rdVwGLqli+q5xXN5X0yXd0R3iwnYyECK6ePoyZ2QlMz4zv85YlvfHbd3YTEWLnnoXDrQ5FKb9ScLie8emDrA7D703N9Mw3ub+G9InpFkejjtJkcgAbnhLN49dNoaCknoff282v397JriONPHz5eK804wq22xieEn3Gpk8ul6GisZ3iyiY2Haxl44Falm07wovrDyEC0zLjyUmKJDsxipzkSNJiwzlS38b+6mb2VzWzv7qFPeWNlNW3AZCREMGs7AQmDYtjTl4iWYmR/d5M7cOd5dz2/EbykqP52zenkRzdtaH9lVKnd+7wJN65+xye+KSYP39USGFFE8/fMoOk6L67Sici5CRFkZPk7kdpjKGp3UFVU8fnpjIyxhAeYic8JIjwYLv7FvL5+7BgG4LQ7nDS7nB5bk46nYZOp8tzM3Q6XIQG24iPDCEuwn3r6/mC+9IHO8r5YGc5Pzx/BPE+lOAq5etqm92D71w7Qwff6a2RqTFEhQaxfn8NizSZ9BmaTAaAcUNiee6maTzy/h7+uLyQmdkJlg4IY7MJqbFhpMaGcVauuyO602VYubeSVYVVbD5YxzvbjlDb0vmFdaNCg8hMjGBqZjyzcxKYOyKZ1FhrE7ejieSotBj+cfMMYsO1P4RSfSks2M5dC/KYmhnHLc9t4Jq/ruWft87ss2lETiQiRIcFEx0WTFZiTwe5GTj1QH1rJz/9dwEjU6P51pxsq8NRyq9sK60HYFx67+euDXR2mzA5I44N+2utDkUdR5PJACEi3LNgOGuLq7n/rR2cMzzRp66e2W3C3BHJzD1usJra5g6Kq5ooq28jLTaMjIRIEiJDLB8c4yhjDM+vPcCv3tzB6MGaSCrlbbNzE3nmxmnc9LfPuPav63jhWzMs70cYCH7z9g6qmjp46vppXhu4TKmBquCwO5kcO1iTyb4wLSOORz7YQ31Lpw5m5CP0v0IAsdmEBy8bT2unk18u2W51OGcUFxnClIx4vjJ+MFMy4kmMCvWZRLKt08kP/7WVn72xnTl5iZpIKtVPZuUk8PQN09hf3cy1T62jtrnD6pAGtE/2VPLyhhJuPSebcUP0YNgXiMgFIrJbRApF5N6TvD9XROpFZIvn9vOurqv6XkFJPRkJEZr49JGpmfEYAxsP1lgdivLQZDLA5CRFcdf8PJYWHOHd7UesDscvlTe0cfnjq/nXxhLump/H0zdM00RSqX40OzeRp26YSnGVO6Gsa9GE0hsa2zr5yatbyUmK5K75eVaHowARsQN/Bi4ERgNXi8jokyy60hgz0XO7r5vrqj5UcLiesdrEtc9MHDqIIJuwXpu6+gxNJgPQredkk5MUyZ+WF1odit85XNfK159Yw77KZp66fir3LBzeZ6PjKqW6bk5eEk9eN4XCyiau/us6KhvbrQ5pQDHG8ONXt1Le2M7DV0zot1Gx1RlNBwqNMcXGmA7gRWBRP6yreqC2uYOS2lbGazLZZ8JD7IxNj2XDfr0y6Ss0mQxAwXYb183MoOBwPds8bfnVma0qrOLrj6+hprmDf9wygwWjU6wOSamANndEMk9dP5XiyiYu+L8VLC0oszqkAeOxj4tYWnCEH54/gsnD4qwOR/1HOnDouOclntdONEtE8kVkmYiM6ea6qo8c7S+pg+/0rWmZceQfqqe53WF1KApNJgPWpZOGEBpk48X1B60OxedVNLTxvX9u5tqn1hFkF/75rZl6cKWUjzhneBJL7jyb9LhwvrN4E3cs3kRVk16l7CmXy/A/S3fy8Lu7+cr4NG7V0Vt9zcmawpgTnm8CMowxE4A/Av/uxrruBUVuFZENIrKhsrKyp7EGvKPJ5BhNJvvU/FEpdDhdfLxbf5u+QJPJABUbEcyXx6XxxuZSWjr0zM7JOF2G51bvZ/7vP+GdbUe4a34e7959jvZ9UMrHjEiN5rXbz+KH54/g/R3lnPe/K3hra6nVYfmdTqeL/3olnydXFHPdzAz+cNUkbcbve0qAocc9HwJ87sdujGkwxjR5Hi8FgkUksSvrHvcZTxpjphpjpiYlJfVl/AGloKSezIQIHVehj03LjCcxKoSl27Q1ii+wJJkUkXgReV9E9nruT3qZR0T2i0iBZzSyDd1dX53eVdOH0dju4K183RmP19bp5NWNJXz1j5/yiyXbmTB0EO/cPYd7Fg7XfkMBQOsn/xRkt3HHvFze+t7ZDI0L584XNnPhH1byl4+LKG9oszo8n9fQ1sk3/7ae1zcf5gfnDee+RWOwayLpi9YDeSKSJSIhwFXAkuMXEJFU8Qx9LiLTcR/rVXdlXdW3dPAd77DbhPPGpPLRrgraOp1WhxPwrLoyeS/woTEmD/jQ8/xU5nlGI5vaw/XVKUzLjGNESjRPfVqMw+myOhzL7atq5tdv7WDmAx/yX6/k09bp5NGrJ/GPm6eTnRRldXiq/2j95MeGp0Tz6u1ncf8lYwkPtvHbd3Yx64EPufHZz3hrq7bEOJHTZdh4oIbLHlvNmqJqHrpsPHd+Kc9npmFSn2eMcQB3Au8CO4GXjTHbReQ2EbnNs9jlwDYRyQceBa4ybiddt/9LERhqmjs4XNeq/SW95KKxabR0OPlkjzZ1tVqQRd+7CJjrefwc8DHw435cXwEiwt0L8rh98Sb+uLyQexYOtzqkftXS4SD/UD0bD9SwqrCaNcXVBNmE88ekcu3MYczKTtADqsCk9ZOfC/IMMnbdzAz2VTXz6sYSXt1Uwp0vbCbIJoxJj2V6ZhzTMuOZlhlPXGSI1SH3iDGGsvo2tnkGU6tt6SQ8xE54sJ3wEDsRIXYiQ4KIjwxhUEQwcREhxEWGUNPcwaeFVXy6t5I1RdU0tDmIDQ/m7zdP56ycRKuLpc7A03R16QmvPX7c4z8Bf+rquso78kvqAHR+Vi+ZkR1PXEQwywrKOH9MqtXhBDSrkskUY0wZgDGmTESST7GcAd4TEQM8YYx5spvrIyK3ArcCDBs2rM8KMFBcOC6Nr01O54/L+a7/VAAAHR9JREFU9zIrJ4GZ2QlWh9TnjDEcaWhjX2UzRVXNFJY3svlQHdtLG3C63GMP5CVH8V8Lh3PltKEkx4RZHLGyWL/UT1o39Y+sxEh+cP4I7lk4nLXF1awqrGL9/hqeW32Av67cB8CIlGhm5SRwVk4CM7ISfHZy8ZYOB5sP1rFuXw1bDtWx7XA9Nc3uOTZtAjHhwbR1Omnr7FpLk/RB4Vw4No3ZeYmck5fIoAj/TKqV8kVriqoJsduYNFR7OnhDsN3GeaNTebugjHaHk9Ag7YZkFa8lkyLyAXCyUwU/7cbHzDbGlHoOxt4XkV3GmBXdicNzgPckwNSpU086almgu3/RWDYfrOPuF7ew7K45fnOW3hhDQ5uDysY2KhrbqTx6a2qnqrGDqqZ2yhvaOFDdQutxbeojQuyMHxLL7efmMCUjjsnD4nz24FF5hy/UT1o39S+7TZidm8jsXPeVt7ZOJ1tL6lm/v4a1xdW8uP4gf1u9HxEYOziWmdnxzMxOYFpWPDFh/V8/HL3quL20gU0Ha1lXXM3WknocLoNNYERqDAtGJTM2PZYxg2MZnRZDeIj7YMrlMrR2OmntdNLY5qC2pYO6lg5qmzupbekgLNjO7NxEMhMitPWFUl6yqrCKScMGHdsvVd+7cFwqL204xKd7q5g/Sqdrs4rXkkljzIJTvSci5SKS5jlrnwZUnOIzSj33FSLyOu4Jd1cAXVpfdU1kaBB/vHoSlz62irte2sKT103xuYFmjDEUVjSxdp/7wG/b4XqO1LfR7vjiGfhgu5AUFUpidCjpg8I5KyeR7KRIshMjyU6KIiUmVA+gApzWTyos2M70rHimZ8Vzx7xc2h1O8g/Vs7qoitVF1ceuXNoExgyOZXZuIjOy45k81Dsnn9o6nRQcrmddcTXr9tUca7YKEGQTxg+J5ZY52czIjmdqRhzRp0lwbTYhMjSIyNAgEqNCySKyz+NVSp1abXMHO8oauGdBYHUf6m9n5SQSExbE0oIjmkxayKpmrkuAG4AHPfdvnLiAiEQCNmNMo+fxecB9XV1fdc/Y9FjuWzSWn7xWwE3PrufJ66ec9mDlVCoa2iisaGJQRAjJMaHER4T0aGh5YwxFlc2sKapiTXE164prqPY050qNCWNKRhznjU4hOTqMpOhQkqNDPfdhxIQHabKoekPrpwAUGvSf5PLuBe7kzt2ktJrVRdU88+k+Hv+kCIDsxEgmDhvEpKGDGJUWQ1ZiJPGRIV2ud4wxVDa1U1BSz/r9tWzYX8PWkno6PAOhjUyN5vwxqYwZHMPowTGMSoshIsSqf9dKqe5aU1yNMTA7d+B1HfIlIUE2Fo5O5f0dR+hwjCMkSGc8tIJV/50eBF4WkZuBg8AVACIyGHjKGHMRkAK87vnnHAS8YIx553Trq965evowwoJt/OCVrcx6YDn3XjiSC8amkhgVesp1yhvaWOs5k762uJriyubPvR9kExKjQkmJDSMnKZLhKdHkJUeRlxxNelw4LR0O6lrcTa9qmjsorWs7dvBW2eieeDx9UDjnjkhiZlYCM7LjGRavTbOUV2n9pAgLtjMrJ4FZOQncvQCa2x1sOVTHlkN1bD5Yy4o9lby26fCx5WPCgshKiiIrIYLEqFDCgu2EBdsIC7YTGmynrrmD4qpmiiubKK5sprHdPapssF0Ylx7LTbMzmZoZz5SMOOL9pKuBUurkVhVWERliZ/yQQVaHMuBdODaVVzeVsKa4mnOH65yoVhBjAqerztSpU82GDRvOvGCAW11UxSPv7WHDgVpsAtOz4vnyuDSmZsazr6qZHaUN7ChrYEdpA0c887dFhQYxPSuemdnxjBkcS31rJxUN7r6MFY3tlNW3UljRRHlD+xm/PzEqlLM8g2GclZPI0PhwTR7V6fj9j0PrJv9jjKGktpW9FY3sq2phX1UT+6qa2V/VQm1LB22dTlwn/HsdHBtGdlIUWYmRZCdFMjI1holDtU/VAKf1UwD60u8+JjMxkmdunGZ1KANeW6eTqb/+gK+MT+PBy8ZbHY4/6bO6SdvNqC84KyeRWbclsOtII8sKyni7oIyfvfGfqajsNiE3KYpZOQmMGRzD9Kx4RqfFEGQ/c/OC+tZOCiuaKKxopKS2leiwIAZFhBDvGbI+KSpUk0ellM8TEYbGRzA0PuKk7xtj6HQa2hxO2jqdRIUGaVNVpQJAWX0rxVXNXDNDR+nuD2HBduaPSubd7Uf49SVju3QsqvqW/mdTJyUijEpz99W5Z+Fw9lY0sb20ntykaPJSono8QE9seDBTMuKYkqFDZSulBi4RISRICAmyWTIarFLKGqsKqwGOjRytvO/CsWm8saWUdftqdLtbQJNJdUYiwvCUaIanRFsdilJKKaWUz1pdWEV8ZAgj9Jip38wdkUREiJ0380s1mbSAXgtWSimllFKql4wxrCqqYlZOQo9Gslc9ExZs58vj0ngzv5Rmz+Bmqv9oMqmUUkoppVQvFVU2U97QzuwcvTrW366aPpTmDidvby2zOpSAo8mkUkoppZRSvbS6qArQ+SWtMHlYHLnJUby4/qDVoQQcTSaVUkoppZTqpVWFVaQPCmfYKUZ5Vt4jIlw1bSibDtaxp7zR6nACiiaTSimllFJK9YLTZVhTVM3s3ASd3swil05KJ9guvPjZIatDCSiaTCqllFJKKdUL20vraWhz6GiiFkqICuW80am8trmEdofT6nAChiaTSimllFJK9cLR+SVn5Wh/SStdOW0odS2dvLe93OpQAoYmk0oppZRSSvXC6qIq8pKjSI4OszqUgHZ2biLpg8J5ab02de0vmkwqpZRSSinVQ4dqWlhVWMWC0SlWhxLwbDbhymlD+bSwikM1LVaHExA0mVRKKaWUUqqHnl21H5sI18/KsDoUBVw+ZQg2gZc36NXJ/qDJpFJKKaWUUj3Q0NbJS+sP8pXxaaTFhlsdjgIGDwrn3OFJvLzhEA6ny+pwBjxNJpVSSimllOqBlz47RHOHk1vmZFsdijrOldOGUt7QzsrCKqtDGfA0mVRKKaWUUqqbHE4Xz67ax8zseMamx1odjjrOl0amEBcRzL82llgdyoCnyaRSSimllJ8QkQtEZLeIFIrIvSd5/1oR2eq5rRaRCce9t19ECkRki4hs6N/IB56l245QWt/GLWfrVUlfExJk4+IJg3l/Rzn1LZ1WhzOgaTKplFJKKeUHRMQO/Bm4EBgNXC0io09YbB9wrjFmPHA/8OQJ788zxkw0xkz1esADmDGGp1YWk5UYyZdGJlsdjjqJy6cMpcPh4q2CUqtDGdA0mVRKKaWU8g/TgUJjTLExpgN4EVh0/ALGmNXGmFrP07XAkH6OMSBsOFDL1pJ6vnl2FjabWB2OOomx6TEMT4nSpq5epsmkUkoppZR/SAeOn++gxPPaqdwMLDvuuQHeE5GNInKrF+ILGE+tLGZQRDCXT9Zc3VeJCJdNHsLmg3UUVTZZHc6ApcmkUkoppZR/ONklMHPSBUXm4U4mf3zcy7ONMZNxN5O9Q0TOOcW6t4rIBhHZUFlZ2duYB5wD1c28t6Ocb8zIIDzEbnU46jQunZSOTeC1TXp10ls0mVRKKaWU8g8lwNDjng8BvtAhTETGA08Bi4wx1UdfN8aUeu4rgNdxN5v9AmPMk8aYqcaYqUlJSX0Yvv8zxvCrN3cQYrdx/awMq8NRZ5AcE8Y5w5N4bdNhnK6TnndRvWRJMiki8SLyvojs9dzHnWSZEZ7Rxo7eGkTkbs97vxSRw8e9d1G/F0IpNSBp/aSU8mHrgTwRyRKREOAqYMnxC4jIMOA14DpjzJ7jXo8Ukeijj4HzgG39FvkA8crGEpbvquDHF4wkOSbM6nBUF1w2eQhl9W2sKao+88Kq26y6Mnkv8KExJg/40PP8c4wxuz2jjU0EpgAtuM+iHfW/R983xiztj6CVUgFB6yellE8yxjiAO4F3gZ3Ay8aY7SJym4jc5lns50AC8NgJU4CkAJ+KSD7wGfC2Meadfi6CXyuta+X+N3cwIyueG8/KtDoc1UULR6cQHRbEq9rU1SuCLPreRcBcz+PngI/5fJv+E80HiowxB7wbllJKaf2klPJdnhNUS0947fHjHt8C3HKS9YqBCSe+rrrGGMOPX92K0xgevnyCjuDqR8KC7Xx1wmBe21TCfYvGEB0WbHVIA4pVVyZTjDFlAJ77M03QcxXwzxNeu9MzIe8zJ2uGdpR2IldKdVO/1E9aNymllP9YvO4gK/dW8d8XjWJYQoTV4ahuumzyENo6XSwrOGJ1KAOO15JJEflARLad5LbozGt/7nNCgIuBV457+S9ADjARKAN+f6r1tRO5UupEvlA/ad2klFL+4WB1C/+zdCdz8hK5dsYwq8NRPTB52CCykyJZ/NlBjNGBePqS15q5GmMWnOo9ESkXkTRjTJmIpAEVp/moC4FNxpjy4z772GMR+SvwVl/ErJQKDFo/KaWU6gqny/DDf+VjF+G3l41HRJu3+iMR4abZWfzs39tYv7+W6VnxVoc0YFjVzHUJcIPn8Q3AG6dZ9mpOaELmOcA76lJ0NDKlVN/R+kkppRQAT6woYt2+Gn7+1dEMHhRudTiqF66YMoT4yBCe+KTI6lAGFKuSyQeBhSKyF1joeY6IDBaRY53KRSTC8/5rJ6z/kIgUiMhWYB5wT/+ErZQKAFo/KaWUIv9QHY+8t4cvj0vj8ilDrA5H9VJYsJ0bZmXy4a4K9pQ3Wh3OgGHJaK6eCXTnn+T1UuCi45634B7e+sTlrvNqgEqpgKX1k1JKqeZ2B3e/tIXk6FD+59Jx2rx1gLh+VgaPf1LEkyuK+d0VOrhxX7DqyqRSSimllFI+6Vdvbmd/dTOPXDmR2AidSmKgiIsM4cppQ3ljy2HK6lutDmdA0GRSKaWUUkopj6UFZby8oYTvzM1hZvYXGqAoP3fz2Vm4DDy7ar/VoQwImkwqpZRSSikFlNa1cu+rW5kwdBB3LxhudTjKC4bGR/DlcWm8sO4gDW2dVofj9zSZVEoppZRSAa+53cG3/7ERp8vwhysnEmzXw+SB6tZzsmlqd/DCuoNWh+L3dC9RSimllFIBzekyfO+fm9leWs+jV08iMzHS6pCUF41Nj+Xs3ESe+XQf7Q6n1eH4NU0mlVJKKaVUwDLG8Ks3t/Phrgp+dfEY5o9KsTok1Q9un5tDRWM7DyzdZXUofk2TSaWUUkopFbCe/nQff19zgFvPyea6WZlWh6P6yezcRG4+O4u/rd7P82sPWB2O39JkUimllFJKBaRlBWX8ZulOLhqXyr0XjLQ6HNXP/vuiUcwbkcQvlmxnVWGV1eH4JU0mlVJKKaVUwHlrayl3vbSFSUMH8cjXJ2KzidUhqX5mtwmPXj2JnKRIbn9+I8WVTVaH5Hc0mVRKKaWUUgHD5TI88v4e7nxhM+PTY3nqhmmEBdutDktZJDosmKdvmEaQ3cbNz22gvkWnC+kOTSaVUkoppVRAaO1wcuc/N/Hoh3u5fMoQFn9rBvGRIVaHpSw2ND6CJ66bwuHaVr7x9Do2H6y1OiS/ocmkUkoppZQa8ErrWrniidUs23aEn140iocvH09okF6RVG7TMuN59OpJlNW3celjq/nO4o3sq2q2OiyfF2R1AEoppZRSSnlLW6eTp1YW89jHRdhEePqGqXxppE7/ob7ogrGpzMlL5K8ri3lyRTHvbS/nmhnD+ObsLJ179BQ0mVRKKaWUUgOOMYYl+aX8dtkuSuvbuGBMKj+5aCQZCZoUqFOLDA3i7gXDuWbGMP7wwV4WrzvI39ccYMKQWC6emM5Xx6eRHBNmdZg+Q5NJpZRSSik1YJQ3tPHBznJe3lBC/qE6xqbH8MiVE5mZnWB1aMqPJEeH8ZtLx3HHvFzezC9lSX4p97+1g1+/vYOzchK4YspQLhibGvCDN2kyqZRSSiml/JbLZdh1pJHlu8p5f0c5+SX1AGQkRPDw5eO5bPIQnfZD9djgQeF8+9wcvn1uDoUVTSzJL+X1zSXc/dIWot8I4uIJg/n61KGMHxKLSOD9zjSZVEoppZRSfqW8oY2Ve6v4dG8lnxZWUdXUAcDEoYP44fkjWDg6hbzkqIA8uFfek5scxfcXDufu+Xms21fDKxsO8eqmEhavO0hechSXTRnCJRPTSY0NnGawmkwqpZRSSvkJEbkA+ANgB54yxjx4wvvief8ioAW40RizqSvr+iqXy7C3ookNB2rYeKCWjQdqOVDdAkBiVAhn5yZydl4S5+Qlal821S9sNmFWTgKzchL45aIxvJVfxqubSnhw2S5++84uzs5NZNHEdCYPG0RmQuSAvjKuyaRSSimllB8QETvwZ2AhUAKsF5Elxpgdxy12IZDnuc0A/gLM6OK6fcoYg8NlaHe4aO900u5w0dLhpLGtk8Y2B03tDhrbOmlud9LS4aC5w0lrh5OG1k6qmzuobm6npqmDquYOOhwuwJ08TsmI4xszMpidm8jI1OgBfaCufF9MWDDXzBjGNTOGsb+qmdc2H+a1TSX84JV8AKJDgxg9OIax6bGkDwonIsROeIidsGD3zSZgE0EABILtNkKDbIQF2wkNshEaZCckyEawXQi22wix23zqN6/JpFJKKaWUf5gOFBpjigFE5EVgEXB8QrgI+LsxxgBrRWSQiKQBmV1Yt8e+/sQatpbU4TLuJNJlwGUMxnT9M4JsQmRoEFGhQSRGhZAUFcrI1BgSIkPIS4lmakYcGQkR2nRV+azMxMhjzWB3HWlk2+F6Cjy359ceoN1zUqS37DbBJiAI4klGb5+bw/fm5/XJ53dHQCWTGzdurBKRA8e9lAhUWRWPl2iZ/MdALJcVZXrHGHNBP39nnzqhbvLl34WvxuarcYHvxuarcYHvxtaTuPq6fkoHDh33vAT31cczLZPexXUBEJFbgVs9T5tEpBrf/Jt4k6/+Dr0l0MoLA6zMd/0a7jr9IseXt8/qpoBKJo0xScc/F5ENxpipVsXjDVom/zEQyzUQy9Qfjq+bfHkb+mpsvhoX+G5svhoX+G5sPhLXyS7JnXjt71TLdGVd94vGPAk8eewDfaPs/SrQyhxo5YXAK7O3yhtQyaRSSimllB8rAYYe93wIUNrFZUK6sK5SSnWLzeoAlFJKKaVUl6wH8kQkS0RCgKuAJScsswS4XtxmAvXGmLIurquUUt0S6FcmnzzzIn5Hy+Q/BmK5BmKZ+psvb0Nfjc1X4wLfjc1X4wLfjc3yuIwxDhG5E3gX9/QezxhjtovIbZ73HweW4p4WpBD31CA3nW7dLn615WW3QKCVOdDKC4FXZq+UV0x3htlSSimllFJKKaXQZq5KKaWUUkoppXpAk0mllFJKKaWUUt0W8MmkiDwsIrtEZKuIvC4ig6yOqbdE5AoR2S4iLhHx6yGPReQCEdktIoUicq/V8fQFEXlGRCpEZJvVsfQFERkqIh+JyE7P7+4M0xyp43V1fxWR/SJSICJbRGSDj8XWr/upiMSLyPsistdzH3eK5fplm52p/J6BUB71vL9VRCZ7K5YexDZXROo922iLiPy8n+I6bT1o1TbrQlyWbK/+5qv7vjf5Wr3iLb5cX3mDr9aB3tTv9asxJqBvwHlAkOfxb4HfWh1TH5RpFDAC+BiYanU8vSiHHSgCsnEPaZ4PjLY6rj4o1znAZGCb1bH0UXnSgMmex9HAnoHwd+rH7del/RXYDyT6WmxW7KfAQ8C9nsf3nqre7o9t1pXy4x4MZRnuef5mAuv66e/XldjmAm/15+/K872nrQct3GZnisuS7WXB38cn930vl9ln6hUvltFn6ysLyzvg9un+rl8D/sqkMeY9Y4zD83Qt7nmX/JoxZqcxZrfVcfSB6UChMabYGNMBvAgssjimXjPGrABqrI6jrxhjyowxmzyPG4GdQLq1UfkPX95fuxibFfvpIuA5z+PngEu8/H2n05XyLwL+btzWAoNEJM1HYrNEF+pBS7bZQKufe8qH931v8qV6xVt8ub7yhoH2G+2S/q5fAz6ZPME3cWfqyjekA4eOe16CJik+TUQygUnAOotDGYgM8J6IbBSRW60O5jhW7Kcpxj1vHp775FMs1x/brCvlt6ou6+r3zhKRfBFZJiJj+iGurvDl+t8Xt5cVfPlv1BO+VK94iy/XV97gz3WgN/Xp3zgg5pkUkQ+A1JO89VNjzBueZX4KOIDF/RlbT3WlTAOAnOQ1ncvGR4lIFPAqcLcxpsHqeHxJH+2vs40xpSKSDLwvIrs8Zx+tjs0r++np4urGx3hlm52gK+W3qi7ryvduAjKMMU0ichHwbyDP24F1ga/W/766vbrNV/d9b/KjesVbfLm+8gZ/rgO9qU//xgGRTBpjFpzufRG5AfgKMN94GhP7ujOVaYAoAYYe93wIUGpRLOo0RCQYdyK52BjzmtXx+Jq+2F+NMaWe+woReR13851eH8D0QWxe2U9PF5eIlItImjGmzNM0p+IUn+GVbXaCrpTfqrrsjN97/IkfY8xSEXlMRBKNMVX9EN/p+GT978Pbq9t8dd/3Jj+qV7zFl+srb/DnOtCb+vRvHPDNXEXkAuDHwMXGmBar41Gfsx7IE5EsEQkBrgKWWByTOoGICPA0sNMY84jV8QxEIhIpItFHH+MeOMxXRgO2Yj9dAtzgeXwD8IWrKP24zbpS/iXA9Z4R9GYC9Ueb03nZGWMTkVTPPoyITMd9XFDdD7GdiVXb7LR8eHtZYaD9j/alesVbfLm+8gZ/rgO9qW//xr0ZvWcg3IBC3O2Gt3huj1sdUx+U6VLcZx3agXLgXatj6kVZLsI9OmgR7qY3lsfUB2X6J1AGdHr+TjdbHVMvy3M27uYRW4/bjy6yOi5/uZ1qfwUGA0s9j7Nxj0KXD2zvr32hK7F5nvfrfgokAB8Cez338VZus5OVH7gNuM3zWIA/e94voB9H2e5CbHd6tk8+7kHozuqnuL5QD/rCNutCXJZsr/6++eq+7+Uy+1S94sVy+mx9ZVF5B9w+3d/1q3g+VCmllFJKKaWU6rKAb+aqlFJKKaWUUqr7NJlUSimllFJKKdVtmkwqpZRSSimllOo2TSaVUkoppZRSSnWbJpNKKaWUUkoppbpNk0nlV0TkeyKyU0QWd3O9O0WkUESMiCR6Kz6lVODqRf20WER2i8g2EXlGRIK9FaNSKvD0om56WkTyRWSriPxLRKK8FaPyXzo1iPIrIrILuNAYs6+b600CaoGPcc+nU+WF8JRSAawX9dNFwDLP0xeAFcaYv/R1fEqpwNSLuinGGNPgefwIUGGMedAbMSr/pVcmld8QkcdxTxi8RER+LCKrRWSz536EZxm7iPxORAo8Z9K+C2CM2WyM2W9h+EqpAayX9dNS4wF8BgyxriRKqYGkl3XT0URSgHBAr0CpL9Ark8qviMh+YCrQAbQYYxwisgC43RhzmYjcDiwArvS8F2+MqTlxfb0yqZTqa31QPwUD64C7jDErLSiCUmoA6k3dJCLPAhcBO4AvG2NarCmF8lVBVgegVA/FAs+JSB7uM2VH+xgtAB43xjgAjj9QU0qpftLT+ukx3E1cNZFUSnlDt+smY8xNImIH/ghcCTzbvyErX6fNXJW/uh/4yBgzFvgqEOZ5XdBmGEopa3W7fhKRXwBJwPf7JUKlVCDq0bGTMcYJvARc5vUIld/RZFL5q1jgsOfxjce9/h5wm4gEAYhIfD/HpZRS3aqfROQW4HzgamOMqx/jVEoFli7XTeKW63kuuJPPXf0Yq/ITmkwqf/UQ8ICIrALsx73+FHAQ2Coi+cA1cGxY7BLcA1tsFZGn+jtgpVTA6Fb9BDwOpABrRGSLiPy8X6NVSgWK7tRNgrtJbAFQAKQB9/VzvMoP6AA8SimllFJKKaW6Ta9MKqWUUkoppZTqNk0mlVJKKaWUUkp1myaTSimllFJKKaW6TZNJpZRSSimllFLdpsmkUkoppZRSSqlu02RSKaWUUkoppVS3aTKplFJKKaWUUqrb/j8SKK2seqsYhwAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"fig = plot_factor_distributions(\n",
" states=filtered_states,\n",
@@ -139,7 +130,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"id": "666709f8",
"metadata": {},
"outputs": [],
@@ -153,7 +144,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"id": "6d5fabc2",
"metadata": {},
"outputs": [],
@@ -164,7 +155,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"id": "96c101bd",
"metadata": {},
"outputs": [],
@@ -175,7 +166,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"id": "e9bb9d75",
"metadata": {},
"outputs": [],
@@ -187,7 +178,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"id": "981624e8",
"metadata": {},
"outputs": [],
@@ -206,23 +197,10 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"id": "c4503ac6",
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAANcCAYAAAAOyMEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3zdZfn/8ded3aTZ6U7adA+627TMUhBaZgFBAdlDBEW/+hMExFH1i6LwVXEBIiCIAsoWCpQKhYIUuvdus7qy0+x5//64c9q0TduMM5P38/HI45N8zmdc5wCHc537vq/LWGsRERERERGR7i8s0AGIiIiIiIiIfygBFBERERER6SGUAIqIiIiIiPQQSgBFRERERER6CCWAIiIiIiIiPUREoAPwhfPOO8++8847gQ5DRLzLBDoAERERkVDXLUcAi4qKAh2CiIiIiIhI0OmWCaCIiIiIiIgcTQmgiIiIiIhID6EEUEREREREpIfolkVg2tLQ0EB+fj61tbWBDiVkxMTEkJ6eTmRkZKBDERERERERL+gxCWB+fj7x8fFkZmZijIoJnoi1luLiYvLz8xk6dGigwxERERERES/oMVNAa2trSU1NVfLXTsYYUlNTNWIqIiIiItKN9JgEEFDy10F6vUREREREupcelQCKiIiIiIj0ZEoAQ9Bjjz3Gs88+G+gwREREREQkxPSYIjDdRWNjI7fffnugw5ATqS6B574IQ2fB7O9DZEygIxIRERER0QhgR1VVVXHhhRcyadIkxo8fz4svvsiyZcs49dRTmTRpEjNmzKCiooKmpibuvvtusrKymDhxIo8//jgAixcvZvbs2VxxxRWMGTOGa665BmstAD/96U/Jyspi/Pjx3HbbbQf3z549m+9///uceeaZPPLII8yfP5+HH34YgNWrV3PyySczceJELrvsMkpLSwPzwsjhPvg57FkNnzwCT5wFe9cEOiIRERERESWAHfXOO+8wcOBA1qxZw/r16znvvPO48soreeSRR1izZg2LFi2iV69ePPnkkyQmJrJs2TKWLVvGE088wa5duwBYtWoVv/3tb9m4cSM7d+7kk08+AeDOO+9k2bJlrF+/npqaGt58882D9y0rK+PDDz/ku9/97mHxXH/99fzyl79k7dq1TJgwgZ/85Cf+ezGkbfvWw/InYcZX4ZqX3GjgU+dDVVGgIxMRERGRHk4JYAdNmDCBRYsWcc8997BkyRJyc3MZMGAAWVlZACQkJBAREcHChQt59tlnmTx5MjNnzqS4uJht27YBMGPGDNLT0wkLC2Py5MlkZ2cD8MEHHzBz5kwmTJjA+++/z4YNGw7e98orrzwqlvLycsrKyjjzzDMBuOGGG/joo498/ArIcVkLb98DMUkw+z4YeS5c/zo0VMGKpwMdnYiIiIj0cFoD2EGjRo1ixYoVLFiwgPvuu485c+a02S7BWsvvf/975s6de9j+xYsXEx0dffDv8PBwGhsbqa2t5etf/zrLly8nIyOD+fPnH9aDLy4uzndPSrxnw6uQ8zFc9BuITXH7+o6B4WfDsifhtG9DeGRAQxQRERGRnksjgB20Z88eYmNjufbaa7nrrrtYunQpe/bsYdmyZQBUVFTQ2NjI3LlzefTRR2loaABg69atVFVVHfO6nmQvLS2NyspKXnrppRPGkpiYSHJyMkuWLAHgb3/728HRQAmQ1X+HlGEw9YbD98+8Ayr2wsbXAxOXiIiIiAgaAeywdevWcffddxMWFkZkZCSPPvoo1lq++c1vUlNTQ69evVi0aBG33nor2dnZTJ06FWstffr04bXXXjvmdZOSkvjqV7/KhAkTyMzMPDil9ESeeeYZbr/9dqqrqxk2bBhPP61phgHT3Ax5y2D8ZRAWfvhjI86B1BGw9FGYcEVg4hMRERGRHs94Kk12J9OnT7fLly8/bN+mTZsYO3ZsgCIKXXrdOmD/Rnj0FLj0MZh89dGPf/ZnePtuuGURZLQvwZfDHD3XWkREREQ6RFNARbwlb6nbDp7Z9uOTr4aoeFjxV7+FJCIiIiLSmhJA8Zu6xqZAh+BbeZ9DXB9IHtr249HxMGoObH0Hmrv5ayEiIiIiQUkJoPhceXUDtz27nOn/u4iSqvpAh+M7uUshYya0URX2oNEXQHUR7F7hv7hERERERFooARSfWp1XxgW/W8J7m/ZTUdvIkm2FgQ7JNyoLoHQXDD75+MeN+AKYcNiywD9xiYiIiIi0ogRQfGbhhn186bH/AvDS7aeSHBvJh1u6aQKY27L+L+MY6/88eiXDkFNhyzu+j0lERERE5AhKAMVnXlyWR9/4GN761ulMG5LM6SP78NG2Ipqbu1/lWfI+g/BoGDDpxMeOPh8KN0HJTt/HJSIiIiLSihJAP8nOzmb8+PE+ufbixYu56KKLAHjjjTd48MEHfXKfjrDWsia/jJOHpZIUGwXAmaP6UFRZx6Z9BwIcnQ/kfQaDpkJE9ImPHX2+22oUUERERET8TAlgNzNv3jzuvffeQIfBnvJaiirrmZyReHDfrJFpAHy4tZtNA22ogT2rIWNG+45PGQZ9xsDWt30aloiIiIjIkZQA+lFjYyM33HADEydO5IorrqC6upqf/vSnZGVlMX78eG677TasddMjf/e73zFu3DgmTpzIVVddBUBVVRU333wzWVlZTJkyhddff/2oe/z1r3/lzjvvBODGG2/kW9/6FqeeeirDhg3jpZdeOnjcQw89RFZWFhMnTuTHP/6x15/rmrwyACamJx3c1zchhrEDEviouyWA+zdAcwOktzMBBBh1HmR/AjVlPgtLRERERORIEYEOIBB+8u8NbNzj3WmI4wYm8OOLTzruMVu2bOHJJ5/ktNNO4+abb+ZPf/oTd955Jz/60Y8AuO6663jzzTe5+OKLefDBB9m1axfR0dGUlZUB8MADD3D22Wfz1FNPUVZWxowZMzjnnHOOe8+9e/fy8ccfs3nzZubNm8cVV1zBwoUL2bZtG59//jnWWubNm8dHH33ErFmzvPJagEsAo8LDGDMg/rD9s0al8dTHu6isa6R3dDf5169oq9v2GdP+c0Z8AT75rZs6OmquT8ISERERETmSRgD9KCMjg9NOOw2Aa6+9lo8//pgPPviAmTNnMmHCBN5//302bNgAwMSJE7nmmmt47rnniIhwidLChQt58MEHmTx5MrNnz6a2tpbc3Nzj3vPSSy8lLCyMcePGsX///oPXWbhwIVOmTGHq1Kls3ryZbdu2efW5rs4rY+zABKIjwg/bf+bIPjQ0WT7dUezV+wVU0VYIi4TkIe0/Z9A0CIs4VD1URERERMQPuskQTMecaKTOV8wRDcKNMXz9619n+fLlZGRkMH/+fGprawF46623+Oijj3jjjTf42c9+xoYNG7DW8vLLLzN69OjDruNJ7NoSHX2oKIlneqm1lvvuu4+vfe1r3npqh2lqtqzbXc6XpqUf9di0zGRio8L5aGsh547r55P7+13RNkgZCuGR7T8nKg76T1QCKCIiIiJ+5ZcRQGPMecaYLcaY7caYoyqUGGOuMcasbfn5rzFmUnvPDSW5ubl8+umnADz//POcfvrpAKSlpVFZWXlwjV5zczN5eXmcddZZ/OpXv6KsrIzKykrmzp3L73//+4OJ3KpVqzoVx9y5c3nqqaeorKwEYPfu3RQUFHT16R20o7CS6vomJmUkHfVYdEQ4pwxL5aPu1BC+aBukjer4eYNPgT0robHO+zGJiIiIiLTB5yOAxphw4I/AuUA+sMwY84a1dmOrw3YBZ1prS40x5wN/Bma289yQMXbsWJ555hm+9rWvMXLkSO644w5KS0uZMGECmZmZZGVlAdDU1MS1115LeXk51lq+853vkJSUxA9/+EO+/e1vM3HiRKy1ZGZm8uabb3Y4jjlz5rBp0yZOOeUUAHr37s1zzz1H3759vfI8V7dRAKa1WaP68J/NBWQXVZGZFueVewZMU6Pr5+dp7dARg0+GpX+EvWvaX0FURERERKQLjGc0yWc3MOYUYL61dm7L3/cBWGt/cYzjk4H11tpBHT3XY/r06Xb58uWH7du0aRNjx47t6tPpcTrzut3/6jreWL2HNT+eQ1iYOerx9bvLuej3H/Ona6ZywYQB3go1MIp3wO+nwiV/ginXdOzcygJ4eCSc+zM47Vu+ia97OfpfJhERERHpEH9MAR0E5LX6O79l37HcAngapLX7XGPMbcaY5caY5YWF3Wh6YQhak1/GxIzENpM/gKEto367iqr8GZZvFLUUz0kb2fFze/d1PQHzPvNuTCIiIiIix+CPBLCtLKDNYUdjzFm4BPCejp5rrf2ztXa6tXZ6nz59OhWodF1tQxOb91Yw6RjTPwHioiPolxDNzsLukAC2tIBIHdG58zNOdoVgfDwSLyIiIiIC/kkA84GMVn+nA3uOPMgYMxH4C3CJtba4I+dK8Ni49wCNzfaY6/88hqbFsauo0j9B+VLxNohNg9iUzp0/+GSoLnJTSUVEREREfMwfCeAyYKQxZqgxJgq4Cnij9QHGmMHAK8B11tqtHTlXgsualgIwk9uoANra0LTe3WcKaGemf3oMPtltcz/1TjwiIiIiIsfh8wTQWtsI3Am8C2wC/mmt3WCMud0Yc3vLYT8CUoE/GWNWG2OWH+9cX8csnbcmr4x+CdH0T4w57nHD0uIorW6gtKreT5H5SFcTwLRR0CsF8tQPUERERER8zy+N4K21C4AFR+x7rNXvtwK3tvdcCV5b91cydkDCCY87WAimuIrkuChfh+Ub1SVu+mZqFxJAY2DQVNi71ntxiYiIiIgcg18awUvHzJ8/n4cffrjdx19wwQWUlZV1+TpdZa0lp7iKzNQT9/Yb2qclAQzlQjDF2922M03gW+s7Fgq3QHNT12MSERERETkOJYDdwIIFC0hKSgp0GBRV1lNV30RmauwJjx2cEkt4mAntdYCeCqBdmQIK0HccNNVBya6uxyQiIiIichxKAP2kqqqKCy+8kEmTJjF+/HhefPFFMjMzKSoqAmD58uXMnj374PFr1qzh7LPPZuTIkTzxxBMA7N27l1mzZjF58mTGjx/PkiVLAA67zgMPPMDo0aM555xz2LJlCwA7duxg6tSpB6+9bds2pk2b5vXnmFPskrkhaSceAYwMD2NwSmyIJ4DbICwSkoZ07Tp9x7ptwcauxyQiIiIichx+WQMYdN6+F/at8+41+0+A8x885sPvvPMOAwcO5K233gKgvLyce+6555jHr127lqVLl1JVVcWUKVO48MILef7555k7dy73338/TU1NVFdXH3bOihUreOGFF1i1ahWNjY1MnTqVadOmMXz4cBITE1m9ejWTJ0/m6aef5sYbb/TK024tu9jF054poODWAe4M9QQwZRiEd/E/o7TRgIGCTTBunldCExERERFpi0YA/WTChAksWrSIe+65hyVLlpCYmHjc4y+55BJ69epFWloaZ511Fp9//jlZWVk8/fTTzJ8/n3Xr1hEfH3/YOUuWLOGyyy4jNjaWhIQE5s07lEzceuutPP300zQ1NfHiiy/yla98xevPMae4ivAww6CkXu06fmhaHNlFVTQ3h2gT9JKdkDq869eJioWUoRoBFBERERGf65kjgMcZqfOVUaNGsWLFChYsWMB9993HnDlziIiIoLm5GYDa2trDjjfGHPX3rFmz+Oijj3jrrbe47rrruPvuu7n++uuPe57H5Zdfzk9+8hPOPvtspk2bRmpqqhefnZNdXM2gpF5ERbTve4WhaXHUNDSxv6KWAYntSxqDhrVQmg3Dz/bO9fqOcyOAIiIiIiI+pBFAP9mzZw+xsbFce+213HXXXaxcuZLMzExWrFgBwMsvv3zY8a+//jq1tbUUFxezePFisrKyyMnJoW/fvnz1q1/llltuYeXKlYedM2vWLF599VVqamqoqKjg3//+98HHYmJimDt3LnfccQc33XSTT55jTnEVQ9pRAMZjWFoIVwKtLIDGGkju4vo/j75jXVXRxjrvXE9EREREpA09cwQwANatW8fdd99NWFgYkZGRPProo9TU1HDLLbfw85//nJkzZx52/IwZM7jwwgvJzc3lhz/8IQMHDuSZZ57hoYceIjIykt69e/Pss88eds7UqVO58sormTx5MkOGDOGMM8447PFrrrmGV155hTlz5nj9+Vlr2VVUxaWTB7X7HE8riJ1FVZw6Is3rMflUabbbJmd653p9x4JtcusK+4/3zjVFRERERI6gBNBP5s6dy9y5c4/av3Xr1qP2zZ8/v81r3HDDDdxwww1H7c/Ozj74+/3338/999/f5vkff/wxN998M+Hh4e0LugPKqhuoqG3s0Ahgv/gYekWGh2Yl0LIct/VaAjjObQs2KQEUEREREZ9RAthDXHbZZezYsYP333/fJ9fPbmkB0d4KoABhYYbMtDh2Flb6JCaf8owAJg32zvVShkNYhArBiIiIiIhPKQHsIV599VWfXj/H0wIirf0jgODWAW7YU+6LkHyrNBviB0Ckl4rXRERB6kgVghERERERn+pRRWCsDdF2AwHSkdcrp7gaYyA9uWMJ4NC0OPJKa6hvbO5oeIFVmu296Z8efcdqBFBEREREfKrHJIAxMTEUFxcrCWwnay3FxcXExMS06/ic4ioGJvYiJrJj6wuHpsXR1GzJK60+8cHBxCcJ4Di3trAuBKfEioiIiEhI6DFTQNPT08nPz6ewsDDQoYSMmJgY0tPT23VsdgdbQHh4KoHuKqxieJ/eHT4/IBrr4MAeSPJSCwiPvmPdtnAzpE/37rVFREREROhBCWBkZCRDhw4NdBjdVk5xNXNO6t/h8zxFYzxFZEJCWR5gvT8CmDbSbUt2KgEUEREREZ/oMVNAxXcO1DZQXFVPZidGAJNjI4mLCie/tMYHkfmIt3sAengqinquLyIiIiLiZUoApctyWyqADulACwgPYwwZKbHklYTQGsDSXW7r7QQwshf07g+lOd69roiIiIhICyWA0mUHewB2sAWER3pybOiNAEbEQO9+3r928pBDTeZFRERERLxMCaB0macH4OCUziWAGSm9yCutDp0KraXZrgBMmA/+80kaohFAEREREfEZJYDSZdlFVfRLiCY2qnM1hTKSY6mub6Kkqt7LkflIaY73p396JA+BA/nQ1OCb64uIiIhIj6YEULosp7i6U+v/PNKTewGExjRQa90UTZ8lgJlgm6E8zzfXFxEREZEeTQmgdFl2cRVDOjn9EyCj5dyQaAZfUwp1B9xInS94egtqGqiIiIiI+IASQOmSmvomCirqOtUE3uNgAlgSAiOAvqoA6uFJLFUIRkRERER8QAmgdEluS/uGwV2YAto7OoLk2MjQGAH09OhL8tEIYMIgCIvQCKCIiIiI+IQSQOmSgwlgF6aAQgi1gvAkZr4aAQwLh8QMNYMXEREREZ9QAihdktPSA7ArawDBtYLID4Vm8GU5EJsK0b19dw/1AhQRERERH1ECKF2SW1JNfEwESbGRXbpORssIYHNzkPcCLM3x3fRPD/UCFBEREREfUQIoXZJbUs3glFiMMV26TnpKLPVNzRRU1HkpMh8py/FdBVCP5CFQXQR1lb69j4iIiIj0OEoApUtyi6u7VAHUI+NgL8Agngba3ARleb4fAfSsLyzL9e19RERERKTHUQIondbUbMkrrWZwSucrgHqkJ4dAL8ADe6C5wfcjgEmZbqtCMCIiIiLiZUoApdP2ltfQ0GS7XAEUIL1lBDCoewF6CrP4fARQvQBFRERExDeUAEqneVpAeGMKaExkOH3jo8kL5kqgvm4B4RGbCpFxKgQjIiIiIl6nBFA6LbfYOz0APTJSgrwXYFkOYCAx3bf3McYlmRoBFBEREREvUwIonZZTUk1EmGFAYoxXrpee3Cu41wCW5kDCIIiI9v29kodoDaCIiIiIeJ0SQOm03JJq0pN7ERHunX+NMpJj2VteS2NTs1eu53X+aAHhkZgOB3b7514iIiIi0mMoAZROyy2uZnBq1yuAemSk9KKp2bK3vNZr1/QqfzSB94gfALXlUF/ln/uJiIiISI+gBFA6Lae4iiFeWv8HbgQQgrQVRGMdVOz13whgwiC3PbDXP/cTERERkR5BCaB0Snl1AwdqG71WAAZcERiA/GBsBVGWB1j/jQAmDHRbTQMVERERES9SAiidklPipiYO9kILCI/+iTGEh5ngHAEsy3Zbv40AehLAPf65n4iIiIj0CEoApVNyir3XA9AjMjyMgUkxB/sLBpVSPzWB94gf4LYVSgBFRERExHuUAEqneJI0z7o9b8lMjSO7OAgTwLIcCI86lJj5WlQs9ErWCKCIiIiIeJUSQOmU3OJq0npHExcd4dXrDkmNJac4CCtfluZAYgaE+fE/mfiBSgBFRERExKuUAEqn5JRUeXX6p0dmahxl1Q2UVdd7/dpdUprtv/V/HglKAEVERETEu/ySABpjzjPGbDHGbDfG3NvG42OMMZ8aY+qMMXcd8Vi2MWadMWa1MWa5P+KVE8strvZqBVCPIS19BXOCbRpomR97AHooARQRERERL/N5AmiMCQf+CJwPjAOuNsaMO+KwEuBbwMPHuMxZ1trJ1trpvotU2quusYm9B2p9kgBmtowqZgfTNNDacqgpheRM/943YSBUFUBjkI2GioiIiEjI8scI4Axgu7V2p7W2HngBuKT1AdbaAmvtMqDBD/FIF+0qqsJaGNYnzuvXzkiJxZggGwH0VAANRAIIULnPv/cVERERkW7LHwngICCv1d/5LfvaywILjTErjDG3HesgY8xtxpjlxpjlhYWFnQxV2mPb/koARvaN9/q1YyLD6Z8QE1wjgKXZbhuoBFDTQEVERETES/yRAJo29tkOnH+atXYqbgrpN4wxs9o6yFr7Z2vtdGvt9D59+nQmTmmnbQWVhBnfjACCpxJoMI0AZrutvxPAeE8CuNu/9xURERGRbssfCWA+kNHq73Sg3UMa1to9LdsC4FXclFIJoO0FFQxOiSUmMtwn189MjQuuVhBlORCTBL2S/HvfgyOAe/17XxERERHptvyRAC4DRhpjhhpjooCrgDfac6IxJs4YE+/5HZgDrPdZpNIu2/ZXMsIH0z89hqTGUVRZT0VtkCwJDUQLCICYRIiM0xRQEREREfEa73bxboO1ttEYcyfwLhAOPGWt3WCMub3l8ceMMf2B5UAC0GyM+TauYmga8KoxxhPrP6y17/g6Zjm2hqZmdhVVce64fj67h6cSaE5xNeMHJfrsPu1Wmg39TvL/fY2BhAGaAioiIiIiXuPzBBDAWrsAWHDEvsda/b4PNzX0SAeASb6NTjoip7iKxmbLyH69fXYPTy/A3JIgSACbm6AsF8ZcGJj7qxegiIiIiHiRXxrBS/fhywqgHkOCqRdgxV5oqvd/ARiPhEEuBhERERERL1ACKB2yraASY2B4H9+NAMZFR9AnPpqcoiCoBBqoHoAe8QNcAtjcFJj7i4iIiEi3ogRQOmRbQSXpyb3oFeWbCqAemamxwTEC6GkBkRSAIjDgpoA2N0KVeluKiIiISNcpAZQO2ba/wqfTPz2GpMYFRy/A0mwwYZCYccJDfSJhkNtqHaCIiIiIeIESQGm3xqZmdhZVMbKv76Z/emSmxrLvQC019QGe+liaDQnpEBEVmPsnDHBbJYAiIiIi4gVKAKXd8kprqG9sZoQfEsDWlUADKlA9AD00AigiIiIiXqQEUNpt2/4KAEb288cU0CCpBFqWE9gEMDYNwiJUCVREREREvEIJoLTbtgLXAsIvI4ApbgQwJ5AJYH01VO4PXAVQgLAw6N1fCaCIiIiIeIUSQGm37QWVDEyMoXd0hM/vlRgbSXJsJNmBLART5mkBMTRwMYBbB6gpoCIiIiLiBUoApd22FVQwwg/TPz0y0+LYWVjpt/sdxdMCIpAjgADx/aFiX2BjEBEREZFuQQmgtEtzs2V7QaVfKoB6jO4Xz9b9lVhr/XbPw3iawAeqB6BH/EBNARURERERr1ACKO2yu6yG2oZmvyaAo/rFU1JVT2Flnd/ueZjSbIjqDXFpgbm/R8IAqDsAdQEcDRURERGRbqFDCaAx5mVjzIXGGCWOPcza/HIAxg5I8Ns9x/R300237gtQ4lOa7aZ/GhOY+3vEt/QC1DRQEREREemijiZyjwJfAbYZYx40xozxQUwShFbklBITGca4gf5LAEe3JICb9x3w2z0PU5od+Omf0CoBVCEYEREREemaDiWA1tpF1tprgKlANvCeMea/xpibjDGRvghQgsOKnBImpScRGe6/wd/U3tGk9Y5iy74Kv93zIGsPjQAGWsJAt9UIoIiIiIh0UYc/zRtjUoEbgVuBVcAjuITwPa9GJkGjpr6JDXsOMG1Ist/vPbp/PFv2ByABrCyAxprgSADj+7utWkGIiIiISBd1dA3gK8ASIBa42Fo7z1r7orX2m4D/qoOIX63NL6Ox2QYmAeyXwNb9FTQ3+7kSaLC0gACIjoeoeFUCFREREZEu62hH779Yaxe03mGMibbW1llrp3sxLgkiK3JLAZgy2P8J4Jj+8dQ2NJNbUk1mWpz/bhxMCSC09AJUAigiIiIiXdPRKaD/28a+T70RiASvlTmlDOsTR0pclN/vPepgIRg/TwP1JIBJg/1732NJGAAHlACKiIiISNe0KwE0xvQ3xkwDehljphhjprb8zMZNB5VuylrLipxSpgVg9A9gVL/eGIP/C8GUZrsG7JEx/r3vsagZvIiIiIh4QXungM7FFX5JB37dan8F8H0vxyRBZGdRFaXVDUzPDEwCGBsVweCUWLb6uxBMsFQA9Yjv76qANjdDmNpwioiIiEjntCsBtNY+AzxjjLncWvuyj2OSILIix63/C0QBGI/R/eL93wuwNBuGzfbvPY8nYSA0N0B1MfTuE+hoRERERCREtSsBNMZca619Dsg0xvy/Ix+31v66jdOkG1iZU0pir0iGpQWuyOvo/vH8Z3MBtQ1NxESG+/6GDbWu6XpQjQC2agavBFBEREREOqm9c8k85Rd7A/Ft/Eg3tSKnlKmDkwgLMwGLYXT/eJqaLdsLKv1zw/I8tw3KBFDN4EVERESk89o7BfTxlu1PfBuOBJPy6ga2FVRyyeSBAY1jTEsl0C37Khg/KNH3Nwy2FhDgqoCCmsGLiIiISJd0tBH8r4wxCcaYSGPMf4wxRcaYa30VnATWypb+f1MDuP4PIDM1jqjwMP8VggnGBLB3P8CoEqiIiIiIdElHywnOsdYeAC4C8oFRwN1ej0qCwodbC4mOCGNKRmATwIjwMIb37e2/XoCl2RDRC3r39c/92iM8EuL6KAEUERERkS7paAIY2bK9AHjeWlvi5XgkSFhreX9zAacOT6VXlB8Kr5zA2P7xbNx7AGut729Wmg3JQ8AEbt1jm9QMXkRERES6qKMJ4L+NMZuB6cB/jDF9gFrvhyWBtqOwitySas4e2y/QoQAwKSOJwoo69pb74V+3YOsB6KFm8CIiIiLSRR1KAK219wKnANOttQ1AFXCJLwKTwPpgcwEAZ48JjmmQUwYnAbAqt8y3N7I2iBPA/koARURERKRL2lUF9Ahjcf0AW5/7rJfikSDxn837GdM/nkFJvQIdCgBj+icQHRHGqtxSLpw4wHc3qi6G+kpIGuK7e3RWwiAXX0MNRAbHPxcRERERCS0dSgCNMX8DhgOrgaaW3RYlgN1KeU0Dy7JLuW3WsECHclBURBjjByWyKq/MtzcqzXHbYBwBTEx32wN7IHV4YGMRERERkZDU0RHA6cA465dKHBIoS7YV0tRs+UKQTP/0mJKRxN+W5lDf2ExUREeXr7ZT6S63DeYEsDxPCaCIiIiIdEpHP0WvB/r7IhAJHu9vKiApNpIpgwPb/uFIUwYnU9fYzOZ9B3x3k7KWEcCkwb67R2d5EsCyvMDGISIiIiIhq6MjgGnARmPM50CdZ6e1dp5Xo5KAaWq2LN5ayOxRfQgPC642CK0LwUxMT/LNTUqzXb+96N6+uX5XJAwCDJTnBzoSEREREQlRHU0A5/siCAkeq/PKKKmq56wgm/4JMCAxhn4J0azKLeWGUzN9c5PSnOAsAAMQEeUqgSoBFBEREZFO6lACaK390BgzBBhprV1kjIkFAt8lXLzmg80FhIcZzhzVJ9ChHMUYw+SMJFb7shBMaTakT/fd9bsqMd2tARQRERER6YQOrQE0xnwVeAl4vGXXIOA1L8ckAbR4awFTByeRFBsV6FDaNGVwMtnF1ZRU1Xv/4k2NbnQtGAvAeCSmawRQRERERDqto0VgvgGcBhwAsNZuA4JvrqB0SsGBWtbvPsDs0cH7j3RKRhIAq/NKvX/xA7vBNgXvFFA4lACqEK+IiIiIdEJHE8A6a+3BoZeWZvD6JNpNLN5aCMBZQZwATkhPJDzMsCq3zPsXL81226AeAcyApjqoKgp0JCIiIiISgjqaAH5ojPk+0MsYcy7wL+Df3g9LAuHDLYX0S4hm7ID4QIdyTLFREYzuF++bdYCeFhDJQT4CCFoHKCIiIiKd0tEE8F6gEFgHfA1YAPzA20GJ/zU2NfPRtkJmj+qLMcHV/uFIUwYnsTq3jOZmLw8+l2aDCYeEdO9e15sOJoBaBygiIiIiHdehBNBa24wr+vJ1a+0V1tonrD3xYiRjzHnGmC3GmO3GmHvbeHyMMeZTY0ydMeaujpwr3rEyt4yK2kbOGhN81T+PNG1IMhV1jWzZX+HdC5fmuAQrvKPdUfwoMcNtlQCKiIiISCe0KwE0znxjTBGwGdhijCk0xvyoHeeGA38EzgfGAVcbY8YdcVgJ8C3g4U6cK17wwZYCIsIMp41IC3QoJzRzWCoAn+8q8e6FS7ODe/onQK9kiIzVFFARERER6ZT2jgB+G1f9M8tam2qtTQFmAqcZY75zgnNnANuttTtbCsi8AFzS+gBrbYG1dhnQ0NFzxTs+2FzA9Mxk4mMiAx3KCQ1K6sWgpF58tqvYuxcuywnuAjAAxqgXoIiIiIh0WnsTwOuBq621uzw7rLU7gWtbHjueQUDrT6v5Lfvao93nGmNuM8YsN8YsLywsbOflBWBfeS2b91UEdfXPI80cmsLnu0poxwzk9qmvgqrC4G4B4ZGYoSmgIiIiItIp7U0AI621R9Wdt9YWAicaMmqrokh7P7W3+1xr7Z+ttdOttdP79An+dWzBZPGWAgDOGhM6CeCMoSkUVdazs6jKOxcs9VQAzfTO9XxJzeBFREREpJPamwDWd/IxcKN2Ga3+Tgf2tPO+XTlX2umjbYUMTIxhZN/egQ6l3WYMTQG8uA6wLJQSwAw3WtlQE+hIRERERCTEtDcBnGSMOdDGTwUw4QTnLgNGGmOGGmOigKuAN9p5366cK+1greXzXaWcPCw16Ns/tDY0LY603tHeSwBDoQm8h6cVxAF9FyIiIiIiHdOuevfW2vDO3sBa22iMuRN4FwgHnrLWbjDG3N7y+GPGmP7AciABaDbGfBsYZ6090Na5nY1FjpZTXE1RZR3TM1MCHUqHGGMOrgP0itIciIyD2FTvXM+XWjeDTx0e2FhEREREJKT4peGZtXYBrml8632Ptfp9H256Z7vOFe9Zlu0SqBlDkwMcScfNGJrCW+v2kl9aTXpybNcuVprtRv9CYRRUzeBFREREpJM61Aheup9l2SUkx0YyvE/orP/z8Oo6QE8CGAoSBgIGytQKQkREREQ6RglgD7c8u5RpQ1JCav2fx+h+8STERHQ9AbQ2NHoAekREu1HAkp2BjkREREREQowSwB6sqLKOnUVVZGWG3vRPgLAwwwxvrAOsKoSG6tBJAAFSR0DR1kBHISIiIiIhRglgD7Y8uxQg5ArAtDZjaAo7i6ooqKjt/EVCqQKoR9ooKN7uRi9FRERERNpJCWAPtjy7hOiIMMYPSgh0KJ02Y6ir2rlsV2nnLxKSCeBIqK+Eir2BjkREREREQogSwB5sWU4pkzKSiI7odJePgDtpYAKxUeF8tqu48xfxJIBJg70Sk1+kjXJbTQMVERERkQ5QAthDVdc3smF3eciu//OIDA9j2pDkrq0DLM2G+AEQGeO1uHzuYAK4LbBxiIiIiEhIUQLYQ63OK6Ox2Yb0+j+PmUNT2LyvgrLq+s5dIJRaQHjE94eoeI0AioiIiEiHKAHsoZZnl2IMTB0c2iOA0GodYHYn1wGGYgJojFsHqARQRERERDpACWAPtSy7hNH94knsFRnoULpsYnoiURFhfN6ZdYCNdXBgT+glgNCSAG4PdBQiIiIiEkKUAPZA1lpW55UxdUjoj/4BxESGMzkjqXPrAMvyABu6CeCBfKirDHQkIiIiIhIilAD2QDnF1VTUNjIpPTHQoXjNzKEprN9zgMq6xo6dGIotIDw8hWCKNQooIiIiIu2jBLAHWru7HIDxg7pPAjhjaApNzZaVOR1cB1i6y21DOQFUJVARERERaSclgD3QuvwyoiLCGNUvPtCheM3UwcmEh5mOTwMtzYaIGOjdzydx+VTKMDBhKgQjIiIiIu2mBLAHWptfzrgBCUSGd59//HHREUwYlNi5BDA501XVDDUR0S72Yo0AioiIiEj7dJ8MQNqludmyfnc5E7vR+j+PmUNTWJ1XRm1DU/tPKs0JzemfHmmjNAVURERERNpNCWAPs7Ooiqr6JiZ0o/V/HjOGplDf1MzqvLL2nWCtGwFMGuLLsHwrdYQrAtPcgaRXRERERHosJYA9zLrdZQBMTE8KaBy+MH1ICsbAsvZOA60ugfqK0B4B7DMGGmuhZGegIxERERGREKAEsIdZm19Or8hwhveJC3QoXpcYG8nofvF8nt3OBDCUK4B6pGe5bd5ngY1DREREREKCEsAeZv3uck4amEBENyoA01pWZgorc0ppbGo+8cHFO9w2dbhvg/KltFHQKxlylwY6EhEREREJAd0zC5A2NTVb1u8+wIRuWADGY3pmMlX1TWzeV3Hig0t2uDYKoTwCGBYGGScrARQRERGRdlEC2IPsKKykpqF7FoDxmDE0BaB97SCKd0BiumunEMoGz3StIKqKAh2JiIiIiAQ5JYA9yNr8coBu2QLCY0BiLwYl9WJZe9YBluyAlBCe/ukx+BS31TpAERERETkBJYA9yLr8MuKiwhma1jvQofjUjKEpLMsuxVp77IOsheKdob3+z2PgFAiPhtxPAx2JiIiIiAQ5JYA9yNrd5Zw0KJHwMBPoUHwqKzOFoso6sourj31QdQnUlUPKMP8F5isR0TBoqtYBioiIiMgJKQHsIRqamtm450C3Xv/nkZWZDJygH2BJSwXQ7jAFFCBjJuxZDQ01gY5ERERERIKYEsAeYtv+Suoam7v1+j+PEX17kxwbefx+gN2hBURrg0+B5gbYvTLQkYiIiIhIEFMC2EOs210GwMT0pIDG4Q/GGKZnprD8eAmgpwVE0hD/BeZLGTPcVusARUREROQ4lAD2EGvyy4mPiSAzNTbQofhFVmYy2cXVFFTUtn1A8Q5IGgwRUf4NzFdiU6DvONi5ONCRiIiIiEgQUwLYQ6zLL2dieiLGdO8CMB5Zma4f4LJdpW0f0F1aQLQ29mLI/hgq9gU6EhEREREJUkoAe4C6xiY27zvAhEFJgQ7Fb8YPSiQmMqztfoDWQsmu7lEBtLWTvghY2Ph6oCMRERERkSClBLAH2LKvgoYm2yMKwHhEhocxJSO57QSwqgjqDnSfAjAefcdAv/Gw7qVARyIiIiIiQUoJYA+wJr8coEclgABZQ1PYtPcAFbUNhz/Q3VpAtDb+i5D/OZTmBDoSEREREQlCSgB7gHX5ZaTERTEoqVegQ/GrGZkpNFtYkXPEOsDu1gKitZO+6LYbXg1sHCIiIiISlJQA9gBr88uZMKjnFIDxmDI4ifAww/LsIxLAkh1gwl0V0O4mZSgMmg7rXw50JCIiIiIShJQAdnM19U1sK6jscdM/AeKiIzhpYMLRDeE9LSDCIwMTmK+Nvxz2rYXCrYGORERERESCjBLAbm7j3nKamm2PaADflqzMFFbnlVHX2HRoZ9FWSBsZuKB8bfzlEBYBK58JdCQiIiIiEmSUAHZza3toARiPrMwU6hubWdfyOtDUAEXbXNP07iq+H4y+AFb/AxpqAx2NiIiIiAQRJYDd3Lr8cvrGR9MvISbQoQREVmYyAMs86wCLd0BzA/QdG8Co/GD6TVBTApv+HehIRERERCSIKAHs5tbkl/XY0T+A1N7RDO8Td6gfYOEmt+3uCeDQ2ZA8FFY8HehIRERERCSIKAHsxirrGtlZVNVj1/95ZGWmsDy7hOZmCwWbwIRB2qhAh+VbYWEw7UbI+QQKtwQ6GhEREREJEkoAu7HVuWVYC5MykgIdSkBlZaZwoLaRLfsroGCjGxmL7AE9ESdfA2GRsFyjgCIiIiLiKAHsxj7fVUyYgWlDkgMdSkDNGJoCwPLsEijY3P2nf3r07gNjL4a1L0BjXaCjEREREZEg4JcE0BhznjFmizFmuzHm3jYeN8aY37U8vtYYM7XVY9nGmHXGmNXGmOX+iLe7+GxXCeMHJdI7OiLQoQRUenIv+ifE8NmOQtcEvqckgABTroWaUtiyINCRiIiIiEgQ8HkCaIwJB/4InA+MA642xhxZg/98YGTLz23Ao0c8fpa1drK1drqv4+0u6hqbWJVXRlZmSqBDCThjDDOHpfDZziJsc3PPSgCHzYaEQbDq74GORERERESCgD9GAGcA2621O6219cALwCVHHHMJ8Kx1lgJJxpgBfoit21qXX059Y/PB6Y893cyhqRRWN7PL9oc+PSgBDAuHyV+BHf+BA3sCHY2IiIiIBJg/EsBBQF6rv/Nb9rX3GAssNMasMMbcdqybGGNuM8YsN8YsLyws9ELYoe2zXa7tgUYAnZOHuddhKeMhdUSAo/GzyV8B2wxrng90JCIiIiISYP5IAE0b+2wHjjnNWjsVN030G8aYWW3dxFr7Z2vtdGvt9D59+nQ+2m7i810ljOrXm5S4qECHEhSGpsXRJ6KazyKyIKKHvSYpw2DIaW4aqD3yPz0RERER6Un8kQDmAxmt/k4HjpyLdsxjrLWebQHwKm5KqRxHU7NlRU6pRv9aMcZwcsQ2ljaMwPbEJGjKta4ATu7SQEciIiIiIgHkjwRwGTDSGDPUGBMFXAW8ccQxbwDXt1QDPRkot9buNcbEGWPiAYwxccAcYL0fYg5pm/YeoLKuUev/WquvYmbjcvY39CKnuDrQ0fjfuEsgMs61hBARERGRHsvnCaC1thG4E3gX2AT801q7wRhzuzHm9pbDFgA7ge3AE8DXW/b3Az42xqwBPgfesta+4+uYQ51n/Z8SwFYKN3Ny2CYAlu4sDnAwARAVB2Mvgg2vqiegiIiISA/mlwZx1toFuCSv9b7HWv1ugW+0cd5OYJLPA+xmPt9VTEZKLwYk9gp0KMFj7xqGmz2kxYbz2a4SrpoxONAR+d/EL8PaF2Hbey4ZFBEREZEexy+N4MV/rLUsyy5lRmZqoEMJLvkrMLEpzBzel892FvfMdYBDZ0NcH5cEioiIiEiPpASwm9lRWElJVT0zNf3zcLtXwKBpnDwshT3lteSV1AQ6Iv8Lj4DxV8DWd6CmLNDRiIiIiEgAKAHsZhZvcT0QTx6mEcCDag9A4WZIn37wdVm6qweuAwQ3DbSpHja+HuhIRERERCQAlAB2M+9u2MfYAQkMTo0NdCjBY88qwMKg6Yzo25vUuKieWQgGYOAUSB2paaAiIiIiPZQSwG6koKKW5TmlnHdS/0CHElx2L3fbQVMxxjBzWAqf7uih6wCNgUlXQs4nUJod6GhERERExM+UAHYjCzfsx1o4b7wSwMPsXgkpwyHWrYs8Y2Qf9pbXsqOwMsCBBcikqwEDq/8R6EhERERExM+UAHYj727Yx9C0OEb16x3oUIKHtZC/HAZNO7jr9BFpAHy0tShQUQVWYjoMPxtW/R2amwIdjYiIiIj4kRLAbqKsup5PdxQz96T+GGMCHU7wOLAbKvdB+vSDuzJSYhmWFseSbYUBDCzAplwLB/Jh14eBjkRERERE/EgJYDexaFMBjc2W8zX983D5nvV/0w/bfcbINJbuLKGusYeOgI25EHolw6rnAh2JiIiIiPiREsBu4p31+xiQGMPE9MRAhxJcdi+H8CjoP/6w3WeM7ENNQxMrckoDFFiARUTDhC/DpjehuiTQ0YiIiIiInygB7Aaq6hr5aFuhpn+2ZfdK6D/RJTytnDw8lYgww5JtPXQdILhpoE11sO5fgY5ERERERPxECWA38MGWAuobm1X980j11W4K6OCTj3qod3QE04Yk9+x1gAMmQnoWLP2TisGIiIiI9BBKALuB55bmMDAxhqzMlECHElxy/+tGuIaf1ebDs0b1Yf3uAxRV1vk5sCBy2v+4foCb3gh0JCIiIiLiB0oAQ9z63eUs3VnCjadlEh6m6Z+H2fEBhEfD4FPbfPiMka4dxCfbe/A00NEXQOoI+Pi3rmWGiIiIiHRrSgBD3JMf7yIuKpyrZgwOdCjBZ8f7MOQUiIpt8+GTBiaSHBvZc/sBAoSFw6nfhL2rIXtJoKMRERERER9TAhjC9pbX8O81e7gyazAJMZGBDie4HNgLBRtdw/NjCA8znDYijSXbCmlu7sGjXxOvgri+8MkjgY5ERERERHxMCWAIe+a/OTRby02nZQY6lOCz8wO3PU4CCHD2mL4UVNSxJr/M9zEFq8gYOPl22L4Icj8LdDQiIiIi4kNKAENUVV0j//gsh/PHDyAjpe0pjj3ajg/cqFbfk4572BfG9iMy3PDO+n1+CixIzfgaxA+Ad+6F5uZARyMiIiIiPqIEMET9a3keB2obueWMoYEOJfg0N7sRwGGzIez4/4on9ork1OFpvL1+H7YnF0GJ7g3nzIc9K2Hti4GORkRERER8RAlgCCqvaeD3729nxtAUpg5ODnQ4wWf/eqgqPOH0T4/zx/cnt6SajXsP+DiwIDfhyzBoGiyaD3WVgY5GRERERHxACWAIemTRNkqq6/nRReMCHUpw2vqu2x6j/9+Rzh3XjzCDpoGGhcF5D0LlPljyf4GORkRERER8QAlgiNm2v4JnPs3m6hmDGT8oMdDhBKcNr8DgUyC+f7sOT+0dzcyhqbzd0xNAgIwZMOkr8N/fwb71gY5GRERERLxMCWAIsdYy/98biIsK5645owMdTnAq2OTaP4y/vEOnnT+hP9sLKtleUOGjwELI3AcgJgneuBOaGgMdjYiIiIh4kRLAEPLuhv18sr2Y784ZTUpcVKDDCU7rXwETBuMu6dBpc09yo4Vvr9MoILEpcMFDsGcVfPZooKMRERERES9SAhgiyqsb+Mm/NzC6XzzXzBwc6HCCk7Ww/mXIPAN69+3Qqf0SYpg2JFnTQD1OugxGXwjvPwAlOwMdjYiIiIh4iRLAEGCt5fuvraOwoo6HvjSRiHD9Y2vT3jVQsqPD0z89zh/fn417D7CjUBUwMQYu/D8Ij4R//49LrkVEREQk5CmTCAGvrd7NW2v38p1zRzExPSnQ4QSv9S9DWASMvbhTp18yeRCR4YbnluZ4ObAQlTAAzv0p7PoIVj0X6GhERERExAuUAAa5vJJqfvTaBrIyk7n9zOGBDid4NTfDhldh+BfcGrZO6BMfzQUTBvDSinyq61X8BICpN8CQ02Dh/VCh6bEiIiIioU4JYBCrb2zm//1zNRb49ZcnEx5mAh1S8Nq2EMrzYNJVXbrM9acMoaK2kddW7fFSYCEuLAwu/h001MKCuwMdjYiIiIh0kRLAIGWt5cdvrGdZdikPXDaejJTYQIcU3D57FBIGdXr6p8fUwcmMG5DAs59mY7XuzUkbAbPvgU1vwJa3Ax2NiIiIiHSBEsAg9dQn2Tz/eR7fOGs4l0weFOhwglvBZti5GLJucUVLusAYw/WnDGHzvgqWZZd6J77u4JRvQp+xbhSwTkVyREREREKVEsAg9MHmAh54ayNzT+rHd89Vw/cT+vxxiIiBqTd65XKXTB5EfEwEz36a7ZXrdQsRUXDxI26a7eJfBDoaEREREekkJYBB5vNdJXzz+VWM6Z/Ab66cTJjW/R1fTSmseQEmfAniUr1yyV5R4XxpWgbvrN/H/gO1XrlmtzB4Jky7CZb+yTWJFxEREZGQowQwiLy3cT/XPfkZ/RKieerGLGKjIgIdUvBb/jQ0VMPMr3n1sjecOgSAXy/c6tXrhrxz5kNcX3jtG9BYH+hoRERERKSDlAAGiX8tz+P251YwZkAC/7r9VPonxgQ6pOBXVQQf/xZGnAv9J3j10kNS47j59KG8uDyPVblaC3hQryS4+LdQsAGW/F+goxERERGRDlICGGD7D9TynRdXc/dLazl1eCr/uHUmKXFRgQ4rNCz+BdRXwtwHfHL5b31hJH3jo/nR6xtoalZF0INGnw8Tr4QlD8PetYGORkREREQ6QAlggByobeBPi7dz1sOLeWvtXr5x1nCevCGLuGhN+2yX/Rth+VOu8mcf3xTK6R0dwf0XjmXd7nJeXJbnk3uErPMehF4p8Nod0FAT6GhEREREpJ2UbfhJbUMT2wsqWZZdwqJN+/lsZwmNzZZzx/XjBxeOZUhqXKBDDB3WwsL7IToeZt/n01vNmzSQv3+Wy6/e3cz54/uTrNFZJzYFLvkj/OPL8O//gcseB6OCRSIiIiLBTgmgD9Q2NLFhzwFW55WxOq+MDXvKyS6qwjOLcETf3txyxlDOO6k/UwYnBzbYUPT5E7DjfTcKFZvi01sZY/jpJSdx4e8+5s7nV/LkDVnERIb79J4hY9Qcl4Av/jkMnAon3x7oiERERETkBIy13W9t0/Tp0+3y5cv9es+a+iYWbyngrXV7eX9zAdX1TQAMSIxhwqBExvSPZ3T/BCYMSmRwaqxfY+tWdi6Gv30RRs6Bq/4BYf6ZxfzSinzu+tcazh3Xjz9dM5XIcM2eBqC5GV68Bra+C9f8E0ac48u7aYhRREREpIuUAHbR5n0HeG5pDq+u3E1VfRMpcVHMPak/Z47qw5TBSfRLUDVPryneAU+cDfED4JaFEJPg19s/899sfvzGBi6ZPJDffFk9Gg+qLYenL4DCLfDFx2H85b66k15wERERkS7SFNBOqKlvYsG6vTz/eS7Lc0qJigjjookDuHxqOjOHphCh0SHv2/khvPJVt87s6uf9nvwB3HBqJpV1jTz07hYqaxuZP+8kMlI0mktMItz4Fjx/Nbx0C1Tsg5O/rjWBIiIiIkHILyOAxpjzgEeAcOAv1toHj3jctDx+AVAN3GitXdmec9viixHA+sZmlmeXsGD9Xl5ftYeKukYyU2O5ZuYQrpiWruIgvlJfDZ/8Fj78FaSNhC/9FfqdFNCQnvp4Fw8v3EJTs+WO2cO5/czhWhcIrhroy7fC5jdh0HQ47xeQMcObd1BGKSIiItJFPk8AjTHhwFbgXCAfWAZcba3d2OqYC4Bv4hLAmcAj1tqZ7Tm3Ld5IAEuq6tm89wCb9lWwIqeEJVuLqKhrJDoijAsmDODKrAxmDk3BaJTD++oqYd862PAKrHkR6sph0lfgwochKjiqpe4tr+GBtzbx5tq9xEdHcMaoNM4a3ZdTR6TRPyGG8J46PbS5GdY8D//5KVTugyGnw5gL3JrNlGEQ1qVEuYe+qCIiIiLe448E8BRgvrV2bsvf9wFYa3/R6pjHgcXW2udb/t4CzAYyT3RuW9qTAFpr+fEbG6htaKKmoZnahibKqxsorKyjqKKOirrGg8f2T4hh9ug+nD2mL6eNSFOvPm+yFt78NlQVQU0pHNgDpdmAhfBoGHcJTLsRMk8LbJzH8PmuEl5Zmc8HWwrYf6AOgMhww6CkXvRPjKF3dCRx0eHERUfw1TOGMTQtOBJYn6urhM8ehfWvQEHL9zXh0ZCcCQkD3RTe6ATIuhUGTm7vVZUAioiIiHSRPzKZQUDrLtr5uFG+Ex0zqJ3nAmCMuQ24reXPypYk0ityIO0zKPqlty7oXWlAUaCDOAYvxPaXlh+v8+nrtr2Nfcf91uJw3fifaeERf/+xIye/Y609r/P3FhERERF/JIBtfWt/5LDjsY5pz7lup7V/Bv7csdDaxxiz3Fo73RfX7irF1jmKrXOCOTYREREROTF/JID5QEarv9OBPe08Jqod54qIiIiIiEg7+KNfwTJgpDFmqDEmCrgKeOOIY94ArjfOyUC5tXZvO88VERERERGRdvD5CKC1ttEYcyfwLq6Vw1PW2g3GmNtbHn8MWICrALod1wbipuOd6+uY2+CTqaVeotg6R7F1TjDHJiIiIiIn4Jc+gCIiIiIiIhJ4/pgCKiIiIiIiIkFACaCIiIiIiEgPoQSwA4wxdxljrDEmLdCxtGaMecgYs9kYs9YY86oxJinA8ZxnjNlijNlujLk3kLEcyRiTYYz5wBizyRizwRjzP4GOqTVjTLgxZpUx5s1Ax3IkY0ySMealln/XNhljTgl0TCIiIiLSMUoA28kYkwGcC+QGOpY2vAeMt9ZOBLYC9wUqEGNMOK679/nAOOBqY8y4QMXThkbgu9bascDJwDeCLL7/ATYFOohjeATXjH0MMIngjVNEREREjkEJYPv9Bvgex2hEH0jW2oXW2saWP5fi+iUGygxgu7V2p7W2HngBuCSA8RzGWrvXWruy5fcKXBIzKLBROcaYdOBC4C+BjuVIxpgEYBbwJIC1tt5aWxbQoERERESkw5QAtoMxZh6w21q7JtCxtMPNwNsBvP8gIK/V3/kESYJ1JGNMJjAF+CzAoXj8FvclQ3OA42jLMKAQeLpliupfjDFxgQ5KRERERDrG530AQ4UxZhHQv42H7ge+D8zxb0SHO1581trXW465HzfF8e/+jO0Ipo19QTdqaozpDbwMfNtaeyAI4rkIKLDWrjDGzA5wOG2JAKYC37TWfmaMeQS4F/hhYMMSERERkY5QAtjCWntOW/uNMROAocAaYwy46ZUrjTEzrLX7Ah2fhzHmBuAi4As2sM0d84GMVn+nA3sCFEubjDGRuOTv79baVwIdT4vTgHnGmAuAGCDBGPOctfbaAMflkQ/kW2s9o6Uv4RJAEREREQkhagTfQcaYbGC6tbYo0LF4GGPOA34NnGmtLQxwLBG4QjRfAHYDy4CvWGs3BDIuD+Oy+GeAEmvttwMcTptaRgDvstZeFOBQDmOMWQLcaq3dYoyZD8RZa+8OcFgiIiIi0gEaAewe/gBEA++1jFIutdbeHohArLWNxpg7gXeBcOCpYEn+WpwGXAesM8asbtn3fWvtgsCFFDK+CfzdGBMF7ARuCnA8IiIiItJBGgEUERERERHpIVQFVEREREREpIdQAigiIiIiItJDKAEUERERERHpIZQAioiIiIiI9BBKAEVERERERHoIJYASlIwx3zLGbDLG/L2D591pjNlujLHGmDRfxSciIiIiEorUBkKCkjFmM3C+tXZXB8+bApQCi4Hp1toiH4QnIiIiIhKSNAIoQccY8xgwDHjDGHOPMea/xphVLdvRLceEG2MeNsasM8asNcZ8E8Bau8pamx3A8EVEREREgpZGACUoGWOygelAPVBtrW00xpwD3GGtvdwYcwdwDnBly2Mp1tqSI8/XCKCIiIiIyCERgQ5A5AQSgWeMMSMBC0S27D8HeMxa2wjQOvkTEREREZG2aQqoBLufAR9Ya8cDFwMxLfsNLiEUEREREZF2UgIowS4R2N3y+42t9i8EbjfGRAAYY1L8HJeIiIiISMhRAijB7lfAL4wxnwDhrfb/BcgF1hpj1gBfgYPtI/KB9JbH/uLvgEVEREREgpWKwIiIiIiIiPQQGgEUERERERHpIZQAioiIiIiI9BBKAEVERERERHoIJYAiIiIiIiI9hBJAERERERGRHkIJoIiIiIiISA+hBFBERERERKSHUAIoIiIiIiLSQygBFBERERER6SGUAIqIiIiIiPQQSgBFRERERER6CCWAIiIiIiIiPYQSQBERERERkR5CCaCIiIiIiEgPoQRQRERERESkh1ACKCIiIiIi0kMoARQREREREekhIgIdgC+cd9559p133gl0GCLiXSbQAXSV3ptEuqWQf28SkZ6lW44AFhUVBToEEZGj6L1JREREAq1bJoAiIiIiIiJytJBIAI0x3zHGbDDGrDfGPG+MiQl0TCIiIiIiIqEm6BNAY8wg4FvAdGvteCAcuCqwUYmIiIiIiISeUCkCEwH0MsY0ALHAngDHI9IuDQ0N5OfnU1tbG+hQQkZMTAzp6elERkYGOhSRbkvvTR2n9yYR6S6CPgG01u42xjwM5AI1wEJr7cIAhyXSLvn5+cTHx5OZmYkxKhR3ItZaiouLyc/PZ+jQoYEOR6Tb0ntTx+i9SUS6k1CYApoMXAIMBQYCccaYa9s47jZjzHJjzPLCwkJ/hynSptraWlJTU/UBq52MMaSmpmpUQsTH9N7UMXpvEpHuJOgTQOAcYJe1ttBa2wC8Apx65EHW2j9ba6dba6f36dPH70GKHIs+YHWMXi8R/9B/ax2j10tEuotQSABzgZONMbHGvft+AdgU4JhEJIQYY84zxmwxxmw3xtzbxuNjjDGfGmPqjDF3tdo/2hizutXPAWPMt1sem2+M2d3qsQv8+JREREREOiUU1gB+Zox5CVgJNAKrgD8HNiqRnuexxx4jNjaW66+/PtChdIgxJhz4I3AukA8sM8a8Ya3d2OqwEly14Utbn2ut3QJMbnWd3cCrrQ75jbX2YZ8FL8dkreVATSOJsSrIIaH7/iQiEghBnwACWGt/DPw40HGI9FSNjY3cfvvtgQ6js2YA2621OwGMMS/g1hUfTACttQVAgTHmwuNc5wvADmttji+DlfZ5cVke976yjknpiVw8aSAXTRxI/0S1iO2JQvz9SUTE70JhCqhIj1dVVcWFF17IpEmTGD9+PC+++CLLli3j1FNPZdKkScyYMYOKigqampq4++67ycrKYuLEiTz++OMALF68mNmzZ3PFFVcwZswYrrnmGqy1APz0pz8lKyuL8ePHc9tttx3cP3v2bL7//e9z5pln8sgjjzB//nweftgNdq1evZqTTz6ZiRMnctlll1FaWhqYF6Z9BgF5rf7Ob9nXUVcBzx+x705jzFpjzFMtBauOogJVvvH66j30jY+myVr+961NnPPrD9lXrgIdgaD3JxGR0KIEUCQEvPPOOwwcOJA1a9awfv16zjvvPK688koeeeQR1qxZw6JFi+jVqxdPPvkkiYmJLFu2jGXLlvHEE0+wa9cuAFatWsVvf/tbNm7cyM6dO/nkk08AuPPOO1m2bBnr16+npqaGN9988+B9y8rK+PDDD/nud797WDzXX389v/zlL1m7di0TJkzgJz/5if9ejI5rq3KD7dAFjIkC5gH/arX7UWA4boroXuD/2jpXBaq8r7Sqns+zS/jS9HTe/OYZvHzHKVTWNbJw475Ah9Yj6f1JRCS0KAEUCQETJkxg0aJF3HPPPSxZsoTc3FwGDBhAVlYWAAkJCURERLBw4UKeffZZJk+ezMyZMykuLmbbtm0AzJgxg/T0dMLCwpg8eTLZ2dkAfPDBB8ycOZMJEybw/vvvs2HDhoP3vfLKK4+Kpby8nLKyMs4880wAbrjhBj766CMfvwJdkg9ktPo7HdjTwWucD6y01u737LDW7rfWNllrm4EncFNNxQ/+s7mApmbL3JP6AzBtSArD+sTx3sb9JzhTfEHvTyIioSUk1gCK9HSjRo1ixYoVLFiwgPvuu485c+a0WZLcWsvvf/975s6de9j+xYsXEx0dffDv8PBwGhsbqa2t5etf/zrLly8nIyOD+fPnH9bnKi4uzndPyn+WASONMUNxRVyuAr7SwWtczRHTP40xA6y1e1v+vAxY39VApX0WbtjHgMQYJgxKPLjv3HH9eOrjXRyobSAhRoVh/EnvTyIioUUjgCIhYM+ePcTGxnLttddy1113sXTpUvbs2cOyZcsAqKiooLGxkblz5/Loo4/S0NAAwNatW6mqqjrmdT0fptLS0qisrOSll146YSyJiYkkJyezZMkSAP72t78d/LY9GFlrG4E7gXdxLWT+aa3dYIy53RhzO4Axpr8xJh/4f8APjDH5xpiElsdicRVEXzni0r8yxqwzxqwFzgK+46en1KPV1Dfx0bZC5ozrd1iSce7YfjQ0WRZv0TpLf9P7k4hIaNEIoEgIWLduHXfffTdhYWFERkby6KOPYq3lm9/8JjU1NfTq1YtFixZx6623kp2dzdSpU7HW0qdPH1577bVjXjcpKYmvfvWrTJgwgczMzINTtk7kmWee4fbbb6e6upphw4bx9NNPe+mZ+oa1dgGw4Ih9j7X6fR9uamhb51YDqW3sv87LYUo7fLStkNqGZua0TP/0mDI4mdS4KN7buJ95kwYGKLqeSe9PIiKhxXgqanUn06dPt8uXLw90GCJs2rSJsWPHBjqMkHOM162tYi4hRe9NXffdf65h0ab9LP/BOUSGHz6J5XsvreHtdftY8cNziYrQBJfj0XtT53TX9yYR6Vn0f0gREQkJjU3N/Gfzfr4wpu9RyR/AueP6U1HXyGe7igMQnYiISGhQAigiIiHh8+wSyqobmHNSvzYfP31EGjGRYSxSNVAREZFjUgIoIiIh4dMdxYSHGWaNarufYq+ocM4Y2Yf3Nu6nOy5vEBER8QYlgCIiEhK27a9kSGossVHHrl927th+7CmvZcv+Cj9GJiIiEjqUAIoEmrXQ3OS2InJM2wsrGdm393GPyRqaAsCq3DI/RCQiIhJ61AZCxJ+aGqGhCupbfprqoakBsICBiGj3E5sK0QnQRjNlkZ6ovrGZ7KIq5h5j/Z9HZmosib0iWZNXxtUzBvspOhERkdChEUARX7EWmhuhphTKd0PhFti/Dkp2QmUB2GaIioO4PhA/0G3Do6G+2h1TtAVqyro8Mpidnc348eO985yOsHjxYi666CIA3njjDR588EGf3Eckp7iKxmbLyL7xxz3OGMOkjCRW55X5JzDpNL03iYgEhkYARbzFWijaBrs+dD+5S+H0P0JpI2AgMhbi+0NUvPs97Bjfv9hmqC6Fyn1Qugti0yAxPehHA+fNm8e8efMCHYZ0U9sLKgEYcYIpoACT0xP5wweFVNU1Ehet/831dHpvEhE5nEYARbqqugSWPgaPngZ/zIIFd8Ge1TDiHOiVDGmjYMBE6DMK4gdAdO9jJ38AJgziUqHvOIjrC9VFLhFsbu50iI2Njdxwww1MnDiRK664gurqan7605+SlZXF+PHjue222w5WTfzd737HuHHjmDhxIldddRUAVVVV3HzzzWRlZTFlyhRef/31o+7x17/+lTvvvBOAG2+8kW9961uceuqpDBs2jJdeeungcQ899BBZWVlMnDiRH//4x51+TtKzbCuoxBgY3qcdCeDgJJotrN9d7ofIpCv03iQi4n/6alSksxrrYMn/wce/haY6GDgVLngYRnwBkoe6EbtNm9w0T+An/97Axj0HOn6fpgZoKgKTDZExwKGRwHEDE/jxxSed8BJbtmzhySef5LTTTuPmm2/mT3/6E3feeSc/+tGPALjuuut48803ufjii3nwwQfZtWsX0dHRlJWVAfDAAw9w9tln89RTT1FWVsaMGTM455xzjnvPvXv38vHHH7N582bmzZvHFVdcwcKFC9m2bRuff/451lrmzZvHRx99xKxZszr+ukiPsr2gkvTkXvSKCj/hsZPSkwBYnVfGzGGpPo4s9HX6vek49N4kIhK8NAIo0hk5/4XHTocPfwnj5sHtH8NtH8CMr0LKMO9O1wyPhIgYsE0u6eyEjIwMTjvtNACuvfZaPv74Yz744ANmzpzJhAkTeP/999mwYQMAEydO5JprruG5554jIsJ9R7Rw4UIefPBBJk+ezOzZs6mtrSU3N/e497z00ksJCwtj3Lhx7N+//+B1Fi5cyJQpU5g6dSqbN29m27ZtnXpO0rNsK6hkRDtG/wBSe0eTkdKLNfllvg1KukzvTSIi/qcRQJGOaG6C9/8XPv41JA2Ga192Uz3boT3fhh9XxV6o2AcJA6H38SshHskckZAaY/j617/O8uXLycjIYP78+dTW1gLw1ltv8dFHH/HGG2/ws5/9jA0bNmCt5eWXX2b06NGHXcfz4akt0dHRB3/3TOGy1nLffffxta99rUPxS8/W1GzZUVjJGSPT2n3OpPQktYJopy6/N3WB3ptERPxPI4Ai7VVdAn//kkv+pt4AX1/a7uTPK3r3h5gkOLDHVRbtgNzcXD799FMAnn/+eU4//XQA0tLSqKysPLgOprm5mby8PM466yx+9atfUVZWRmVlJXPnzuX3v//9wQ9Lq1at6tRTmDt3Lk899RSVla6gx+7duykoKOjUtaTnyC+tpr6xud0jgACTM5LYXVZDQUWtDyOTrtJ7k4iI/2kEUKQ9ynfDXy9wydfFj8C0G/0fgzGQNASKG6A0x7WMiIpt16ljx47lmWee4Wtf+xojR47kjjvuoLS0lAkTJpCZmUlWVhYATU1NXHvttZSXl2Ot5Tvf+Q5JSUn88Ic/5Nvf/jYTJ07EWktmZiZvvvlmh5/CnDlz2LRpE6eccgoAvXv35rnnnqNv374dvpb0HNv2t1QA7dexBBBgTV45546L8UVY4gV6bxIR8T9ju9hjLBhNnz7dLl++PNBhSHdRWw5PnQ9luXDdK5Axo92nbtq0ibFjx3o3nqYGKNrq2k70Ge3WCHYzx3jdgrsPRjvovalzHl28g1++s5m18+eQENO+f99r6psYP/9dbj9zGHfPHePjCIOItbD0UUgYACdddszDfPLe1AN01/cmEelZNAVU5Hga6+HFa11T9iv/1qHkz2fCI12V0eYm1zC+uTHQEYn41PaCSvolRLc7+QPoFRXOmP7xrMnrYa0gVjwN794H/7oRXr8T6qsDHZGIiAQZJYAix2It/Pt/YNdHMO8PMPysQEd0SFQsJGdCQ40bDWzQhzzpvrYXVDCyb3yHz5uUkcSavDKam7vfTJc25S2DBd9za5PP+C6seg7+8gUo3BLoyEREJIhoDaDIsaz+O6z5B5x5D0y+unPXsBbqq1yi1lTvfpqbAOseC4uAiGgIj4LoBIiIav+1eyVC2HC3HrBwq6sOGtfn2C0orHVx1Fe6n4Ya13Q+LMKNKvbu39JnUCR4WGvZXlDJl6ZndPjcyRlJ/OOzXHYWVTKiEwlkSKksgH9eB4mD4ItPQGwKDDkNXrkN/jwbvvRXGDU30FGKiEgQUAIo0pbiHe6b9MwzXALYERX7Ye0LsOUdGPcdKGrVuy88Ckx4S5JmXBJWWw60jFBExbsPbr2S29dLMDrerQMsy4UDu6GmxJ0bk+QSu6YGl3TWHYCaMmhuOBRHZKy7b3MT1LY83ruvazERduJm2yL+sLe8lqr6Jkb0bX8BGI/WhWC6dQLY1OCmfNaUwa3vufcQgBFfcD1Kn70E3vsxjJzj3R6lIiISkpQAihypqQFevsWNil32ePuToeyP4dM/wdZ3XNP2AZMgqrdbrxfZy13PtDHr2lrX4L2m1CVwZTlQVQgJgyC6HR96wyNd8/nqYqgucpVKD+w54iDjRhh7Jbok88iRxqYGd07lfvchMm0UhOvtQQJvW0FLBdBOJIDD+/QmLiqcNfllXD4t3duhBY9F8yHnEzfy13/C4Y8lDICT74A3vw27V0D69EBEKCIiQUSf8ESO9MlvYc8q+PKzbjrViexeAf/5Gez8wE3BPOUbMOU66DMKNm2CXknHP98YN/UycgDE93eJ4IHdULzNJZCJGSeemmkMxKW5n8Y6N6pom91IX3ikG+07XiIbHgnJQ9zoYckOqNwHid34A7OEjO0tCeDITiSA4WGGCemJrMkr83JUQaSmFD57HKZcCxO/3PYx4y+Hd78PK59VAigiIioCI3KY4h3w4UOufPq4S45/rLUu8XvibNi3FuY8AN9eB3N+5pK/zjDGTd/qO86NADbUuAqk1cXufu0REe2mcsb3d9eKjm/XKOb8+fN5+A9/hl4pUFXkpo4exwUXXEBZWVnb13n44fbFKnICu4oqSYiJILV3dKfOn5SRxMa9B6hrbPJyZEFi8wI3tXvazcc+JiYBxl0K619xa5JDUEffV/T+JCJybCGRABpjkowxLxljNhtjNhljTgl0TNINWQsL7nYJ1HkPHv/Yxnp47Q5Y8rD75v1/1sCpd7qpnt4QFu6SuD5j3OhdWa6bGtrshw+x8f3dtmL/cQ9bsGABSUlJvo9HerS8khoGp8Z2+vzJ6Uk0NFk27a3wYlRBZMOrkDgYBk09/nFTr4P6Ctjwml/CCjS9P4mIHFtIJIDAI8A71toxwCRgU4Djke5o4+uw4z9w1v2HkqC21FfBP74Ea553x877gxtlOx7b7KZm1lW46Zm15a7wSkP18ZO6iChIHQHxA9xUr+Id0NT+vn9VVVVceOGFTJo0ifHjx/Piiy+SmZlJUVERAMuXL2f27NkHj1+zZg1nzzmfkWdcxhNPPAGNdezdu5dZs2YxefJkxo8fz5IlSwAOu84DDzzA6NGjOeecc9iyxZWc37FjB1OnHvpQum3bNqZNm9bu2L3JGHOeMWaLMWa7MebeNh4fY4z51BhTZ4y564jHso0x64wxq40xy1vtTzHGvGeM2dayTfbHc+lp8kqqGZzS+QRw0sFCMGXeCSiY1JS6qecnXXLi4i6DT3HvJav+5p/Y2qFT709nn83IkSPd+xN0i/cnERF/C/o1gMaYBGAWcCOAtbYeOP7cNJGOaqyHhT+EfhMg69ZjH9fc7Mqq7/oILvkTTLmm7eMaamDHB1CTBAUbXfL3399D8fZjXDjMjfqFRbRM12zjw1xzg7sOBiKjwUS4gg/nH3u08p133mHgwIG89dZbAJSXl3PPPceuarp27VqWLl1KVXkpU6ZO5cJ5l/L8mx8wd+5c7r//fpqamqiuPrzn4IoVK3jhhRdYtWoVjY2NTJ06lWnTpjF8+HASExNZvXo1kydP5umnn+bGG2885r19xRgTDvwROBfIB5YZY96w1m5sdVgJ8C3g0mNc5ixrbdER++4F/mOtfbAlqbwX6GDJWDme5mZLfmkN547r1+lrDEiMoU98dPdMADe/Bc2Nbsr6iRjjZissmg9F2w5/7O17Yd8678Z2gvcm6ML7U1UVU6ZM4cILL+T5558P6fcnEZFACIURwGFAIfC0MWaVMeYvxpi4Iw8yxtxmjFlujFleWFjo/ygltK1+Dspz4Zz5x69++dFDsPlNmPO/bSd/dZXwySPw2wnwwtVutDA8yo0oRse7KaKRsYd+ImIgPNolfc2N0FjjzmmqA5oPv3ZYpDvfcKivIMdfFzhhwgQWLVrEPffcw5IlS0hMTDzu8Zdccgm9evUirf9Azjr9ZD7/bClZWVk8/fTTzJ8/n3Xr1hEff/ho55IlS7jsssuIjY0lISGBefPmHXzs1ltv5emnn6apqYkXX3yRr3zlK8e9v4/MALZba3e2fIH0AnDYAk9rbYG1dhnQ0IHrXgI80/L7Mxw7eZROKqioo76pmfQujAAaY5iUnsTq/DLvBRYsNrwGSYNh4Ammf3pM+oprQxMko4Cdfn9KS+Oss87i888/7w7vTyIifhf0I4C4GKcC37TWfmaMeQT3TfsPWx9krf0z8GeA6dOnt7NahgjQUAsfPQzpM1zfrGPZ9CYs/jlMuhpO/vrRj697Cd7+nivYMuwsOPWbUD/ATbsCuPiR48dhrWvQXl3i2kGYMFdV9Mi+fM1Nbk1gbZnr99fcdMwiL6NGjWLFihUsWLCA++67jzlz5hAREUFzs0sua2trDzvetJ5GFhaOaapn1hln8NFHH/HWW29x3XXXcffdd3P99dcf+7xWLr/8cn7yk59w9tlnM23aNFJTU4//GvjGICCv1d/5wMwOnG+BhcYYCzze8l4D0M9auxfAWrvXGNO3rZONMbcBtwEMHjy4o7H3aLklbjSnK1NAASZnJLJo037KaxpI7BXpjdACr7rETf88+evt7+0X3881g1/9PAy66tD+E4zU+UqX3p9a/p41a1aovz+JiPhdKIwA5gP51trPWv5+CZcQinjHymdc24Wz7z/2B6mSnfDq19w37Rf99vDjmhrh3ftd78DUEXDLe3D9ay6Z7EjTZWPcKGHyEOgz1vXtq9wPRVuhvtW0prBwSM6EhIEuCSza6kYE27Bnzx5iY2O59tprueuuu1i5ciWZmZmsWLECgJdffvmw419//XVqa2spLi5m8SefkTVpHDk7ttK3b1+++tWvcsstt7By5crDzpk1axavvvoqNTU1VFRU8O9///vgYzExMcydO5c77riDm266qf2vhXe19Q+hI18SnWatnQqcD3zDGDOrIze31v7ZWjvdWju9T58+HTm1x8trSQAzkrtWXMmzDnBdfnlXQwoeWxa0TP+8tGPnTbkOqgqgsfbEx/pYl96fFi8mKyuLnJycUH9/EhHxu6AfAbTW7jPG5BljRltrtwBfADae6DyRdmlqgCW/hiGnw9Az2z7GWnjzO25E7sq/Hd6Tr64C/nk97HgfZtwGc3/ueuq1Pre6xE3rbKx1P81NgHFpSVikmwYaGeOSv6jeh/oCpgx1hWLKcl2SF9/fjQYa435693PTSEuz3eMJgyA29bCkc926ddx9992EhYURGRnJo48+Sk1NDbfccgs///nPmTnz8IGwGTNmcOGFF5Kbm8sPv38fA/v34Zm3/sNDj1xOZGQkvXv35tlnnz3snKlTp3LllVcyefJkhgwZwhlnnHHY49dccw2vvPIKc+bM6cQ/IK/IBzJa/Z0O7GnvydbaPS3bAmPMq7gppR8B+40xA1pG/wYABV6MWXAjgMbAoC4mgBMHJQGwJr+M00emeSGyILDh1Y5N//QYOQfi+gZFO4guvT/98IcMHDiQZ555hoceeiiU359ERPzO2Pb2FgsgY8xk4C9AFLATuMlaW3qs46dPn26XL19+rIdFDtm8wK3Vu/oFGH1+28dsXwTPXQ7n/RJOvv3Q/uYmeP5q9/jFv4WpraYdFW6BT//Apr7zGDs4za27iYh2yV5Yq+9dmupbEsM6wLrHeiW5qZ8RLYlmUyOU57nRvqg4N/oXHnX4NUpzXYn36HjXOD6icz3TDtPc5Pobxg90U8c66eGHH6a8vJyf/exn7T5n06ZNjB079sjdHRhObXWSMRHAVtyXR7uBZcBXrLUb2jh2PlBprX245e84IMxaW9Hy+3vAT6217xhjHgKKWxWBSbHWfu94sei9qWP+3z9X8+mOYj697zhTs9vp7IcXM7xvb564vhs0Qq8ugYdHuumfc9r/39VBr3yNTQO/xNiZHZyl0A119P3Jm+9NIiKBEvQjgADW2tVAN/i/tgSd1X9334aPOKftx5ub4b35kDQEph/RaPn9n8G2d+GChw8lf02N8Onv4YOfu9G9865000I9I3vH0twEdQdcWfeqYvcTm+JG/cKj3GhgdYlLBAu3uHhiEty54VGQOhyqi+DAHijYDAn93fPqyoe7sHCXuJ6gIfzxXHbZZezYsYP333+/83F0kbW20RhzJ/AuEA48Za3dYIy5veXxx4wx/YHlQALQbIz5NjAOSANebVlDFAH8w1r7TsulHwT+aYy5BcgFvuTHp9Uj5JfUkJHctfV/HpMykvh4exHW2mOuCQsZHan+2ZZhZ0JNk/vyyVu9S0NQMLw/iYgEQkgkgCI+UVUEW9+BmbcfPm2ztfUvwf51cPmTriefx7qX4OPfwLQbD7WNKM2Gl26B3cth7Dy48NeQV3R4j0BrXU9ADxPmkrSwcOiV7H6aGqBinysmU13q1vrFpbmEMDIWSndByQ435bN3S90RY9yoYXQilOe7RLC6FBLTIbp351+j8EgXTye9+uqrnb+3F1lrFwALjtj3WKvf9+Gmhh7pAK73aFvXLMaNKoqP5JZUc9oI70zZnJSeyKurdrPvQC0DEkM86dn4Wsv0zymdOz/zDNi00U1h78EJYLC8P4mI+JsSQOm51v3LfYs++Rilvxvr3Shf/4lw0hcP7S/YDK/fCYNPhfMfcslX8Q7464WusfvlT8L4y1tG34qwdVWY+gNQVwUNVUckgOGHWkPEJLopnuGRkJThkrvyfDiQD3Xl7gNfZAykjYKyHFe4pqkOEtIPjfRFtIwW1pa7c4u3ucQxYdDhU0/bKzyqSyOAnREK09LF92obmthfUUtGincSlMmDkwFYkVPKRRNDOOlpqHV9SLO+2vkR/qQMCNuCrT2A8XyJJCek9yYR6S6UAErPte4l16y430ltP775TVeA5epfQVirgrkL73dr7L78jEu4KgvguS+6dXw3vX3oevnLiSnOpji8gtS4CExkL+iV4pIqz+e2xjqXNFYVusp84VGukEtsmrtHyjA3tbO8ZWpncqab+pk81I3yVRW4RDU581ArCGPcOsLoeKjc5+Krq3THRB3VQvP4wqP8WizCWktxcTExMTEnPli6td1lNVjb9RYQHicNTCA2KpzPd5Vw0cSBXrlmQOxZ6b6UyTytS5eJsbUUl5aRmtKMCQuFguCBpfcmEelOlABKz1Sa7aZqnvOTYx+z/Ck36jayVXW4nYtd0Zc5/+tG6Ooq4e9XuCTrhn+75K+xHt76Dqx6jvSEIeTP+jWFjQNakr7Ktu9lI10rh/oiaMx3U0NjEg+tHWwybkpo9j7olehaRADUNULNDgjPc9NE2+oH2Gigeh/s3H0oMWyvugq3LrEk/PAk2IdiYmJIT29rNqb0JAdbQHgpAYwMD2PakGQ+31XilesFTM5/3Tbj5C5dJj2ukfwdn1NYG+GdolE9gN6bRKS7UAIoPdP6lv5SxyqiULgFspfAF358KKlqbob3fgSJg930K4B374N96+DqFyF9umvb8M/rXKJ4+neIPOMuhrZeg1df5dYe2iZ3vYSBEHXEB9z9G1xfwZ0fQMpwuPRRGDzTJZuv3QGb3oCJV8G837sRyM1vwUvXuWme177spoAeqboEXv+G6x122rfh3OMkvq1teRteuwpu/Y97fiJ+klfqelt6qwgMwIzMFP7vva2UVdeTFBt14hOCUe5SSBsNcV1rWh457HSGvjwczv4hzLrLS8GJiEgo0LwP6ZnWvwLpM1zT9bYsf8pV8ZxyXatzXoa9a+ALP3Rr8bb/B1Y+C6d+E0bNgQN74enzIftjl7SdM98VYCnfDf/9PTxzMTw4BB6ZCL+bAn+YBr9Ih8dnwVvfhexPXJGYfifBda/CNS+5NYpPnw8fPezWCX75WTjrflj7gmtfUV8FYy6E699wI4RPzYV9649+PrEpcNU/YNpN8MlvYdVz7XudUoa5bcnOjry6Il2WV1JNVEQYfeO9Nzo1Y2gKAMuyj9lFKLg1N0HeZzDklK5fKy4N+o2HXR92/VoiIhJSlABKz1O0Hfavh/FfbPvxpkZY+yKMvRh693H7mpvhw1+6NYPjr2iZ5vldV5Bl9vfdOf+83k0tveZfrrBMUyN88jv4w3RY+AM38nfyHXDJH+Gyx+GyP8Pp33FTPVc/D3+9AP48G9b+yxWKGXku3L4Exl3iitH848tuSuaZ33Ojfzveh39cCfXVboTwloWu0Muz89xzPJIxcMFDruH9W9+Fkl0nfq2Shrhr7j+qZZ6IT+WVVJOe3IuwMO+1bJiUkURURBif7Sz22jX9av8G1y5m8Kneud7QMyH3M1dYRkREegwlgNLzbG1p4zb6grYfz/vMrXsbd8mhfbsWu4qap3zTrYVb+YxrxzDnATcauORhyP8cLn4Ehp/tPqj9eTa890P3Ietbq+Drn7qmzVOuhUlXwaQr3WjiDf+Gu7fDRb9xI3qv3Ap/OcdNLY1JhCueci0ldn4Az1wElYWu7+Blj0POJ24ksLEe+ox218LA3y5zI5JHCo90o5MmHN6598SvVWQMDJruqg6K+FFuSbXXCsB4xESGMzkjic+zQ3QdYO6nbuuNEUCAobNcJeH8z71zPRERCQlKAKXn2foO9B137OmfW9920z+Hn31o3/KnXQXPcZe4tXgf/hKGnO5G6fKWwYe/golXwoQr3PrBZy52FTq//De4+vlDUymtdaOJzU3uxyMq1jWa/8bn8MW/uIbvj5/p1hw21UPWLXDV81C41U3zLM2BiV+GeX9w6w3f+Ka7dupwuPYlqClxI4ZtVfBMHARn3edehx3taIA8bDbsXe2SYhE/ySup9ur6P4+ZQ1NYv7ucyrpGr1/b53I/dW1fkgZ753pDTnVfBu3UNFARkZ5ECaD0LDWlroreqPPaftxaV/gk83TXbgHcSNrmt2DKNW5EbMXTrm3DOT+G+ko3YpcwyE2vLM2BZy91H6puehvGzXPXzPkUFnwPfj0WfpoMP01xP7+bAm/+P9j0bzcNKywMJn7JJYKTvwKfPAJ/vcjFMGoOXP+aawvx1HluuumUaw6tCVz8CxfvwClu1HDfOlc0prn56Oc542sQP8Bd/0SGnemmpGZ/3IkXXKTjyqsbOFDb6LUegK3NHJpKs4XloTYK6Hkf8dboH7j3uEFTNcIvItLDKAGUnmXrQleBc/T5bT9euBmKt7vCKh6r/+7OmXYTNDXAp390U6cyZsCS/3NJ3xf/7Eb0/nap6+t3/WtuNK40G/5yNjx9Hqz4KwyaBrPvc+sGz7zXrSFc8wK8eK1LBlf/wyVssSlwyR/gS88cmk66bz0MPhluXODu8bfLXMP3WXe7aaUf/hI2vOpiHjUXzv0pbHwdPnvs6OcZEQUzb3ejh/vWHf81GzQdIuNg67sdfbVFOiWv1LWA8PYUUICpQ5KICDOh1w6idJfr6zm4a+0fjjJ0Fuxe4SoYi4hIj6AEUHqO5iZXATN1hEtq2rLhNcDA2Hmt9r0KGTNdQrflbajYCyd/3bVW+OzPrpjMkFPg7XugLA++8qKr5LnlbVfhs3inm6r5vR1w1d9h9r0w+x43DfMrL8I92XDNyxDf343YPTH7UCXPky6FWxe5voB/vcAlg/3Hw9UvuMTzta+74y76LQycCm/d5eICV510xDmw+EFXgOZIU6+H8GhXyfR4IqLcesU1z0PBpna+2CKd5+kBmO6DKaCxURGMH5QYeglgTsv6P28VgPEYeqb7gsuzvlBERLo9JYDSc6x/GQo2wlnfP3ZT842vu3Ux8f3c356KoeMudX+v+Kub7jniXFj6J2iociNwuz6Cdf90VT0Hnwyf/gmev8pV0fzahzD1umM3YI+IgpHnuF57X3wCKvbBX74AK55paQsxDm5+x7WB+PuXXFuJIae4Eb7Nb7oRyfBImPc7N8V10Xx3XWNg7s/dNNXFDx5939gUGHsRrP3niasAnvUDF/9bd7mYRHwotyUBHJzq/QQQYOawFNbkl1Hb0HTig4NF7n8hJgn6jPHudTNmuC+CtA5QRKTHUAIoPUNjPXzwgGvjMO44zd8LNx1K9gA2vua24+a56Zw73ncjZ/WV8NnjbqQwZbhrq5A0BM74f7BtEbz7fRhzEdzynmvMbq0rt/72PfCvm+D1O+Gd+1w/Qk/yFRbmCrvc/olLIv/9LXj1dmiocQVrvvJPN03r719yUz9P+Ya7x6L5LSODE1ybiZXPuHuBqww67Qa3brF4x9HPecq1UFvmEsnjiUuFL/wYcj6GdS+1+2UX6Yy80moSe0WSEBPpk+vPHJpCQ5NlZU4IFTbKXQqDTzn2l1edFdnLTU3PW+rd64qISNBSAig9w4q/ugTu7B8d+wPUwemfFx/at/F1SM+CxHQ3VdIY1xz+s8ddP65Zd8PSP0LRVrjgYTc99OWbXYPlL/7ZFY1Z/pRr/v7UHBfHvrWw7T1XWfSlm+D/RsGCu117B3C9B699xa0VXPuiS/gaamHARLjyWSja4noOWuvaTsQkthR7aXLnJKTDm98+VGX0zHvdN/z/+cnRz3nobEjMgFV/O/FrOPV6N8104f2HppmK+EBeSY1P1v95ZGWmEB5m+GRHG1Ojg1FlgVub7M0CMK1lzIC9a92XTSIi0u0pAZTub+9a105h2GzXtqEtzc1ujduQ0yBhgNu3f4NL1k76omvqvvofbupnbCp8/mcYOddNB/3o/2DU+e76L90MGLjqOYiIgbfvhTe/44677HG4axt8cwXctQW+vxuuexVGznHJ4OOzIK+lH1dYuFsreNljkL3EXcNa15ri/F+54i2bXoe4NJj7AOxd45LK6N5w7k/cVNedH7hrxfeDGbe6SqOeJNMjLAwmX+Omf5VmH/91DAt3vQprSuGFr7gG9CI+kFdS7ZMKoB7xMZFMyUhiybYQSQA96/MG+zABbG6APat9c30REQkqSgCleyvNhr9f4da7ffEJN4LXlpxPXJW9qdcf2rfyWQiPcv39ti9yo3tTroUNr7hWDKd83Y3+1VfCOfPh49/AnlVwyR8hrq8bpfvsUTj5G3DjW675u6e1BLiEavjZcPlf4Kvvu7WAT1/gCst41tlNusqN6q35Byx91O2bdiP0GQvvP+AS0/GXu5YOnz/uHh97MfRKhlXPHbrXxCtdK4dNrx/93Kde72L57PETv54DJ7uRzdyl8K8bXVVUES9qbrbkl9aQ4cMRQIDTR6axbnc5pVX1Pr2PV+R8ChG9YMBk31w/fYbbqiG8iEiPoARQuq+qIvjbF6GxFq59GXr3PfaxK5+B6ES31g/clMs1L7g1dnGp7vG4vq59xOdPQNpoNx1y2V9aEq4kV2F03KWuhcQrX3W9A897EM77uUuwjmfARLhtMYz4Arx9Nyz8waEkcNb3XBwL74fdK921zv4BFG9zo5bhka6J/I73oWgbRETDxKvc/auK3TX6jnPFI9a/cvS9Ewe5Uc6Vz7q1hSdy0mVw0a9h27uuCmlbfQZFOml/RS31Tc0+aQLf2hkj+2AtoTENNPdTSJ/uviTyhd59IHnooRkIIiLSrSkBlO6prtKtnTuw2xVP6Tv22MeW7HKJ0ZRrXEEEcNMla8tcAZUDe10PvMlfcVNC96yErFtdUlhbDqd/2xWYaWpwzeGX/cUVVZnzv64oS3v1SoarnocZt8GnfziUBIaFwaV/cgnoG9909xlzoSvcsPhBl6xOu9GNVn7+Z3etqddBU71bQwhu5HP85ZDzX1dF9EinfN2NZJ6oJYTH9Jvh7B+6yqcLf9D+5yhyAnklbh2aL9cAAkxKTyQ+JoKPg30aaEONq0ScMcO398mY4RJAVfkVEen2lABK91NZAH+90K2Lu+KpEzdOXvRjCItwffM8lv0FkjMhc5abSmmb3FTJZU+5pugTrnBTMjPPcCOHq55zSaG1LiEacY7rFehRV+GqZ750M7z2DZdQNtYdHUtYmFvj50kC17/s9sckwgUPuQ+CG151Cd1Z98OBfNjylhvdHHuxu4e1rg/hwCmHGsODG+XDuuT2SAOnuOfy3z9AfVX7Xuczvgszvuamwa7+R/vOETkBTwsIX08BjQgP49ThqSzZVoQN5qRn/wZobnT/jfpSehZUFUBZjm/vIyIiAacEULqX4h3w5LmupcNV/3AjZcez+S1X6fPM70HCQLdv9wpXEn3G1wDrKncOm+2Kv6x/GSZ+yfX9O7DbJXkfPeSqbJ7+HdfeITwa5v3eJXPNTa7dw6+Gw8u3wK4lLgH7x5fhoRGuh9+RjHFTRwdOgXfuhZoyt3/MRa5ip2dUb9hslxju+ODQ3zUlrlogQObpLgn2JJppI9zU1S0L2n4tzv4BVO5z/Q3bw9NnMPMMV6Rm37r2nSdyHHkl1RgDg5J8VwTG4/SRfdhdVsOuonZ+6REIe1a5ra8TwIyZbpu3zLf3ERGRgFMCKN1HwWaX/NVVuKIro887/vG15a5/X9+T4LT/ObT/0z9BVLwr+LLtPTfKNv1m1zC9sQam3eQKpiQNgdThbhrkjFth69uuWfN5P3fJZGOda/Ow9E8w4Utw0zvw3c1w93a45iU3Mvnu910xlyNHIMLC4aLfQlXhoeIvYWHuOjved6OcYeEwdNahBs4HP8C19ABMz4KmOti3/tB1R5/vCt54ksrWBp8Moy+Ejx+Bstz2vebhEW6UtVcyvHhd29cV6YC8kmoGJMQQFeH7/z2dMSINgI+3B/E00D2rIK6PqyTsS33HudkNKgQjItLtKQGU7uHAHnjucjeV85b3IH3a8Y+3Ft75PlTsc6N14S0Npws2uyqf0290FTuXPwW9+7k2DyuedlX4TJhL9Gbc5pK78Cg3Wvjhr1w1vcnXuCT0719yo4tzfw6X/tH18AoLd4UcRp4LV7/gegp+9CuXCB6ZBA6c7Eb9lj56KLHyVPP0TA3NnAXluVCaA6kjISbp8AQQIL/VN/pjLnTTybYvavt1mfuA2756+6E+gifSuy986Rkoz3PPQ6QL8kqrfT7902NIaiwZKb34aGuQJ4ADpxy7grG3hEfAoKmH3j9ERKTbUgIooa++yk2prC2Da/7lRuVO5NM/wurn3Dq21sniovnuW/DTvg2FW2HbQrf2L3+Z6603/SbXbiEy1o2mrXnBtWrY+o6bEnr2/e6D2ut3QvbHcOljcMo32o4hLNwlnzPvcIlkW20Yzvwe1JUfatTedwz0n3iommfmaW6bu9SNEKZnQf5yty9hIMQPdFNaPQZNc6MJx5oGmjLUrTXM+QSW/PrEr6PH4Jlw6rdg9d8hf8WJjxc5htwS/yWAxhhOH9GHpTuLaWgKwmq29dVQuNl37R+OlDHTzRho7zpgEREJSUoAJbRZ65KtfevhS3+FAZNOfM7Kv7mWCmPnwVmtRqw2L3DTOGfd5Rqsf/AARMXBzNvhv79zawCHn+MKrUz8sqv02VgL0291BVvSs2Doma5n18bXXPI2+erjx2IMnPcLGDS97QqcAya5YjRHJnElO9zvyUPd9kBLZc/kzEO/A6SNhJKdh/4OC3fN7He8f+wRvklXwfgrYPHPXdXQ9jrjuxDVG1Y81f5z/MQYc54xZosxZrsx5t42Hh9jjPnUGFNnjLmr1f4MY8wHxphNxpgNxpj/afXYfGPMbmPM6pafC/z1fLqr2oYm9h+o83kF0NZmjUyjsq6R1Xllfrtnu+1b50b8fb3+zyNjhit45Vl3KCIi3ZISQAlta15wUza/8CM3rfJENrwG//4WDDvLNWD39Oerr4K3v+carJ/yDdiz2iVxp3zDrcPb+o6b5rnh5Zak7xZY9iQMOc01kC/NhlPubKkCer9rzN66qujxGOOSroINh6/X8+g7DvZvPPR3/ACoLobGeoiKhYgYV/wF3Ohebbl7DCBpsJua2dqIL0BN6bE/5BkDF/3GJZMv3ezaYLRHdG/XI3D9q24KbJAwxoQDfwTOB8YBVxtjxh1xWAnwLeDhI/Y3At+11o4FTga+ccS5v7HWTm75OcawqrRXfqlrAZGR4vsCMB6nDk/DGPgkGNcB+qsAjIdn2rimgYqIdGtKACV0VeyDd+6BjJPdlM0T2fi6q8SZngVXPucapnss/oVLlC76jVsP+P7PXGGTU74B//29m/I5/eZDSV/lflcuPesW93jSENeGYcMrbrTu7B+60cP2OumLbv2ip8Jna33Hucqenmqevfu4bXXLB9ZeKVBd6n6PS2t5rKUBfNJgF2tD7aHrDTsLMLD9P8eOJybBvUZ1FfD8VW4qWntMvR4aqtpuOB84M4Dt1tqd1tp64AXgktYHWGsLrLXLgIYj9u+11q5s+b0C2AT4uBpHz5VX6v498+cIYGJsJCcNTODTHcV+u2e77VkFvftDwgD/3C82xa0lViVQEZFuTQmghK4Fd7uk6JI/uvVvx7P5LTeaNWiaq8AZ3fvQYzs+cP3vpt7gCrVkf+KKpJz+HTcyuPafrljL7hUu6ZvxVZcIxvWF3gNc1bxTvuGmVC76CfSfAJNOMPXzSHGprnfgupeg+Yi1SP3GuWlZRVtbju3rtpX73TY25fARQDiUHCZmuG15/uH3GjgFdhwnAQTXS/Dyv7hWEm/c2b7nkZ4FfcYcWrMYHAYBrYdB8+lEEmeMyQSmAK2HR+40xqw1xjxljEk+xnm3GWOWG2OWFxYWdvS2PUqepwdgsv8SQIBThqWyKreM2oZ2Fj7yF08BGH/KmOHe04K5N6KIiHSJEkAJTfs3wqY34PT/5/rbHU/uZ/Cvm1whhWtecqNbHpUF8MptkDbKrcVrbob3fuSmWWZ91RWLsc1wytdh+ZPu2/hB02Hbu65NxLp/uqIxk69x8ZTnwhd+fOKEtC0ZM6Fij5ti2lqvFLf1TKsMj3LbpsaWvyOhqWXKp2fU0VPEwTNy4EkWPYbNdgltQ83xYxp9Psy+z1Ud3bXkxM/BGDcSunvFoWmogddW+cQOfbo1xvQGXga+ba090LL7UWA4MBnYC/xfW+daa/9srZ1urZ3ep0+fjty2x8krqSY6Iow+8dEnPtiLTh2eRn1TMytySv163+Oqq3Rf+gyc7N/7pme5GQSt1w6LiEi3EjIJoDEm3BizyhjzZqBjkSCw9I9uWuaMrx7/uAN74MVrIXGQqxDaOvlrbnbJX90BV0AmKs4lebuXuySuvso1gR//RZcEbnsPpl7nkj7b7HrybXzNtVaI7u1G7xLSYfgXOvecmlpmH0Yc8eG3puVDaa+WAaa6lvyjV5LbNtS41wI4lNe05DwxLcfUlh1+zYyZrh1Efjumep32LdeD7D8/bd+oQOoI9/qU5Zz4WP/IBzJa/Z0O7GnvycaYSFzy93dr7cG5rdba/dbaJmttM/AEbqqpdIGnAqjxdcuDI2QNTSE8zPDfHUG0DnDfWsAGYATQ009U/QBFRLqrkEkAgf/Brb+Rnq6qCNb+y02zjE059nGNdfDP66GhGq76x9HHfvxr2PkBnP9LN82yfLebwjnsLFeU5cNfuuTqzHvcOr/wSLcOcOWzkHmGS3BqSl0iWFvuplSOu6Rzo3/gmrab8EOFaTwOJoAt8XuSuZhEt62vPjTydzD/a/kA7UkSj2zQnnmaG0nc+u6J44rs5abD5n/u2k2cSEpLG47iHSc+1j+WASONMUONMVHAVcAb7TnRuEzkSWCTtfbXRzzWemHWZUAbFXykI/JKavy6/s+jd3QEE9MTg2sdoKcAjL9aQHj0GQPRCWoILyLSjYVEAmiMSQcuBP4S6FgkCKx42iVLM792/OMW3OVGuC59FPqOPfyxbe/B+//r2h1MvcGNbC24y42KXfQbl7yseBqm3eg+DK36u0s4C7e4ip/TboR1/3JJ2fCzYMs7bhrmSZd2/nk11rmKnkfyrO/zJHO15W4b3TKa2VDVagTQ44gRwJojprZFx7tpoJvfbN+o3uRr3HP97+9OfKynD6NnzWKAWWsbgTuBd3FfIv3TWrvBGHO7MeZ2AGNMf2NMPvD/gB8YY/KNMQnAacB1wNlttHv4lTFmnTFmLXAW8B1/P7fuxFpLXkk1Gcn+qwDa2inDUlmTX05lXWNA7n+UPavcyHt8P//eNyzMNYT39BMVEZFuJyQSQOC3wPeAY3bqVaGFHmTtP2HoLOgz+tjH5PzXjdSd/h0YN+/wx2rK4LU7oN9414jdGFf0ZcsCOOs+1wx98S8gPBpm3wvL/uKSu1O/Bauec1MxR5wDW952I37hkbD9Pejdz60P7Kzy/EOjeoft3w3RiYemhlYWunWHkTFuGmtdhUvoAJpbppF6RiE9SWJbbRlGznHJ7JFtItoSFQtTrnHP+URr+2JT3H3bc10/sdYusNaOstYOt9Y+0LLvMWvtYy2/77PWpltrE6y1SS2/H7DWfmytNdbaiUe2e7DWXmetndDy2DxrbTv7ZUhbymsaqKhr9FsT+COdOjyNpmbLsuySgNz/KIEoAOMxaDrs39D+6r8iIhJSgj4BNMZcBBRYa1cc7zgVWughqordyNKws45/3Kd/dInarO8d/dgHP3dFDi75g0tsGuvh3fshZRjMvMON8q1/GWbe5hKy5U/BqLnum/jNb7mWDbuXu6mlo1sGg/aucRVGOzv9s74Kti2E0ecd/Vje5+4beY+CjYeS38r9LjlNTHd/Hzld9HhrqVKGuW1ZOxO13v0BC40nKBwDriKqp1iNSDvkeiqABigBnDYkmchwExzTQGsPuNYv/p7+6TFomqs8vHdNYO4vIiI+FfQJIG4K1jxjTDauf9fZxpjnAhuSBIynQfHgk499TGm2G82bdpNL8FrbuxaWPeEauXuq6y39ExRtgfMehIgot/YvMhZO+aZLBKuLYObtsOlNl/xMvNJNIY2IgaFnuOStaBv0n9j557X1HZdQjr/88P01ZS7hG3zKoX37N7g1i3Co0Epyptt6+v/Fph5+nbYSQU/SeKCd9VAiW6anNtQe/zhwlUzbms4qcgx5Je6LhUCsAQToFRXOlMHJwZEAehKvQI0AprfMZNitaaAiIt1R0CeA1tr7WqZjZeKKN7xvrb02wGFJoOR9BmGRx/9g9PkTYMIg69bD91vregf2SoGzf+D2lefDh7+C0Re6Ub7dK1zSd/LtbirjZ4+5ogjDZrsm7UlDXJn0re+6aaiRvVxLCqzr/9dZ619xI2ytEz1oWYdjYXBLZb7KApeQ9j3J/V2W67ZJQ9y2uti9Pp4pocdb35fQ0grvQP6xj2ktomVt1pFtKo7U1OhGD5QASgcEegQQ3DrA9XvKKa9uCFgMwKECMP5uAeHRuy8kDtY6QBGRbiroE0CRw+QvhwETXeLVlqZGWPk3tzYv8Yhe31sWQN5SOGf+oYIq7z/gkpXzfuH+XvQT10z9tG/DzsXum/iT73CJ164PYeKXoSwbSne5NXTgRujANU7vjOIdbkTxpEuPrgCavcRVBvWsLdy3tuVeLSOApdlum9TS5aCq0I3+eUb8bEtja9PGf+rRvSGqN1Tsa1+cnms2nWANYENLD8Ij21mIHEduSTXJsZH0jo4IWAynDk/FWvhsV4BHAfescglYXFrgYkifBrtXBu7+IiLiMyGVAFprF1trLwp0HBJAVYWHpi625UA+1JXD0DOPfmzDa270b/JX3N81ZbDhFVfhMnkIFG51Sd7Jd7h+gSufcesIJ13tkkfb7Nb/eb6dT89yW09y1VaSdSL11a5VRVQcnPrNwx+zFja86kYao3u7fdkfQ1iEW6MDLkFNGX4oIS7YDGkjW70eu902vv/R964pg/rKth9rS/bHrhiNZ7TxWEpbpqV6klKRdsguqmJoWlxAY5g8OImo8LDAN4TfswoGTgpsDIOmQ3mu+/JLRES6lZBKAEUOq3jZlpJdbpsy9PD9TY2uyMqo8w6Nsq1/2U1nnHqd+3vF02765JTroLrEFXyZeJUbydqywK2z6zvWrSMMizjUWuJge4ayjj+fBXe7NX1ffOLoxDb3U7fGb+KVh/btXOwST89rsHvloQIxzU3uWq2nopbsbHk9hh1974Mjl+NPHGdTo3sNRp/n1kkej+eeqSNOfF2RFruKqhia1jugMURHhDN2YAKr8soCF0RtuZthMCDQCWDLl0yaBioi0u0oAZTQUl8JUcdJAEtbEsDkIxLAvKUuQWtdZXPV31zyM2Cya/i++u8w9mK3/mXti26q45RrXdK5czGMuchNg9y3FvqMPTTF8WCvvbKOPZeVf4PVz8GZ34OR5xz9+H9/70YgPW0sqktgz2q3HhHgwF6o2HPog1rxDlekpnUC6GnG7mnO3tr+DW7bnqmrOZ+4CqNj2jEA70kAj/xnIHIMVXWN7DtQy7A+gR0BBJiSkcS6/HIam47Zdci39q132/4BTgAHTHLTz1UIRkSk21ECKKHD2vaNAIZHQcLAw/dvedvtH362+3vfejfNaur1Lqnb8Jr75n36Te7xVc+5QjP9x8P2/7hk0NPyYd86tw7RwzMCWP3/2Tvr6KjOrws/d+LuLkSABI0Q3Au0SAu0eIFC8bp7f/V+dS81oMW9xYu7SwIJBAKEhBB398zc7483bgQITQL3WStryFyZd4Yyvfuec/Zu4NyQLEPwatj6khBz/d+ouU9iqKi4dZ8n2kNBzAMiVwjAuNL5HMfSCmDZfGD1CqC2Qe1tngkhQmCaONx8zZc2C1OX1oNuvm/aNZGJqNe01RyFlkNkipgb9WjiFlAAP1dz8ovVXE6sJTvzv6Ds37HDHbgKNwa6huLmkFIBVFBQULjnUASgQstBlkX7pqak7n2K80WEQ3UzlZQromWzTDxGHROP7R4Rj9f2ChdOt77CFCXxgpj3A4g5LUSUS3exhupziJYeYGgNR38QrZL1kZMMa6fChrmilXPckpprVZfApmfFvGK3ORXPh24Qz5VV/K7uFoHwZa1iV3eL3EIb74rPK3yPaBGtHgNRmAMXN4v3W19WIIiZvqBl0H50hRitj8SLYN325vspKJRSJgDdm0EF0NfFHIBzTdUGmnAejGwbPpt7N3EOEDfKNE1UDVVQUFBQuCsoAlCh5aBSCaGVW48pgb6pqBJWjz8oyBTVrjJSLguxVFb9ijkjLnYkSQSvQ0UkQ1nwupZ2xXkrG77oGsGIryH+HBz+uvZ1ZdyAHW/Dj74iQmLIRzB9a0X1sDJHvxfVvYe/FVEUINpLw/6FTuNAS0fM+4VtgzZDRD6fuhiubBdxFlo64pj4c0L4dh5f8zWCV4mW2OrGM7Wx+z3xfgf97+b7qotF9bKp7OsVWiRlAtDNqukFoKulIZZGupy7kdE0C4gPubNImcbEKQAKsyD1alOvREFBQUGhEWk6v20FhdvB2EZU0epCz1REHxTlVm1BLMisekc9+TJYewnBl5siZge7TBfbok+Cll5FC1bSJfAYWHpgmbCsVjVrP1qYtRz4DC5uEu2iVq0hKVQ4dV4/Kl6r4xjo+4oQlLVxdQ8c+FxUHzs8WvH8+XWgLgSfCRVrzE2qqGBGHRPv0XtExTHBa0Tba/vRVV9DluH0QjH7WOZkWhfXj8DFjTDg7frdV8tIuiTW6eB7830VFEqJSM7BydwAfR2tm+98l5EkCV8X86YxgikphORLtc8ENwWVjWDq+s5SUFBQUGhxKAJQoUGoNTIJWQXEpueTnF1IWl4R6blFZOQVU6zWUKLRUKyW0dGSMNbTxkhPGxN9HRzN9HG2MMTF0gAzAx2km7Ub3gwj25tXAEHcta4uAPXNKn5PDhOOoCDC36FCDMWcFhUsbT1hvJIdX+H4WV4BrPY+JAke/R1cuol5wiPfCSGqpScy+3o9K9o56xNRFzfD+hlg6w0jvql4XqOG4/PFxVjZvN+lLULctX1I/H55u5jR8ywVquoSuLBevMfqVcbrR8T7HzW//vZPjRq2vwmmzg2rFIIQu6AIQIVbIjIlt1kYwJTh62LO/stJZBUUY6qv89+9cNIl0eJu38Tzf2VYtxU31WLPgN/kpl6NgoKCgkIjoQhAhSrkF6m5GJ/J5YQcwpNyCE/OITIlh/iMAko0co39jXS10NVWoa2lQkclUayRyS0sIa9IXWNfC0Md2jua0sHRjA6Opvi5WOBiaXBrotDUUbQ2ynLt4sXQSjzmJFY1ginOFwIJoLhAzPFZlObZlcUhlLVdJV6syArMjCldfOm+kkqIutqysSQJus4SP3lpYh8rz4qWzLrITYWDX8Cp30XL1ZT1VdtVA/8SFcohH4nXKC4QFcHWg8VMY3G+EHuegypm9M4uFe/Rt9pFm7pYtHQaWolqZH2c+BUSz8PYP4UhRENIvCDmEmuLnVBQqAVZlolIyeVRP6emXko5vi7myDKERGfSp81/GMaecF48NnUERBkqlTDDUoxgFBQUFO4pFAF4HyPLMtFp+ZyMTOX09TRCYjK5mpSDulTo6euo8LA2xsfZnEc6G+JsYYiThQH2pvpYGOlgbqCLrnbtY6RqjUx2QTGxGflEp+UTk55HeFIOoXFZLD56naJSi3UbEz0CWlnQpZUFvi7mdHA0w0C3njYwpy4iviEtQoir6ti2F49Jl8SFSxkGFhUxDeXze6UCsqRQPJaJp+K8CrMYnVLhU1IkHlUqIbzCtsKwL8XvtWFoWTG/VxfZiXD8Jzj9p3jNbnOEyCsLdQdhSLPnQxFsX9buGbxSiLseT4nfg0rFXq9nxe8FmbD3I2HwUlYhLOPQ12K+cNySqq9TnaQwcQ6v4RVmOA0hNRysW9f9uSgoVCMlp4jsgpImD4GvjE+pEczZG+n/sQAMAV3j5hWh4hwAR76HoryG3whSUFBQUGjWKALwPqOoRMPhq8lsDYnn2LUUErOE+DE31KGzszlD2tvRycmMdg6mOJkboFLdXsumlkrC3FAXc0NdOjiaVdlWrNZwNTGHwBvpBF5P40xUOtsvJACgkqCtnQnd3S3p1dqaHh5WmBlUqqC5dBePMadrF4CWHqLSV5ZxV4ahVUVMg6r0P3u51NlOXSTyrlRaonVSVldUC8tEYVElS/gOo+HyNvFTJsoaSlGuaNcMWQPX9ok1dBoHfV4WrZ/V2fGWEKgjvhXVv5IiOPydqBS69RXbjv4ArXpDq17imGM/icy+hz6tWiWNDYRDX4HPJPEe6kJdDBvmiBbaR364uUtoZVLDK+aGFBQaQHkEhE3ziQ0xM9DB08bov3cCjQ8R2aTN6QaKU4D4TkwIAdceTb0aBQUFBYVGQBGA9wlhCVksORbF9gvxZOQVY26oQ982NnRzs6CruyVtbU1uW+zdKjpaKto7mtLe0ZSpPURrZVJWAcExmZyPyeBsdAZrz8Sw5HgUKgm6tLJgSo9WDOvogK6Nt5hJiT4JPhNrnlylJeb1Ei9Ufd7QCnISSvdRAVJFnIS6qCLUvaRAPJb9Xi4AcyvO1W4k2P8IG58RFcfahGhlshPg6i7h4hmxX7yGqRP0fAb8p9V9fPBqCP0HBr4jqmogqn+ZN4RDqCQJN8+sWBj1s9iekwTHfxEGMpXbyIoLYMNTwghn6Of1r/fQV2KWb/wyMLatf9/KlBQKt9POExp+jMJ9T2RKDtA8MgAr4+tiwYHLSciyfOezyw1BoxHfW2Xt582FykYwigBUUFBQuCdQBOA9zo3UPL7dfZlNwXHoa2vxYAc7Rvk60qe1TZ3tm02Brak+Q9rrM6S9HSAqleeiMzgSnsKW4DheWH2Oj40v8Xg3F55z8Ecn6njdJ7PrIMRW5TlBQ6uqolBLp6L1U10iKoAgxGDZdhDtWEhVZ/509GHCCvhjAPw1HAJmgHtfYVCjrQfp10UYenwwRB6usFA3cxWCr90jomJX313+wMWw9WVw7we9XxDPFebAwa/EBVnrwULUHf5WtLqWuZTu/VAIzIHvVJxLluHfV0T0xZR/ao+eKCP6tGgT7TwR2o+se7/ayIgWFc3m1L6m0OyJSM5FV0uFo3k9LclNgJ+rOX8HxRCdlo+r1X/Q+pgeCUU5zScCogwTOzBzEUYwCgoKCgr3BIoAvEcpKtHw7e4rLDoSgZZKYm4/T+b198DcULepl9YgdLVVdHO3pJu7JS8OasOhq8ksPR7FT/vD0ei786p8AFLCKypjlXHtCWeXC3MXuw7iOUsPUT0rzBGtjSYOonIGYGQtWjyLckHfXLR/lpm/qFTg0R8u/AODP6gIbbdoBVM3wLZXhOPngf+r5U2YQKue4P+EcOe063jzdsqiPNj/KRz/WYi8cUsqqpH7PhZrHrtInOfIt5ARBSN/FL+HbhDvu89LYN2m4px7PhDP93sNWg+q+7VzU2HddFGdHPZF/eusjbL3JjWfGwsKzZ+IlFxaWRmi9R91IDSUskD4s9Hp/40ALHPQbS4OoJVx8ofYoKZehYKCgoJCI6EIwHuQpKwCnloRRGBUOuO6OPPqQ17Ymeo39bJuG5VKYoCXLQO8bLkUn8XHKwsg+y+ObF5Az+mf17xwdO8vHiMOVAhAu1JzmOTL4NwFLN2FkQyAhZt4zLgh2ket2wgTmTK6PAnrpkH4nqqmKo6+MGuPqPilR4oqYXG+OJ+VpxBSqnoMbSqTkwynF8CpBZCfJpxEh34hwucBoo7Dyd+h22zRhpUSLoRnp3HgMUAcv/UlMa9Tufp34jcRLB8wo+rz1dGo4Z9ZImJj5q76q4R1UWaYU5xb/34KCpWITMnFsxlFQJThbW+CrraKC7GZjPL9DxxKE0LEfHJZ5ExzwqmLyDfNTRE3zBQUFBQUWjSKALzHCIxK56nlgWQXlDD/cX9GdHa4a68lyzLJ2YVEp+cRk55PTHo+hSUajHS1MNTVwkRfh45OpnhYGzfafGE7B1MWPTeaG999if71fUxddJIFTwRgpFfpP2VzFxHCHnFAzNlBxUVV0sVSAeghKmYA5qURD+lRYj+7TnBtb8X5vEeI9s4zf9V01ZQkISYtG9j2mJ8h2kPTo4RoTAwVxg+p4YAsXDd7PVdh6ALCLXTddCEsB71X0dKpbQAPfir22f66qGCO/qWiffXiZtjxJng/DMO/rr/6ePALYUrzyA9V3VNvhTKHwKK82zte4b5DrZGJSs1lcDu7pl5KDbS1VHjbm3AxPuu/ecGE82DTrqLi35womwOMOwtthjTtWhQUFBQU7hhFAN5DbDoXy6vrgnE0N2DpzG5425s2+mtk5hdz+Goyh64kczQ8ldiM/JseY2agg5+rOX1aW/OYvzOWRnfWhmqgq4Vr15E4H/qaSxFRzFoCS2d2Q0erUuuhxwA4t0q4ZmrrgrmbEExlmX+WHsIpMy+tIuMv/bp4tO8o2kWzE8X8i5YO+E+Fw9+ImT73vg1baFGecCuNOiounBIvQlZM1X3MXMGhM3QeD+1Hg03bqtuLC2DtEyLYfsrfIp4iZK0Qt8O/Fuu7tLXCLMbGSxx3/Qj8M1uE249ZWH8l8tJWIQB9J4sZxdtFp1KMhoJCA4hJz6NYLTc7A5gy2tmbsutiwn9jBBMfItq+myMOPoAknIQVAaigoKDQ4lEE4D3CgctJvLw2mIBWFvwxNQAzw5uEj98CsiwTdCODFSej2BoST1GJBlN9bXp5WjOzjzvuNkY4mxvgZGGAvrYW+cVq8orUpOUWERyTwdkb6QRGpfPJtkt8ueMyQzva83h3V7q7W97+RZXXUFSHvmRBtyTGnjTms3/DeO+R9hXbPQfB6YVw45gQgyqVuIiJPiW2l1UE488JAxUjG3FxA8J4BeD8WlGNAwiYCZd3wNKRoj1z4NtVw9pBVPfizwnxdf2IcM3TFIuZOBtvMQ9o1wGs24pqnnkrMY9YF+pi+HumcDwd+6cQpinhwhzGuZto60y/DpueFnNDvV8Ux8UGwYrx4vyTVtef9xd5CNbPEHf4b1YlvBla2uJzTI+6/XPcBEmS/gb+BLbLclmOh0JLJaI0AsK9GbaAArR3NGXNmWgSswqxN7uLbfTZCaL92qEZzv+BuPFk413xHamgoKCg0KJRBOA9QEhMBk+vCMLLzoSF0wIw0W8c8afWyGwNieO3gxFcis/CWE+b8QHOPOrnhI+zOdpatZt9GOlpY6SnjY2JHl72JowPcAHgckI2q07d4O+gGDYHx9G3jTUfj+qI2+3c/Xf0Bwt3ArL3ML3X//Hn0Uj8W5nzcGdHsd29r5iniTgoBCCAWx8xN1eYLfIEJS2IOgaeD4i5wYj9wordvhO06iNm7ro/JYSNmRNM3wr7/08Iy+A1ou1T31ScJ+VKhamMpBJtlD2eEll9rt1B36zWt1EnmTFCmEWfhGFfQcfHREVx7ROiIjnuLzG3t+5JkIHxS0SlM/UarBgHRlYwbbN4rIuYQFg1SVRDJ69vnJBnB58KM4u7w6/Ak8CPkiStAxbLshx2N19Q4e4RmVyaAdhMK4DtHUUXxcX4zLsrAONDxGNzNIApw8kfruys6q6soKCgoNAiUez6WjhRqbnMWHwaSyNdFs/o2ijiT5ZldlxIYOj3h3hh9Tk0Gpn/e7QTJ94exCejO9GllWWd4q8+vOxN+GBkB069PZj3Hm7P2RsZPPj9Ib7bfYVi9S0WcyRJGKBEHuLtvhb4u5rz+voQwpNKA9v1TIQhSuTBimPc+4pA46jjYruDjxCAIFqvcpMhoVS89HwaMqMhbEvF8YaWMOJrmHsI2j0sql0lhVCQIWIdBn8ghNQbUTB7Hzz4MbR98NbF35Vd8FtfMR84ZhF0nyMuura9IlpYxywAM2cR+RAXJDIALT2ECc3yxwAZpmwQmX91ceMkrBgjDB2mbhDvrTGw7wzJlyoiNhoZWZb3yLI8GfAHrgO7JUk6JknSk5IkNV7ZW+E/ISIlB1N97TtuC79beNubAHAx7i7PASaUCcCOd/d17gQnf8hLEWZZCgoKCgotGkUAtmAKitXMWx5EiUZmyYxu2Jrc+R3q7IJinlt1lnnLA5GB+Y/7s/2Fvjze3RVjvcYpGBvoajGjjzv7XunP0A72/LD3KlMWniSroPjWTtRpLMgadC9vYv5kfwx0tHhqeRC5haUB7x4DxOxdfrr43aU7aOnC9cPi91a9REtTSWFFPMLVPeKx7VCRZ3f8l5qva99JmK1MWS8cM+ccEKKsz0tiPkb/NmYvC3MgaBksHAwrx4mYijkHxHsEOPWHmEvs/4YQq1d2iaiIrrNEXl9xAayaKETg42trj8cAISRPL4TFI0TkxdSNYNqIRkEOPqApqZi1vAtIkmQFTAdmAWeBHxCCcHc9xwyVJOmyJEnhkiS9Wct2b0mSjkuSVChJ0qsNOVaSJEtJknZLknS19NGi+nkV6udqYg6etsb/TdD6bWCir0MrK8O7bwSTECLawm/1ZtF/SbkRjBIHoaCgoNDSUQRgC+bz7WFcis/i2/E+eNrUM0vWQC4nZDPy56Nsv5DAaw95seOFvozo7NBgB8+8ohLiMvJJyi4gPbeI/CJ1vfvbmurz4yQ/vpvgQ9CNdCb9cYKUnFuoHNl4CcFxdgUOpee6lpzDW/+cR5Zlkb0na4S7JYhZOJfuEF7q8NmqtwhNjzoGxrbiAuf8WtEGqtISDqIxp0Tbpyw3fF1lFOaImcPTi2DPh2J2b/1MWD1Z/KycKATfN+3gcxfY/CwUZApnz9l7K7L8ApcIl0+vEdD/dTH3t2GOyBV88BOxti3PCzH72B/gHFD7eooLYNvLopLoOVAIzIa6lzYU27K4jSuNe95SJEn6BzgMGAKPyLI8UpblNbIsPwfU+o9AkiQtYD4wDGgPTJIkqX213dKA54Gvb+HYN4G9siy3AfaW/q7QQGRZ5nJi9l0xq2pM2juY3v0KYHxI827/BLDtIG6gKXOACgoKCi0eZQawhbIvLJHFx64zvZcbD3jfuYX6xrOxvPXPeYz1tVk1uwfd3BvWEhiWkMWBy8kcvJzMmag0itUVQkmSoGsrS0Z0dmBYR3ts68gifNTPGQtDXeYtD2T8b8dZNqs7Tub1GJdUpsuTsPVFiD5J79Y9eOVBL77aeZkurSyY1qOriG+4uBk6jhH7tx0Ku94RbUyeA4Vz5cWN4s/d5wnnzKs7wWuYOHfcOeGQmRENI76pf06uKBduHIdr+8XsYeIFxIAeoNIRd/f1TUXQvKQCJNF66TlQZAa2HlQ6m1hJcJ9dAVtegNZDxNxfUY4QjrIGxi8VovbwNxCyBga+C+0eqX1tCRfgnzmQFCrMYga91/CMwlvBsHTmsKzq2vgslGX538pPSJKkJ8tyoSzLdShfugHhsixHlO6/GhgFlJcpZVlOApIkSRpxC8eOAgaU7rcEOAC8cftv7f4iMauQjLxi2jmYNPVS6qW9gynbLySQU1jSaF0QVSjIFJEwfpMb/9yNibauEKmxZ5t6JQoKCgoKd4giAFsgmXnFvL4+hHYOprw5zPuOz/fX0Ug+3HKRbm6W/Py4X51CrTKxGfm8vymUPZcSATErM6OPOx7WRhSrZUrUGlJzi9gVmsj7m0P5cEsoo/2c+HhUx6qZfaUM8LJl+czuPLn4NBP/OM6mZ/o0bC6o0zjY+Q4ErwLXHjzV35OzN9L5eOtFHM0NGNLuYWHYUpQnxFvbh4QAvLpLtE96DRMCcfg30OFR2PsRHP1RPK+lDSN/FPN2B78QbVoBM4STp6Un5CSKC7ekS0LwRZ8Urp9auiKsfeDbol3UrqM4x620uWnUwrBm3yeilXXCcmE2s246pF6FKf+IsPlLW8SaO42Dfq/Wfp5jP8H+T4Vr6eT1d9fGvayFrSDjbr3CJ8C/1Z47jmgBrQsnILrS7zFA9wa+Xn3H2smyHA8gy3K8JEm2tZ1AkqQ5wBwAV1fXBr7svc+lBFFVa+4VwHYOYn1h8VkEuDXSrGxlEi6IR3ufxj93Y+PkL25KadR35waSgoKCgsJ/giIAWyBf7QojLbeIJTO6oa9zZ/8T3n85iY+3XmRIezt+mexfNUuvFkrUGv46ep3v9lxBluG1h7wY4+9cp0PeKw96cSUxm7Wno/nzaCQhMZn8NqULrW1rdusFuFmybGZ3Jvx+nDlLz7B8Vvebvz89Y/AeDhc3wfCvUWnp8O0EX6YuOsVTywNZNagvXYv/FMHu7R4RAfEWbmKGrussIfourIfrh4QbaM9nRHh69Clw6SYucga+JfL0Nj0tWihrw76zcP306A+uve7MUTM7QVTrIg+KyuWo+SIcetvLop115E/idRLOi/2cu8LIn2sKzJSrsPFp0cba7hF4+If6XUEbAy1t0DURkRiNSEJCAg4ODl0AA0mS/ICyN2uKaAetj9qUd0N7eu/kWLGzLP8B/AEQEBBwG73E9yZh8cKwycuumVcAS51AL901AVhqANNcIyAq49RFzCMnXwa76l3UCgoKCgotBUUAtjCCozNYcfIGT/Zyp4PjnRkGXE7I5rmVZ/G2N+X7Cb43FX9J2QXMXhpIcHQGD3jb8tGoDjhb3FzotLUz4d2H2/OAty3PrjrL6PlH+XpcZ4Z2rGk+4utizrfjfXlmZRCvrQ/hhwm+N59B7DgGzq+D8D3gNQxTfR2WzezGtD9PMXVvCSHG5uiGbhQiSJKgzUMQtETEQbQeLARL8BohAP2mwoHPYfsbIvZBt9Sevs1geOWycAZNvCgqf8a2wn3T0qNxzBvy0iDwLzg+X1QsR/4k1iNJcPArOPOnaN/0fwJyU0SEg4EFTFgBOtUE+LlVsPUlIRwfWyjMZP4row0dffHZNiI7d+4EMZ/nDHxbaVM28PZNDo8BXCr97gzENfCl6zs2UZIkh9LqnwOQ1MBzKgCXE7JwNNNv1MzSu4GDmT7mhjp3zwgmPkS0qtfn2ttccCwttMcFKQJQQUFBoQVzxyYwkiRpSZI0V5KkjyVJ6l1t27t3en6FCjQamXc3XsDGWI+XhrS5o3NlFRQzc8lpDHW1WDQ9oNa2zMpEpeby6PxjXEnI5qdJfiyaFtAg8VeZXq2t2fpcHzxtjZm3PIjlJ2oPDB/R2YE3h3mzJTiOr3ZdvvmJWw8GYzsIXFz+lKm+DktndKO9sxXr8gMoubi1QpR0HCPMX0I3CrHi+zhc+Buy4kRFcdR8Eei+ZiqUFFW8jiSBuSt4DRXVvo5jRN7f7Yg/jUaYxMSdhaClsOkZ+K6DaOe07wxz9guhJ0lw6GvY/wl0ngCD3hdrWvuEiK2YuAJMKs2AyrLYf+M8YQbzzEnoPO6/E39pkWJd9p0a9bTTpk1DluWBwHRZlgdW+hkpy/I/Nzn8NNBGkiR3SZJ0gYnA5ga+dH3HbgamlS0R2HRLb+o+JywhG2+H5t3+CSBJ0t01gkkIaRnVPxAdFHqmihGMgoKCQgunMSqAvyNasE4hwpkPyrJc1if3GGJmR6ER2BISx/nYTL6b4HPHeX/f775KbEY+fz/VCwez+g1X4jPzmbzwJHlFJayb15OOTrdf7XI0N2Dt3B48tTyIDzaH0tbOpFbDmbn9PLiRlsevB67hYKbPEz3d6j6plo4QS4e+FuYu5mLOykRfh6Uzu/PNgmFop+xh/epFPDr1BbRcuoFVGzi7HPynCjF3egGc/A2GfCQy/h75UbhybpgLYxY2fN5FXRqBEH1S5PhlxoiqYX4GqItEREJJIairuZ3qmoiw9x5PixnDMg59Dfs+FuJv9K9CyG17CaKOisqeo1/FvhoN7HoXTsyHTuNFVIXWf1xdCS+N0WjkOcPly5czZcoUADdJkmr04cqy/G3No8q3lUiS9CywE9AC/pRlOVSSpHml23+TJMkeOINoKdVIkvQi0F6W5azaji099efAWkmSZgI3gHGN9HbveYpKNIQn5fCAd61jk82O9g6mLDsRRYlac1sZqHVSXCBmiNs+1HjnvJuoVOI7J1aJglBQUFBoyTSGAOwmy3JnAEmSfgZ+KbVqn0Tt8zMKt0GxWsO3u6/gbW/CKB+nOzpXaFwmS45fZ2JXV/xd648uS80pZMrCk2TkFbNqdo96xV9SVgGxGfnoaWuhq63CVF+7VkMZPW0tvp/oy6ifj/L0iiC2PtenxgyhJEl8NLIDSVmFvLcplKz8Yp4Z2LruvDD/acINM3CxcLgsxVhPm3fmTSf78//DMHwbz63qy7fjfdH3mwJ73oeUcJGZ13EMnPxdzAWauwphmJ8Ou/8nYhd6PgPtR9UUVCWFwu0z8jBEHhLCryhHbDOwEOeyai3cPlU64nhtPdA2ENVHCzdR8bNwFxdXZRTliVnEoCWlYu5XIUL3fSKEa7/XRWWvDI0GNj8H55YLN9OHPqt6vv+Kq7vFe7HybNTT5ubmlv3xtvJOSp1D/6323G+V/pyAaO9s0LGlz6cCg25nPfc715JzKNHIeNk37/m/Mto7mlJYoiEyJZc2jTmzmHQRZHXzj4CojJO/MJYqLqjZeq6goKCg0CJoDAFYbtUoy3IJMEeSpPeAfdzmxZpCTdacjiYqNY8/pwc0OJevNkrUGt78+zwWhrq8ObR+B9GiEg3zlgcSk57Pspnd6eRcU/zJskxgVDp/HbvOjgsJqDVVPS6GtLfjrWHeeFTLKTTV1+H3qV0YPf8oT60IZPWcHuhpV62yaWup+GWyP2/8HcLXu64QnZbPh6M61G4MY+5SOtu3FPq/KSzLy86jrY2J72iGBK3glfPXeSK7iIWPjcF070dwdhkM+RAGfwCXtsKOt0odNyXo/bwQboe/gb9niuqajRfoGkNhlghdT7kqLuAAbLzBZyK49hTGLOaut9d6mXxFtHgmh4lw+Qf+J8Tf6YVw6CtR7RxYaexNlmH7a0L89X8DBrz137V8VqYwG64fBr8pjX7quXPnAiDL8oeNfnKF/5zLCaIdu10LaAGFCiOYi/FZjSsAW5IBTBlOXUQnQ+KFujNHFRQUFBSaNY1RIjgjSdLQyk/IsvwR8BfgdqcnlyTJRZKk/ZIkXZIkKVSSpBfu9JwtDY1GZsHhCPxdzRnodWctU0uOR3E+NpMPRra/qfnCN7svc/p6Ol+N86m1TfN8TCaP/HyEsb8d59CVZGb2cefP6QH8NqULP0z05fkHWnP8WioPfX+Iz/69RHZBcZXj29qZ8PU4H87eyODjrRdrnB9AV1vFt+N9eO6B1qw5E82D3x1iW0g8Gk0tZopdZ4n5s7AtNbd1GouOpoCVveI5F53B2BURFLZ+SJiu5GeImIaBb0HY1iqzhPhNgWcDYdJqceFTlCcqgkV5otLV50UY+xe8ckXM2434RhiuWLS6dRGWnwH7PoU/Boj3MfUfIUxVWkKc/vuayDEc8V3Vcx/9QYjDXs83nfiTZdj+ppit9Jl4115GkqQvJUkylSRJR5KkvZIkpUiS1PiKU+GucikhC10tFe7WRk29lAbhaWOMrpaq8ecA40PETJ25W+Oe925SZgSjzAEqKCgotFjuuAIoy3KtF1+yLC8EFt7p+YES4BVZloMkSTIBAiVJ2i3Lcu2K4R7kRGQqUal5vDS4bd0tkA0gLiOfb3ZdZoCXDSM61XTgrMzR8BT+OBTB491dGenjWGP75uA4XlsXjJWRLp8+2pHRvk61GslM7enGlzvC+P1QBLsvJbJ2bk+sjfXKtw/v5MDcfh78fiiCNrYmTOvlVuMckiTxyoNe9PS04r1NoTyzMghvexNeGNSGhzrYV1REPQeCiSOcX18R/F6Ga0+w9sIvcQOLn1zDjCWneUUzlJ8L/oXjP8MD70LP50SI+443RQXPvqM4VqUSuYBew+r/gG8HWRaW6hc3wolfRCh0u5Ew9HMwK231vfC3iHtw9Icxi0TUQhmhG0Qra4fHYPCHTSP+SgqF4+i5FdD3VSGU7x4PyrL8uiRJjyIcOscB+4Hld/NFFRqXsPhsWtsa39R5uLmgo6XC09aYsITGdbclIUQYJjVFu/btYuoIxvaKAFRQUFBowTTa/3UkSXpGkiTzSr9bSJL09J2eV5bleFmWg0r/nA1cQoQz3zesOR2Nib42QzvemU34B5tD0cgyH4/qWK+QTMst4uW15/CwNuJ/I6pafWs0Ml/tDOP5VWfxcTZny3N9mNy9VZ0uojYmenw1zoeVs7oTl5HPE4tOkZlftRL4+lBvBrez48MtoewPq9tJv5enNTtf7McPE30pUmt4akUQw388zJ6LiciyLCplHR8Tc2h5aVUPliToMh1iz9DLOJ7fpwawM82GI3r9kI//AjnJ4iLssT+Eq+fiESIrsDEpzBEzh1d3w/FfYPPz8IMP/NIdDnwmROrcQzBhWYX4O7cS/p4FLt3hiY3CpbSMqGPwz1yxbfSvTXMRmZ0Iix8W4q//mzDwnbv9imVl6+HAKlmW0+rbWaF5cjkhG+8WMv9Xhre9SXnraqOgUQujqJY0/wfiu9TJH+LONfVKFBQUFBRuk8a8Ypwty3JG2S+yLKcDsxvx/EiS5Ab4ASdr2TZHkqQzkiSdSU5ObsyXbVJyCkvYfiGB0b5OdxT6vuFsDLsuJvLCoLa4WNYd3yDLMm/9E0J6bjE/TPTDQLfiNYvVGp5eEcT8/deY2NWF5bO6Y1WpmlcfvVpb8/vUAK4mZTP9r1NkVWoH1VJJ/DDRl3YOpjyzMoij4Sl1nkdLJTHK14ndL/Xn+wm+FBSrmbX0DMN+OMzaM9EUtR8DmmK4VIvLv89E0NKDwMX0b2vDT5P8eD97FJrifOTDX4t9jG1hxk4wc4GV40RLZuUoiJtRXAAxZ+DUAtj2KqwYBz93g/9zhs+c4OcusGIs7HxLrNG2HTz8HbwUCo+vAQcfcR51Cez9GDY+Be79YfJ60Kt0wZx8WeQAmruK9tT/yoxBloW4vrxDmM7M7ypmgcYtES20d1+EbpEkKQwIAPZKkmQDFNztF1VoPNJzi0jIKsDboeUJwISsAjLybuH7oD5Sw6E4r2XN/5Xh6AcpVxo971NBQUFB4b+hMYPgVZIkSbIsyyDyAalkEHOnSJJkDPwNvCjLco1BDFmW/wD+AAgICKhlQKxlcuByEkUlGkZ0rr9lsz7OXE/jjfXn6e5uyay+7vXu+3dQLDtDE3lrmHcVx09Zlnlnw3l2hCbwzvB2zOrrfsvtqP3b2vDz4/48syKIaX+eYumMbuVxFkZ62vz1ZFeeWHSKJ/86zbsPt2NK91Z1Gt5oqSRG+zkxorMDG8/GsuhIJK+vD+EPGyO2mHlicG6lqPhVxtASOjwKwavhgXcZ2tGBiAcHsHZPfyacWojkP02EG1u6w6zdsO0VOPQlnPpDZAV2HCPcLXVNRLUxLxUyokRVL/YMxJyGhPPCIAHEbI9FK7BuU9qe6iB+zF3A2guMrGr/oPLSYP0MiNgvZhCHf1NV4BVkCvGnpQtT1ov3dbfITYGIA2It8SGQHgWFmWKbrgl4D4feL1SNrriLyLL8piRJXwBZsiyrJUnKBUb9Jy+u0CiUtVF627cMA5gyyhxLwxKy6eFRx7/dWyE+WDyW3fRpSTj4ArL4TnDrfbO9FRQUFBSaGY0pAHciMrF+A2RgHrCjMU4sSZIOQvytaEDo8z3F9gsJWBvr0tXt9i7yo1JzmbMsECcLA36b0qXemZuY9Dw+2BxKNzdLZvX1qLLt291XWHsmhucHtWF2P49ajy8sUaPWyBjq1v2f1UMd7Pn5cX+eXRnEvOWB/Dm9a7n7p62JPqvn9OC5VWd5b1MoG8/G8vmYzrStx3VPR0vFuAAXxnZxZl9YEu9tCuXr7B78L3MFOTeCMXatdnHV61kIWQ2nF0G/V5nbz5OZF+YwNOUMJutmoD1zBxiYg46ByNHzfRxO/CpMVk78UnEeLV2R61e+ECPRFtXrOTGr5+gnjGVuRSTLMlzZCTveEKH0I38Sjp+VKS4QAfUZUTBtq4iRuBukX4ed7whTHBBtsU4Bot3Uwk3MLbl0byob+HaIPMDK/6EtbYqFKNw6YQni/l1LawEtcyy93JgCUEsPrNve+bn+axx9xWPcWUUAKigoKLRAGlMAvgHMBZ5C5P/tohFMYCRRZloEXKov7PlepKBYzYGwJEb6OqF1G9EPydmFPPnXaTSyzJ/Tu2JhVHdBVqOReW1dCLIs8814nyqvt/xEFD/tC2diVxdeGtymynElag3HrqWyLSSefy/Ek11QgoWhDo7mBrhYGDKtlxs9PateLA3taM8XYzrzyrpgXlx9jh8m+qGrLYSpuaEuS2d045+gWD7edpERPx5mcvdWjO3iTAdH0zqrjpIkMaidHT09rfj1XwMKz65l++LP8Ju3kNa2lebm7DtB6yFC1PV4Gi1dQ/43oR8v//gsC1K+glUTYco/oFvaJuvWR/zkZ4iQ85wkEQFRlCuqeRathBuojVfDw+KrI8siP3DPh3DjGFh6wPRt4NKt6n7qElEZjDwoZv5a9by916uP4nw4/K1wFlVpQd9XwGuEuOC73ffXiEiStAzwBM4BpfkbyCgCsMVwOSEbSyNdbEwa1j7eXLA10cPcUKdcwN4xCSGi46B6tmhLwNgWTJ2FAFRQUFBQaHE0mgCUZVkD/Fr605j0BqYC5yVJOlf63Nul4cz3NIFR6eQWqRnS/tajH9Jyi5i04ATxmQUsndntpnbry05EcTwilc8f61RlRvDI1RTe23SBB7xt+WR0VfOYrSFxvL8plNTcIoz1tHmwvR2etsbEZeQTl5FP0I10doQmMMjblreGe9PatuKO/5guzqTnFfHJtkvkLDnNb1O6lBvJSJLEmC7ODPCy4fPtYaw4GcXiY9dpa2fMo37OPOrnVCM4vgxDXW1eGd2T9JyHGRa+g0cWHGDpUw9UnXvs8xIsHi6MS7rNxtPGmHa9R/Pi4Vx+uvET0rppMHFl1QszA3MR79CYZMbC+XWiJTX5EhjZihgJ/2k1Lwo1Gtj0DFzeBsO+FJXJxiYvDVaOF62sncYJV1GzZue3FAC0L2s1V2h5hMZl0c7B5I4cjZsCSZLwtjdpHCdQubR9sn0L7l529FUEoIKCgkILpdEEoCRJbYDPgPZA+dW5LMu19ws2EFmWjyAqivcdh6+moKMl0d391tqN8ovUzFxymhtpeSyd0e2m7aNRqbl8vj2M/m1tmNDVpfz5pKwCXlxzlta2xvw0yQ/t0vbRErWGL3aEseBwJH6u5vzfY53o39amhklNQbGav45e55f94Tz0/WFm9HbjjaHe5eeZ1dcDU30d3vwnhIl/nGD+4/64WlUINStj4SD6zoh2bA2JZ8PZWL7YEcZXO8Po19aGcV1cGNzetkaAPIBF3zkQvoGexSeYvNCIdfN6Ymda+p9lq16iffHI9+A3FXT0mdyjFX0P9mCkhxEPXv0cFj0I45eKeb3GQpZFcPzlbXBpS4WNukt3GPEtdJ5Q1eWz8nHbXhatqwPfhe5zG29NZaRfh+VjIeMGjF8G7Uc2/ms0DhcAeyC+qReicOsUlqgJS8hiZp87+t9Ck+Ftb8raM9FoNHKd88kNIjMaCjJapgFMGY5+okU8P0PcIFNQUFBQaDE0pmXfX4jqXwkwENGStawRz3/fcSQ8GT9XizojFmqjRK3huVVBBEdn8ONEv5vOqhQUq3l6RRDaWhKfj+lUflderZF5cc05cgvVzH/cv3wNablFPPHnKRYcjuSJnq1YM6cnD3Wwr9WhVF9Hi6cGeHLw9YFM6OrCgsORzFkWWCUQfnxXF/6YGsD11FxG/HiYTediqV7cMTfUZUqPVvz9VC8OvjaAZwa25kpCNs+sDKL35/tYfiKqZjC8Sw8wceR110uk5BQyZeFJMvNKX1eSYODbkBUDpxcA4GRuwEAvW96+EUDJY4uEy+YvPcSsoEbT4M+/CrIMqdcgaKnI8fu2nXDN3POB2DboPXguCGbugq4z6xZ/298QgfV9XoJ+r97eWuoj4QIsHAK5SSJqovmKPwBr4KIkSTslSdpc9tPUi1JoGFcScihWy3R2Nrv5zs0QL3sT8orUxKTn39mJ4kPEo30LNIApw9FPPJaZ2SgoKCgotBgaUwAayLK8F5BkWY6SZfkD4IFGPP99RWpOIaFxWfRtbd3gY4RT5wX2XEriw5EdbpobqNHIvLTmHBfjs/h+gi8OZgbl2xYejuDYtVQ+HNWBNqUmLBl5RYz99RhnotL5epwPH43qWD67Vx+WRrr836Od+GR0Rw5eSWbkz0erzNEMbm/Hv8/3pbWdMS+sPsfspWe4lpxT67laWRnxyoNeHH7jAZbO6IanjTHvbrzA1D9PEpdR6aJMpYIOozGPPcxfk7yISMnl+71XKrZ7DBCzgAe+gLRIAMZ2cSYlp5BzpgPh6WPC1GXbyyKrb9e7It6hpLCuD1MYt1zbD4e/gdWT4eu28JO/iEu4tk9UHh/5AV68AHP2i/k6K8+6PzhZht3/g1O/Q49nYND7jR/0nnwZlo4ClTbM3C3W2Lz5ABgN/B/wTaUfhRZASGwGAJ2cWqYALDOuuXSnc4AJISCp/jP33LtCmQBU2kAVFBQUWhyNaQJTIEmSCrgqSdKzQCxw68NrCoBo/5Rl6O9l0+BjfjlwjTVnonnugdZM7el20/2/2BHG9gsJvDuiHYPa2ZU/H5aQxTe7rjC0gz3jujgDUFSiYd7yQGLS81k2sxvdq1UW1RqZ49dSSc0txNHcAAczfexM9au4jk7p0Yq2diY8uzKI0fOP8vljnRntJ2bMXCwNWTe3J38dvc43uy8z+NuDDG5nx9x+HgTU0sKqpZLo19aGvm2sWX06mo+3XuSh7w/xw0RfHvAufS/tR8OJX+hefJrH/LxYefIGTw9oXWE+8fC38GsfUZ17cjs+LuYAXIrPIsDNDZ7YDBf+hpA1cOI3OPYTIIGJvXD4BFAXC0OYzGgoqRRHZ+kpoh9cewpRZd321sRbRrQQn1d3QdfZ8NCnjS/+Uq/BkpHiQnTaFrBu3bjnvwvIsnxQkqRWQBtZlvdIkmQINL07jUKDOB+TibmhDs4WBjffuRlS5kh8OSGbhzrUf4OtXuKDxXeCruHN922uGFqCeStFACooKCi0QO5YAEqStEyW5anAJsAQeB74GFH9m3an579fOXglGUsjXTo6NuxO+YXYTL7bfYWHOzvw8pCb24qvOBnF74cimNqjFTP7VGQDFhSreXH1OUwNdPj0UWH6Issy/9t4gRMRaXw3waeK+ItIzmF9YAz/BMWSkFU1j1tXW8Wkri4880BrbE3E/F03d0u2Pd+XZ1cG8eKac1yIzeTNYWIuUFtLxex+Hjzq78TSY9dZeiKK3RcT8XExZ1JXFx7xcazRDitJEpO6udLb05qnVwYyb3kQS2d0E62vzl3BxBFCN/DU4AX8HRTDwiMRvDWsnTjY3FWIwL9nwqEvcRjwFmYGOlyMzy47uTB+6TQW8tMhfK8QTRlRkBULSMKsRccAvIaKeARLT2GOYGDRoL+3GsiyMKf593Xx+0OfQfd5jS/+MmNF5U9dJBxHW4D4A5AkaTYwB7BEuIE6Ab8Bg5pyXQoNIyQmk05OZi3OAKYMIz1tWlkZ3rkTaHyIcBdu6Tj6Qfy5pl6FgoKCgsIt0hgVwC6ld+QnAwuAPOCVRjjvfUuJWsPBK8n0a2PdIKOBErWG19aHYGmkW8OpszqyLPPn0et8su0iA71seP+R9lX2/3DLRcISsvlzegBWxqJStvzkjfLK4qN+zuX7/nrgGl/sCEMlwQAvW957pD2tS11AEzILCIxKLz92UjdXnurvia2pPjYmeiyf1Z1Ptl5k4ZFIQuOy+HGSX3llztpYj5cf9GLeAE/WnYlh+Yko3vznPJ9tD2N6Lzdm9XUvD5Avw9XKkGUzujPu9+M8tTyQw288gLGeNnQYDacX4fGohhGdHVlx4gavPehVbkRDp7Ei3uHQV0geA/GyN+FqYi0ufwYWje8CWp3Ua2LeL3w3uPUVOYTmro3/OvnpsHyMCJSfvlVY0bccngG6AScBZFm+KkmS0mnQAigoVnMlMZu53i3TAKYML7s7dALNToTsuIosvZaMox9c3CgchA1vL6tWQUFBQeG/pzFmAH9DBL57A4GlP2cqPSrcIicj00jLLbrpDF8Zi49d51J8Fh+N6oi5Yd1ZfyVqDe9vDhXtku3t+WVylwohBKwPjGHVqRvM7e9R3kZ5MS6Lj7depH9bG14aLCqLsizz2fZLfLEjjBGdHTj+1iD+nN6V4Z0caGtnwgAvWyZ2c+WrcT7sebk/Izo5svR4FIO/PcjO0ARABLh/OKojX4/zIehGOsN/PMy+sMQq6zXU1WZaLzd2vdSPv5/qSXd3S37Ye5XhPx7mXHRGjfdnYaTL1+N8SM8rZsWJKPFk+1GgLoSruxjkbUtOYQnXknOrHjj8K9HKtGoiXaVLZBeUNOhzbzSy4mD3+8J05sYJePBTmLrx7oi/4nxY9TikXYOJK8ChxZlQFMqyXFT2S2kYvBIJ0QIIS8imRCO32Pm/MrwdTLmekktBsfrmO9dGWcuko3/jLaqpKDeCOdeky1BQUFBQuDXuWADKsvyjLMvtgD9lWfaQZdm98mMjrPG+Y/O5OAx1tRjgdfPCRlxGPt/uvsID3rY81MGuzv1yCkuYvfQMS49HMaefB79M9sdAt2J06lJ8Fu9sOE8PD0tee9ALEHfsn199FnMDHb4d74NKJaHWyLz1z3l+PxjBlB6u/DTRryJeoRbcrY34ZrwPu1/qh5u1EXOXBfL+pgvlF09juziz6dneWBnpMmPxGd76J4ScwqoCTJIkurSy5I8nAlg/rycaDYz99Ri/H7xWw/3T18Wcvm2sWXA4QryGczcwtoeLG+lYeuEZHJNRdZF6JsL90siGl+Jfp3vewZt97HdOSSFc3g6rJsF3HeDo99DhUXjuDPR6FrQaczy3FI0a/pkNN47Do7+De7/Gf427z0FJkt4GDCRJGgKsA7Y08ZoUGsD50n93nZzNm3Qdd4q3vQkaGa4m1m5UdVPigsTcrX2nxl1YU1B2A0mZA1RQUFBoUTSaC6gsy0811rnuZxIyC9hwLpaRPo61RitU5+OtF9HIMh+O7FBn62dqTiGT/jjBoaspfDK6I28Pb1eltTQjr4inlgdiZqDDT5P8y6uCn28PIzwph2/G+2BlrIcsy7y2PpjVp0U76MejOlY5T0GxmoTMArILilFXE2YeNsasn9eLmX3cWXI8isd+OcaN1DxAZGtterY3c/t7sPp0NMN/OMyF2Mxa30uAmyX/Pt+Xwe3s+Gx7GC+uOVdjn+ceaENKThHrA2OEG2j7kXB1Nx6mMsZ62pyPqeXcFm4wcxcxhu34qPhr2PU/KLjDOZ/qlBTBpa2wfiZ86QmrJorQ9d4vwPNn4bE/hMHM3WLnOyJ/cOhn0PGxu/c6d5c3gWTgPDAX+Bd4t0lXpNAgQmIysTLSxdGs7htGLYE7dgKNOwvWXrXHvrQ0DMzF3LMiABUUFBRaFHehzKBwJ3y+/RIAzwy8uSnH2RvpbL+QwMtD2uJiWbubXGJWAZMXniQ6LY8FT3SpcMgsJS23iKmLThKXUcDK2d3L5/AOX01m8bHrPNnbjb5thBNpmdnLC4Pa8FIlo5nCEjXLT9zg531XSc+ryPgz0ddmjL8zs/q642xhiK62iv893J5enla8vDaY0b8c5bcpXejmbomethZvDWvH4HZ2PLfyLI/9eowPR3ZgYleXGsLWzFCHX6f48+XOy/x64Boz+7iXO3iCMJqxN9Xn7I0MpvRoBd4j4NQfqKJPYGeqR1puEbViaMliz+/wPf8po4/9JNw/H/wEOo4VQvJ2UJeIwPcLf8OF9ZCXCoZW0PFRaDcS3PuDdt1tu43G6YVw8lfo8TT0aLn3amRZ1kiStBHYKMtyclOvR6HhnI/NpJNzyzWAKaOVlRH6OirC4m9jDlCWITYI2j7U+AtrKhz9IPpkU69CQUFBQeEWaMwcQIU7JDAqjY3n4pjbz6NOQVeZ7/dcxcJQp4qLZ2Wi0/IY99tx4jPyWfxktxriLymrgIl/HCc8KYffp3Ypj1vIzCvmtXUhtLY15o2h3gBEpebyweZQenhY8vygNoCYBdx4NpZB3xzk460X6eBoxsejO/LO8Ha8NLgtg7xtWX4iigFfHeDltefKs/0GtbNj4zO9MTfQYfLCE6JSV0pXN0u2Pd+H7u6WvPXPeV5ZF0xeUc2ZPEmSeHqAJ8Z62vx1NLLGdndrIyJTSlu0Ks2p6GlrUVhS9+xOnkaHz3WehVl7wdRRtEx+6w3bXoGruyE7QVzE1XmCNIg8BMd/gbVPwFce8OeDIsjdrS88vg5euQIjf4I2Q/4b8RdxULiKtnlICNoWiCzLSJL0gSRJKUAYcFmSpGRJkt5r6rUp3Jz8IjVXk3Ja/PwfiAgaL3tTLsbX3qVQL5kxkJdS8Z10L+DoK2JwcpT7MQoKCgotBaUC2EzQaGQ+3HIRe1N9nhpQTzh4KUE30jl4JZk3hnrXiEYAUfkb//tx8orULJ/VHT/XqrEEsRn5TFl4ksSsAv56siu9PEXgvCzLvLPxPCk5hSx4IgB9HS1K1BpeWnMOLZXEt+N90Spt+/xk2yUWHYmkg6Mpnz3WqbxSWJnXh3qz8HAkq07dYFtIPB+UVvXcrY3Y8HRvnl4ZyKvrgolIzuG1h7yQJAkrYz0WP9mNn/Zd5Ye9V7kYl8WymRXVyTJM9HUYH+DC0uPXeXNYO+wrtZa52xix/Xy8+EXfDCw9ID4YfZ1eFJZo6vxci0o0ItzeuYsQgVd3wdnlcG6lqKIBaBuAuQto64sYCBCVvZxkKK5kMGPqLKp8rQeBx0DRLvVfkxYJ66aBdRsYsxBULTMy7/vvvwfoDXSVZTkSQJIkD+BXSZJekmX5uyZcnsJNuBifhfoeMIApo4OjKVuD48puTDT8wLgg8XgvGMCUUdkIps2QJl2KgoKCgkLDUATgHXIuOoPotDwsDHUxN9TB3kwfa2O9mx9Yjc3BcYTEZPL9BF8MdW/+17LocCRmBjo80bNVjW0ajcyr64LJyCtm/VM96VAtSzA8KZupi06RU1jCspnd6NKqwr77u91X2BoSz2sPedHJWRy38EgkQTcy+HGSH47mIsB5fWAMi45EMq1nK95/pEOdcRWO5ga890h75g3w4JW1wbz1z3lOR6bxyaMdMTPUYfGT3XhvUyi/HLhGiUbmrWHeSJKElkrixcFt8XO1YM7SM7yz4Ty/T+1S42JrQlcX/jwaydHwFMZ0qYiosDfVJz2vmGK1RoTRO/hAbBBa+hIl6roreMVqGR2t0tdQaYHXMPFTnC8cOlPDIf06ZNwQGXrq0pZXS08wshEzfHYdhMGDcROnExTlwpopIGtg0irQN23a9dwBS5cuBZgky3JK2XOyLEdIkjQF2AUoArAZU2YA07mFG8CU0d7BlJUnbxCbkY+zxS2EucedBZW2+I64V7DvDEjivSkCUEFBQaFFoAjAO2DdmWhe/zukSkegSoI5/Tx5cXCbBpm4gDBP+XrXZTo6mTLSx/Gm+ydlFbAzNIHpvdxqrf4tOxHF4VLDl+ri7+yNdJ5cfBodLRVr5vSkvWOFKFhxMoof94UzPsCZp0urkOFJOXy7+woPdbDjkc4OAITGZfLOhvP09LDifw+3r1P8Vb47bmuiX6WqdyEuk0XTuuJiacj/PdoRXS2JPw5FoKul4tWHvMrP0b+tDa882Jb/+zeMLSHxNT4fd2sjVBJEpeVVeV6q9oh9ZwjdgJZlDrrG5nV+tuWCsTo6BuA5UPy0BGQZtrwAiaEweb2ogLZgiouLqSz+ypBlOVmSJJ3ajlFoPpyPzcLaWA8701u/OdYcKfveDI3LujUBGBskxJ9OyzbCqYK+qegwUIxgFBQUFFoMigC8TVadusFb/5ynbxtr3h7ejuyCEjLyithzKZHfDl5j76VEvhnvc9M73tkFxcxZGkhMej5fjuncoOD31aejKdHITO5Rs/p3LTmHz7ZfYoCXDZO7V82RO3QlmXnLA7E21mP5zO64WlVcuOwMTeB/Gy/wgLct//doJyRJoqhEw4trzmKoq8XHo0TAfGZeMU8tD8LCUJcfJ/mVO4aqNTILD0dw9FoqSVkFJGYVkFNYwoPt7XmiZyu6uVuWV/X8XS14btVZxv52jOUzu9PGzoT3H+lAkVrDz/vD0dVWlc8ZAszs48G28wm8v+kCvTytqlRYdbVVOJobEJVaLduvOqZCOBoWp6GlXXdgcYlGRlurZZtUAHDiFzi/Dh54F9oMburV3DG6uvXOStbh6lOBJElDgR8ALWChLMufV9sulW4fDuQB02VZDpIkyQtYU2lXD+A9WZa/lyTpA2A2wpUU4G1Zlv9t2Du6vwiJyaDzPWAAU0Y7e1NUkshJfahDA517ZRnizgkDqHsNB1+4fqSpV6GgoKCg0EAUE5jbILewhHc3XqBPa2sWPBFAOwdTurlb8mAHe74c68PiJ7uSU1jC4wtOklnJFbM6sixaNU9fT+O7CT70am1909eWZZl1gdH0aW2Nu7VRje0fbbmInrYWX47pXOVi62REKrOWnKGVlRHrn+pZRfwduZrCc6vO0tnZnJ8f96sSA3EhNosvxnTGtjTr752N54nLyGf+ZP/ymbyCYjXzlgfy2fYwkrIKcLE0ZERnByZ0deFIeAoT/jjBg98dYsNZYfbSr60Na+b2QCPDpAUniEjOQaWS+HR0J8b4O/Pt7itsDo4rX5+WSuLrsZ3JKSzhl/3XarxnV0tDoqtVAMs/r7I/GAjRZ6TOrGjxrOPzlWjhF6kRB0WMhffD0OeVpl5NoxAcHIwkSVm1/GQD9QaqSZKkBcwHhgHtgUmSJLWvttswoE3pzxzgVwBZli/Lsuwry7Iv0AUhDjdUOu67su2K+Kud7IJiwpNz8K3k1NvSMdDVwt3aiNC4W4iCSIuAwsx7a/6vDEdfyI6DnKSmXomCgoKCQgNQBOBtoK0lAtF7eFjW2uY5wMuWRdOECFx+MqrO82w7H8/O0EReedCLR/2c69yvMuFJOUSn5TOsU827zpcTsjl4JZk5/TzKBRtASk4hz646i7OFAatmd8fWpGLbvrBEZiw5jYe1EX9N71o+f/jv+Xj+PBrJ9F5u5Xe4d4UmsDUknhcHt6FLK2Eqk5lXzNRFJ9lzKZEPHmnPjhf7seCJAD4Z3YlPRnfixFuD+HJMZ/R0VLy0JpjX1wdTUKzG296U1XN6IMswZeFJYtLzUKkkvhjTCT9Xc/638QIJmQXl62xjZ8Igbzs2B8fVyBi0NtYjtVq0g1apyCvf11AIQCutXAqK6zaBsTDSrTsmoiWQHgXrpouWrEd/u/34imaGWq1GlmXTWn5MZFm+WQtoNyBcluUIWZaLgNXAqGr7jAKWyoITgLkkSQ7V9hkEXJNlue5/1Ao1OB+biSxTJarlXqCDoxmX4m9BAJa1SN5LDqBllAXCxwc37ToUFBQUFBrEvXF1+B+jp62FsZ42abl1V/faO5oy0MuGXw9cIz4zv8b21JxC3tsUio+zGbP71h7jUBv7wsQd1oFeNQ1GFh2JwEBHq0rrZ5khTGZ+MT8/7o+5YUUr3fbz8cxdFoiXnQmrZvfAwkhsi0jO4fX1Ifi5mvP28HaAuIv/3qZQvO1NmNtfzAem5BQy/vfjBEdn8tMkP6b3rvk+DHS1GN/VhU3P9OG5B1qz9kwMY387RnRaHp42xiyb2Z2cwhKeWHSKzPxitLVUfDvel6ISTel8ZYXYG+XrSEpOIceuVR0FszTSJS2nqmjTLm2lLVaXir1SAWityiW3sGasRBm2JvokZxdWed0WQ2EOrJkMGjVMXAl6Jk29ouaCExBd6feY0ududZ+JwKpqzz0rSVKIJEl/SpJkQS1IkjRHkqQzkiSdSU6+/6zyg6NFXIKP873hAFpGe0dTYjPySW/oDaPYIOEcbNvu7i6sKbDvLB7jzjXpMhQUFBQUGoYiAG8TSyNdLsZn1qhGVebNYe3IKSzh211Xamz7etcVsguK+XKsT3nLZUPYcymR9g6m5W6cZWQXFLPpXByj/ZyqiLxVp29w4HIy745oV8XwZWdoAs+Wtn2umN29XPxl5hczb3kgOloS8x/3F5EIwBc7wkjMLuDzMZ3R0VIhyzJv/XOeyNRcFj/ZlYc7129eo6WSeOVBLxY+EUBUah4P/3SEc9EZtHc0ZeG0rkSn5/HSmnPIsoy7tRFvDffm0JVk1lXKCBzobYuhrhY7LiRUObeVkS7ZhSUUFFfk+5UZuZQ7fuqJi08zLTGbWBe2JnoUqTWk5LSwKqC6GNbPEKYvY/8Eq5tHidxH1NbTW/0fbr37SJKkC4wE1lXa/ivgCfgC8cA3tb24LMt/yLIcIMtygI1NzaiUe51z0em4WRlW+V66F+hQ+n3a4Cpg3FnhDqx1D3oW6ZuCVWsRBaGgoKCg0OxRBOBt8kTPVpyISOPtf86jqSYCZVlmz8VEnl91FpUEvavN9uUUlrAlOI5HOjviZd/wKk2xWkNwTCa9W1vV2HbmejqFJZpyp04Q1b8FhyLwdTFnaiXDmPCkHF5cfY5OTmYsndENU31xQVJQrGbWktNEpuQy/3H/cpF5KjKN5Sdu8GQv9/I5nh0XEth9MZFXH2zboNnFMga3t2PLs30wM9BhxmLxWt3cLXlrWDv2hSWx5rQowkzp3gofF3N+2HOVotLcPn0dLQZ42bDrYmIV4e1uY1T+vspwKl17ZJk5TKnrnoOBzNWknDrD4MtaW3ddTKh1e7NEo4YNc+HqThjxzT1h+tLIxAAulX53BuJucZ9hQJAsy4llT8iynCjLslqWZQ2wANFqqlCN4OjMe679E0QUBNCwOUCNWrRH3ovzf2U4+CoVQAUFBYUWgiIAb5NZfT14flAb1pyJpuMHO/nfxgtsDo5jz8VERv9yjFlLz5BfrGbhtABG+1XtJPs7MIacwhKm1pLhVx8RybkUlWhqRDsAnIxMQ0dLqhL4fvBqMtdT83iyt1u5IUxhiZrnV51FX0fF71O7lMdIlKg1PLvyLGei0vlugm+5qCsoVvPm3yE4Wxjw6kNtAcgqKOb9zaF0cDRlRi1tn5l5xSw4FMGE34/z7sbzbAmOIym7Yp7PzdqIJTPEtfK0P0+RnF3I9F5u9PCw5OOtF4lOE/OALw1uQ2xGPn8HVVQBh3V0IDm7kMCo9PLnOpZ+HhdiMyuec6r2nLYQhG6mwt30fEzFvpXp7GyGt70Jq09F17q92SHLsO1luPA3DP4AAmY09YqaI6eBNpIkuZdW8iYCm6vtsxl4QhL0ADJlWY6vtH0S1do/q80IPgpcaPylt2wSMgtIyCrA5x7J/6uMlbEe9qb6XGxIBTDlChTn3pvzf2U4+kJWDOTWSGtRUFBQUGhmKALwDnhpcBtWzOpOl1YW/B0Uw/OrzjJr6RlSsgv5/LFO7H2lPw9429U4bsmx6/i4mFcRaw0hNE6Ilg6ONQO9T0Wm0tnZHAPdClOaJceuY2Oix7COFdep3+y6wsX4LL4a64NdqVGMLMu8u/ECey4l8tHIDlXaOT/fHkZESi6fPdap3CDmqx2XSckp5LPHOlVpX03MKuCdDefp/tkePv33Ehl5xWwIiuW5VWfp9uleJi88QVKWEILu1kb8Ob0rydmFzFh8moISNV+NFUYCr68Xs3/929rg62LOz/vCy2f5Bnrboqut4t/zFdfmrpaGmOhpc76SAHQw08fSSLdC6KlUoK2Pk7GoHJ6MTKv1M5YkiUndXDkfm1lFUDZLZBl2vgOBi6HPy9DnpaZeUbNEluUS4FlgJ3AJWCvLcqgkSfMkSZpXutu/QAQQjqjmPV12vCRJhsAQ4J9qp/5SkqTzkiSFAAMB5S+gGsGlAfD3YgUQxBxg2fdyvcQGiUene7wCCEobqIKCgkILQBGAd4AkSfRubc2ymd0Jef9Btjzbhz+mdmHfq/2Z2M219kBxIDmnEGcLg1q31Ud8qStm5QiHMsKTcqoIw8ISNUeupvCon1P5HF9GXhGLj11nbBdnBrevEKYbzsay+nQ0zwz0ZGpPt/Ln919OYvGx68zo7U7fNmJ26WpiNitORjG1R6sqGYcZeUU89ssx1p2JYZSPE/8+35edL/Uj+P0H2fhMb14e0pagqAyG/3iE49dSAYS4e9yPC3GZvPXPeVwsDXlnRHuOR6Sy6VwckiTx3AOtic3IZ/M50Y1nrKfNA162bA6OK2/jVKkkAtws2B+WVN4aKkkS3d0t2XMpkfyi0nZPA0sMClPo7GzG34Exdc5vjvZzwlhPm5/3hTf47+Y/R6OGrS/CifnQbS4Meq+pV9SskWX5X1mW28qy7CnL8qelz/0my/JvpX+WZVl+pnR7J1mWz1Q6Nk+WZStZljOrnXNq6b6dZVkeWa1iqAAER2egrZJqvWl1L9DB0ZRryblV5o9rJe4s6BqLObl7FQfFCEZBQUGhpaAIwEZCW0tFJ2czHuxgj552zWiIyjzm58Tu0MRbjhsoq4LpVLP212hksgtLqpgsXE3MoUQj07mS896Gs7EUlWiqtG0mZxfy4ZaLBLSy4OUhXuXPZ+QV8cb6ENraGfP60Irnv9x5GUNdbV4Y3Lb8OVmWeW19CEnZBayZ24MvxnYuN5zR1lLh62LO84PasOnZ3pgaaDN54Ql+ORCORiMzqJ0dLw5qy6ZzcewMTWBiVxc6OJry1c7LFBSrecDbFm97E349eK181nJiNxfScovYfbF8HIsxXZyJyyzgSHhF+9GTvd1JzytmfVkLqaMfxAYyr78nESm5bDwbW+vnbGagw6y+7uwITSA4OqPmDiVFEBMIYdsgcAkc/wUuboaE81B0k0D6xqCkCP6eJSp/fV+BYV/APRKwrXBvERyTgbeDSa1xOfcC7R1MUWtkriRm179jXJCISlDdm58DAPpmYOmhVAAVFBQUWgCKAGwCHu/eiiK1hr8rOVw2BLVGRiWJildlsgtKkGUw1dcuf67Mma5dqVGBLMusPhWNj7NZFTfQD7eEkl+k5vMxndGqdN73NoWSllvEt+N9yy/ejl1LYffFRJ4a4ImlUYXYXHzsOrsvJvLGUO9621rb2pmw+dk+DO/kwJc7LvPdHuGO+vRAT7ztTXhv0wVyikp4e3g7YjPyWXY8CkmSeGqAJ+FJOey+JARf3zY2OJkbsOrUjfJzD2lvh4WhDqtOVjzX1c0CH2cz/jwSKcSjcxdIDWeohx6dnc34dveVOu/cz+rrgaWRLl/tvCyeKMqDoKWwejJ86QELH4DVj8OW52HnW7B2KvzWB75wh41PV7R8NTYFmbByHIT+A0M+EpU/RfwpNEM0GpmQ6Mx7KgC+OmXz2PUawZQUiptD9/L8XxkOvhCnZAEqKCgoNHcUAdgEeNmb4ONsxrbzt9cxVr11Ma9YxBpUnv+LTMlFWyXhZiUcMqNS87icmM3YLhWB81cSs9kaEs/TAz1pbWtc/vyZ62lsDo7j+UFtys1UAH7YcxVHM31m9qlaQfx8exiDvG2rPF8Xxnra/DTJjwkBLvy0L5yj4SnoaKn4cmxnkrILmb8/nN6trenX1oZfDoRTUKxmRCcHXCwNWHAoAhCREpO6uXA0PJXwJHHnXU9b5A3uuphAWIK4GJMkidn9PIhMyWVdYDQ4BQCgigvizWHexGbk80fpOWtb59MDPAkOv8H1DR/C951g83PCya/TWBi3BOYcgBcvwGvXxJ/H/gV+kyF0IywYCH8Nh9RrN/1MGkx6FCx6EK4fgVG/QO8XGu/cCgqNTERKDtmFJfekAUwZzhYGmOhp1z8vHB8M6iJw6f7fLaypcPSFzBuQV/uMtYKCgoJC80ARgE1E/7Y2hMRkkJlXd5h8dZzMDdDIEJdRNVjezEDEOGTlV+TbqTUy2lpSeVUvOj0PEFW4MvaXhspP7FoRHA/w59HI8jbIMq6n5HIyMo3JPVpVaedafCySIrWGd0a0K3cavRmSJPHhqA542Bjx+voQsguK6exsziOdHVl2PIq03CLm9fcgPa+YzcFxaGupeKKHG2ei0ssrm5O6uaKnrWLBocjy887r54mpgQ7vbQotD3If3tGBbm6WfLrtEslmHUDSgqs76eVpzSM+jvy8L7xKfEQ5ssw045Mc0n8Ft+BvUTv4wpPb4cXz8Mj30GG0uKNv7gJG1uLPHR+Dh7+DVy7B0C8g8YIQgsmXG/S51EvCBSH+suNhyj9CaCooNGPOlQbA38sVQJVKwsfFnLM3MureKfqkeLwfBGCZEUzc2SZdhoKCgoJC/SgCsIno29YGjSzaKhuKm7Wo5l1PrTpnZqCjhZ62ivS8ipnC6vYmZaKxcoD8gcvJeNubYG+mX2W/naGJTOjqUu76CbD2TDQqiSoVxJzCEpYdj2JoB3s8bCoqiA1BX0eLr8b6EJ+Zz//9GwbAsw+0Jr9YzZ9HIunpYYWXnQmLj15HlmXGdnFGT1vF8hNRgLBgHxfgzIazscSUilsLI11ef8ibU5GiggniAu2zMZ0oKNbwv3+jkH0nw6kFcPhb3hvRDgNdrZpZjqnXYNmj6Gyah5aVGw8XfsL3dv8HrXo1rN1S3wx6zIM5B0FLD1aMhZykW/p8qhC+B/4cCpIKZuwEj/63fy4Fhf+I4OgMjPW0b/m7oaXh38qCsIQscgpLat8h+iRYuIFJTUfoew4H4eRMvNIGqqCgoNCcUQRgE+HrYo6JnjYHryQ3+Jiyds6I5KoCUJIkrIx0SckprPK8XEnTJGSKbWXRDwXFas5EpdG/rU2VY9YHxqCR5SrB8QAbz8YywMu2/HiALcFxZBWUMLe/Z4PfQ2W6tLJgVl8PVp26QWBUGm3tTBje0YHFx66TX6xmem83LsZncTY6AwsjXR7xcWTj2VjyisSF1tMDWoMkWlPLmNDVhc7OZny67RJZBaK66mljzItD2rAjNIF/nV8Ulbq9H2Kz6xneG+rGqetprDoVBVHHYe0T8HMAxJyB4V9j+sx+2vr25dcD17iWXEulsD4s3eHxNSIXa+WE2zOICVwCK8aDRSuYtQds2936ORQUmoDgmAw6OplWmS2+F+nSygKNTO2GUbIM0afuj+ofgIG5ELuKEYyCgoJCs6ZFCEBJkoZKknRZkqRwSZLebOr1NAY6Wir6tLFm/+Wk8nbFm2FnqoetiV6VEPQyWlkZca1SK6ONsR6FJZryFlM9HfFXXVTqJApQrJarOIeCmOmzMNTFxbIiakKjkYnLLKBTpXlAgMsJ2ZjoaePjXPX5W+GlwW0x1dfmr6PXAZjc3ZWcwhIOX01hRGcHtFQS+y6J6tljfk7kFqk5VCqaHc0NmNK9FX8HxRBRKs60VBKfjO5ISk4hX2wPK3+dOX098HEx591t10h+8BdhnnLhbx7b059Qg9mM3tEd/hoKEQeh13Pw7GnoNhtUWrwzoh262iq+ryQ0G4yTP4xZJFqi/p4t4hsaQkkh/PuaMJnxGCDaT82cbv31FRSagIJiNZfis/B1ubWs05aIr4s5kgRBtXwvkxEFOYng0u2/X1hT4eCrREEoKCgoNHOavQCUJEkLmA8MA9oDkyRJat+0q2ocBrWzIzGrkAux9TjIVUKSJLq5W3Lmes0B+3YOplxOzC43iGlVmhVY1i5qa6IHUB7ErqetQkslkVNYdQZRIwun0crkllbcTCq5jALEpOfhZGHQ4Nm/2jDQ1eIxf2d2XUwku6CYru6WmOhrs/dSIqb6Ovi5mHPoqhB8Xd0tsTLSZUOl+IanBniip61VRZx1djZnei93Vpy8UZ45qK2l4uuxncktUvPupgvIfV6Gqf8g+T9BSaeJrNMMZIXNy/DyReGuaepQfj4rYz2m93Jja0gclxNuYvdeG97DRVTD5W2w96Ob75+XBn8Ng1N/QI9nRBVR/97MUVO4N7kYn0WxWr6n5//KMDPQoY2tMYE3ahGA0afE4/1SAQRhBJMRpRjBKCgoKDRjmr0ABLoB4bIsR8iyXASsBkY18ZoahQFeNkgS7LmUePOdS+nsbEZcZgGp1do92zmYUFCsITJFVMKqzwvamojWzaRscZwkSRjraZNTUHVuRejHqoKubLbFSK+6AMzH2aJmKP2t8nBnB4pKNOwLS0JHS8UAL1v2hSWh0cgM8LIhJCaTxKwCdLRUjOnizN5LSSSXvg8bEz2e7O3Glmri7NWH2tLKypDX/w4ubxltY2fCy0PasjM0ka0h8eD5AAz7ArPHviXvgU94JzqAXVdrF3hz+nlgrKvN96XRFbdM97ngNwWO/QSJF+veLyselj0qbOPHL4Oh/wdaOrf3mgoKTcS5UlOU+0EAgmgDDYpKrzpLDGL+T9cYbO+Je5YNo8wIRpkDVFBQUGi2tAQB6AREV/o9pvS5Fo+1sR6dnc1vyQimk5M5ACHVbMd9Si+0gqIyAFEB1NVSledTedgIQVjZrtzNypCz1eZWnC0MSMkpJDKlYl7NSE8bbZVUw3xGJUkUljSwpbEe/F0t0NGSuFjq8BnQyoKUnCJSc4vo4WEFUL5teCcHSjQygVEVd5fn9PNAR6VizemK/0wMdbX5YkxnotPyWXo8qvz52X096Ohkyufbw6qsfXZfDzxtjPhuz9VaW3LNDXWZ2rMVO0MTyk1nbpkhH4v5mN/7Qmxgze1h2+DXXpByBSYsh/Yjb+91FBSamHPRGdib6lcxmLqX8Xe1IKugpOaccPRJcA64twPgq1NuBHOuSZehoKCgoFA3LUEA1tZfWOMKXZKkOZIknZEk6UxycsONVZqaHu6WBEdn1hlIXp3OzmaoJDhbbd6kja0x1sa65WJST1uLzs5m5e2ijuYGtLY1rmI684iPIyExmVUuWsYFOKOjJbH0+PXy50z1dejTxpptIfFVxJGvqznnojNq3vW+RVQqCRN9HXJLK41lsRbZBcVYG4vW1bScovL3CVSJbjA31GWAlw1bQ+KqZCT28LBigJcNvx28RnapIYyWSuL1h0QGYGXBqKOlYl5/Ty7FZ3Hoau2CfHKPVqgkiYWHI2vdflMMLWHcYjC2h0UPwfFfRETE+fXwz1wRLG/uAnMPQduHbu81FBSaAcExGfdN9Q9EBRCoOp9dmA2JofdX+yeI7znzVsocoIKCgkIzpiUIwBjApdLvzkBc9Z1kWf5DluUAWZYDbGxsqm9utnRzt6RIrak/R6oSRnraeNub1qjcSZJET09rjkeklou0Lm4WnI+tEJf929pwMjKN/CLx+yM+jqgk2FRpps7WRJ/hnRxYfyamXJABjOjkQEx6PiExFRVEf1cLsgtKCL9Vd8xaMNbTJrdQrKts1jC7oARLY2FSk5ZbVP7+Hc30a2T3PeLjSFJ2IaerzUe+MsSLjLxi/jxyvfy5vm2s6e5uyY97w8vbQwFG+TphZ6rH7wdrD293MjdgjL8zK0/dKJ+lvGUcOsO8w9BmCOx8C+Z3g79nQug/0Ot5mLkHrNvc3rkVFJoBablFRKXmlXcl3A+4WxthYahTVQDGBoKsub8MYMpw9IO4oKZehYKCgoJCHbQEAXgaaCNJkrskSbrARGBzE6+p0QhwswTgbHQtBgJ14OdqzrkbGVWqXQBd3SxIzCokJl1k/nV3t6RYLXMyUoiiB7xtKSrRsCM0HhCREH3a2LD85I1ygQXwZG93sgtL+GjLxXIx+WB7e/S0Vfywt6JFsqubuOu9+VwNPX7LlKg1lFR7PyUaDdqljjT5lSqk1iZ65bOMZQxqZwtQbvpSRidnMwa3s2XZiajydUuSxCsPepGSUyhmAUvR1VbxZG93jl1LrTPy4emBnhSrNaw+HV3r9gZhaAkTV8K4JfDo7/DUMXg7Dh78GLR1b368gkIzpiwO4X6qAEqShL+rBUGVjWCiTwESOAU02bqaDCd/yLghInAUFBQUFJodzV4AyrJcAjwL7AQuAWtlWQ5t2lU1HmYGOtiZ6tXI9qsPf1cLsgtrzpt0cxdi8kSEEEG9PK0x0dNmW4gQaD09rGhja8xvByLK2zbfHu5NdkExH26p+Eh9Xcx5dmBr1pyJLo9nMDPU4c1h3uwLS2LlqRuAiJ54xMeRhUciyoPmb4cbqXnEZRbQxdUcgOCYTFQSeNubllccOzoJF0y1RuZqYg5t7UyqnENPW8zYqGpxJB3obUtKTiFRqRWze13dLHAw0y+PmChjlK8jAP9WEoaVaWVlRBdXC3aGJtzGO62EJEGH0eAzEew6KEYvCvcM56IzkCRx8+V+wr+VBdeSc0kvu5kWfVLkdhqYN+m6mgRHf/EYd7Zp16GgoKCgUCvNXgACyLL8ryzLbWVZ9pRl+dOmXk9j425tVMV05Wb4lQqls9Vsx9vammBppMuJCFHx09fRYkh7O3aGJlJUokGlknh6oCeXE7PZGyaEj7e9Kc8MbM2mc3GsD4wpP9fLQ9ryYHs7Ptl2sXxucFpPN3p5WvHF9rByF9I3hnqhkeGrnZdv+/0fLZ1b7NPGGhB5Wu0cTDHS0y6/o+5XmicWkZxDfrG6RiZhUYnIN9TVrvmfdEArIYzPVGrPkiSJAV62HL6aXH4sgIOZAQGtLNh2vnYBCDC0oz2hcVlEp92mGYyCwj3MuegM2tqaYFzNNfhep2wO8Gx0Omg0EH36/mz/BBEFgQSxShuogoKCQnOkRQjAex13a+NbEoDu1kaYG+qUO36WoVJJ9PCw5Pi1lPJ2xxGdHcjML+bAZSH4HunsiLOFAT/svVLeQvrswNb09LDi7Q3n2V8qDFUqie8m+NLWzoRnVwQRHJ2BSiXx0agO5BWpeXfjBTQaGWcLQ2b1cWfD2Vj2hTU8zqIMtUZmQ1AsdqZ6eNoYk1tYwtkb6fi7ioupU5FpuFkZYmEkWiOPlbZ4Vq8upJQKUr1aBGAbW2MMdbXKW9PKeMDbltwiddW2LUQsRVhCdp1/Jw91sAdg18Vbf78KCvcysizfdwYwZfg4m6OlkjhzPR1SLkNh5v1nAFOGnglYt1XmABUUFBSaKYoAbAY4mOmTlltUpRJVH5Ik4esiHDir07+tDXGZBVyKF3l2/dra4GRuwILDEYAIRH99qDcXYrP4rdTsRFtLxfzJ/rSxNWb20jNsLDWFMdLT5s/pXTE30mHqopOcj8mkta0Jbwz1ZvuFBL7YEQbAsw+0ppOTGc+sOFtDTN2Mb3Zd5tT1NF4a3BZJklh87Dq5RWoe83ciKjWXg1eSGd5JhLLnFJbw496rBLSyKHcDrXweXW0Vg9vZ1XiNwhINBcVqLAyrtlm6WooMw8rzjyBauYA6Q99dLA2xN9UntFoUh4LC/U5Uah4ZecX3lQFMGQa6WnRyMhM3qaJPiifvVwEIYg4wNghqidVRUFBQUGhaFAHYDCiLOkjNLbzJnhX4uphzJSm7PKS9jAe87aqEy+toqZjd153T19PLs/Me6ezAw50d+HrXZfaUVrEsjXRZPacHAW4WvLjmHAtLBaOjuQGrZvfA1ECHKYtOciE2k1l93XmiZyt+PxTB0uPXMdQVQtHGRI8pC0+y40LD5uN2XIjnlwPXmNTNhYndXMnML+b3g9cY3M4WP1cL/jwSibZKYlovNwBWn7pBam4R74xoh1Rp1u/M9TQ2notjbj8PXK1qBtNfjM9EI0PHam2jhrpibjCvqGoEh5u1yEyMSq27KtvW3oTLibULRAWF+5Vz96EBTGUe8LYlOCaD5GvnwNAaLD2aeklNh6M/5CZBVuzN91VQUFBQ+E9RBGAzwLo06iAlu+gme1bg62KOLENITEaV521M9PB1MWd3pfbE8V1dsDDU4dcDouInSRJfjfWho6MZL6w+Wx4Ob6Kvw+InuzG0gz2fbLvE+5suUFSiwdnCkFWze2Csp82URScJicnk/Uc6MLidLR9sDmVLcBw2Jnqsm9eTNnYmzFseyFc7w+oNiQ+JyeCVtcH4uJjzwcgOAPx28BpZBSW8NKQtablFrD0Tw0gfJ+xM9ckvUrPwcCQ9PazwK20PBVEV/N+mUBzM9HlqgGetr1Vmzd7Z2bzK8/o6QgDmV8tgNNXXwcpIt0bwfWW87U24mpRDibphVVsFhfuBc9EZGOho0dbO+OY734M84G2LLMOBiGxR/avFlOq+wanUCEaZA1RQUFBodigCsBlgZ6oPQOItZMv5uVggSYh5k2oM7WDP+dhMIkpdQg11tZnV14M9l5LKZwENdLVY8EQA5oa6PL7gRLmQ1NfRYv5kf2b2cWfJ8SjG/36c2Ix8XCwrROCkBSc4fi2VHyf50aWVBc+vPsvCwxHYmuixZk4PxnVxZv7+a3T5eA9f77zMvrBEMvKKSMgsYMXJKGYsPs3YX49jbqjLb1P80dPW4tCVZH4/eI3H/J3o4GjGe5suUKLRMK+/uIP+6b8XScgq4IXBFRl5qTmFTPrjBFcSs/l4VEcMdWuaToQlZPHDnqv4uZpjZ6pXZVtsqXNp9dZQAFMDHXIK6xawzhYGFJVoyMgvru+vSUHhvuJcdAadnMzQ1ro//9fSwdEUO2Md9mc5gWuPpl5O02LXEVTayhyggoKCQjPk/vy/dDPD3kwIwIRbEIBmhjp425tyMjK1xrbRfk6oJNhQKeB9Vl93Wtsa886GC+Vto/Zm+qyeI9o7Jy84yfZS50stlcT/Hm7P/Mf9CU/KYcSPhzl2LQVXK0P+eaoXrpaGzFh8moOXk1k2s3t5xfDDLRfR0VLx1TgfFj/ZlR4eVvx68BozFp/B96Pd9PhsL+9suMCVxGwe7+7Kxmd642BmQHRaHs+vPksbWxM+Gd2RrSFxbA2J54VBbWhjZ8LeS4ksP3GD2X3d6eFhBUBeUQlPLj7NlcRs/pjahcHta87+peYUMmvJGYz0tPl1cpcqbaMAR8OF+2jP0nNWJqewBGM9rTo//zKxmVePSFRQuJ8oLFFzMS4L31KX4vsRSZJ4wC6PQ5pOFLn2berlNC06+iLiRqkAKigoKDQ7FAHYDLA21kNLJZGQ2XABCCLoPTAqvYZ5TFnA+z9BseV5f3raWnwxphNxmfl8WWreAsLQZO3cnnjYGvPUiiDe33SBgtKWyBGdHdjyXB9sjPV4YtEpVpyMwtZUnzVzetLJ2YxnVgax4Wws8x/3Z3ZfdxYfu870v04RlZrLAC9bFk4L4PwHD7J6Tg9eH+rFm8O82fVSPw6/PpAPRnbAxkSPi3FZTFpwArVG5repXcjKL+F/Gy/g42zGvP6eJGUX8Pr6ENo5mPLqQ16AcA59cfU5LsRmMv9xfwbVYvxSUKzmqRVBJGcX8scTAeUiuzLHrqXgbW+ClbFejW15hSUY1VJRLMOodH4wt6ikzn1qRV0MyZfh6m4IXCzCkhUU7gEuxGZRpNbgfx8LQIAHtIPJwZDT+U5NvZSmx9Ef4s6JWAwFBQUFhWaDIgCbAVoqCUdz/VuKggDo4WFJQbGmVufNMf5OxGbkl8cmAHRpZcn0Xm4sPR5VZUbQ0dyAdXN7Mqu07XPkz0fK5wLdrY345+le9G1jzTsbLvDaumB0tVUsm9mNfm1teOuf87y3+QKvPuTF/z3aiaCodIZ8e4j/+/cSmfnFGOpq08PDiqcHtGZef0/a2pkgSRIlag3z94czev5Riko0LJ/ZHUtDXab/dYrCEg3fjPdFJUm8sjZYuH9O9EVPWwuNRuaNv0PYdTGR9x5uX2vl78z1NIb/eJhTkWl8ObZzrYYUlxOyORmRRn8vmxrbMvOKyS1Sl0dP1EZZi1vxrcwAFhfAggdgfjdYMRa2vACbnmn48QoKzZiyXFL/SjO69yO90zejK6nZdyWlqZfS9Dj5iziMtIimXomCgoKCQiUUAdhM8HOx4ExUWnl+X0Po08YGbZXE4avJNbY91MEeSyNdFh+7XuX5N4Z608nJjJfXnCufEQQRoP7uw+1Z/GRX0vOKGTX/KF/sCKOgWI2Jvg4Lp3Xl+UFtWB8Uw5hfj5GaU8SCJwKY08+D5SduMPbX4/Rpbc2+VwcwyteRBYcj8PlwF8+uDOKvo5Gcj8nkWnIO20Li+WbXZUbNP8pXOy8zpL0d21/oSxs7Y55cfIqI5Fx+n9qF1rbGLDgcweGrKbz/SAfa2JkgyzL/23SB9YExvDi4DdN7u1d5b7mFJXywOZRxvx+nsFjD0hndGOVb8y68RiPz7sbzGOtrM7dfTeOY4xHiwq27u2Wdn31GnjDssTCsWyTW4MBnkBACD34KM3bBgLch8hDcONnwcygoNFOCbqTjZG6ArWnNavt9Q/p1DLPC6WlbzL7STNX7GsdSIxhlDlBBQUGhWaEIwGZCVzcLErMKiUnPb/Axxnra+LiYV6nylaGvo8WU7q7sDUvkeqXKor6OFr9M9kdbS2L87ydquIgO8LJl90v9eMzPiV8PXGP4D6KSpqWSeHlIW/6c1pXo9DxGzT/KmevpvD28HX9M7cL11FxG/HSYExGpfDm2M1ue7cP0Xm4ERaXz4ZaLPPLzEQZ9c5BnVgYxf384xWoNPz/ux/zJ/kKILQvkXHQGP07ypW8bG4KjM/hq52WGdrBnUjcXAJafiGLFyRvM7e/BC4PaVFl3cHQGw344zJLj15nW041dL/WjX9ua1T2ARUciOX09nbeGeWNZS5XvSHgKRrpa9WaZlWUH1nZ8rcQEwrEfwW8q9HoWXLuLR0MrOPRlw86hcNtIkjRUkqTLkiSFS5L0Zi3bJUmSfizdHiJJkn+lbdclSTovSdI5SZLOVHreUpKk3ZIkXS19vK9LX0FRGeUZmvctkYcBGNTBmciU3Co32e5LbLxB20CZA1RQUFBoZigCsJkQ4CaqTUfCb61tqJenFSExmWTm1XSjnNKzFToqFb8fqtp+42JpyLp5PdHTVjHh9xNsDYmrst3cUJevxvmwbGY3itQaJvxxnM/+vURhiZqB3rZseqY3lka6TFl0sjS3z45tz/XF3dqIF1afY/Qvx8guKOGDkR049tYgjr35AD9N8uPrcT5sfa4PFz8ayq6X+vNwZ0fO3khn4h8nOHw1hc8f68zQjg5k5hfz3Kqz2Jro8fmYTkiSxIXYTD7eeokBXja88ZB3FUOX1aduMPa3Y6g1Mmvm9OSDkR0w0qs5vyfLMn8cusb/bb/EsI72jOviUmMftUZmf1gy3T2s0KnHyTA5uxA9bVV5luBNOfi5yAV76NOK53SNwP8JCN8DJQ2PAFG4NSRJ0gLmA8OA9sAkSZLaV9ttGNCm9GcO8Gu17QNlWfaVZTmg0nNvAntlWW4D7C39/b4kLiOfhKyC+37+j8hDYGTLwICOAEoVUEsbHHyUCqCCgoJCM0MRgM0Eb3sTvOxMWHLs+i21gT7UwR61RubfC/E1ttma6DOxmwtrz0TXuBPd2taEDc/0or2jKc+uPMtn2y+Vm7+U0beNDbte6sekbq78fiiCR+cfIzwpGw8bYzY83YuHOtjx2fYwJi88iUoFG57uzZdjO5OUVcCkBScY9fMR1p6ORq2RecTHkbFdnOnoZIa+jhbRaXk8t+osj/5yjOi0fL6f4Mv4ri6oNTKvrA0mLiOfHyf5YW6oS25hCc+vOouFkQ7fjvdFpRLir0St4YPNobz5z3l6eFix7fk+dKujbbOgWM0r64L5v3/DGNbRnu8mVJynMltD4ojNyGdcF+d6P/eQ2Ey8HUxrOIvWSvp1YfrSZTroVw2jx7yVeMyt2car0Gh0A8JlWY6QZbkIWA2MqrbPKGCpLDgBmEuS5HCT844ClpT+eQkwuhHX3KIIUub/QJaFAHTvi4ulEV52Jmy/kNDUq2p6nPwhPgTUt2iYpaCgoKBw11AEYDNBkiRm9HEjLCGb47W0dNZFB0dTWtsaV4l8qMzzg9qgr63i612Xa2yzNdFn5ezuQuAdjGDg1wdYHxiDWlMhQA11tfm/Rzux4IkAErIKGPHjEZadiMJYT5v5j/vzxZhOhMRkMPT7w/wdGMO4Ls7sf3UAbw/3JqewhNf/DqHvl/vp/fk+xv92nAe+OYDPh7vo++V+dl9M4LkHWnPgtQGM9nNCrZF5bV0wey4l8u6IduVV0Q82hxKZmst3E3zLWy41GpmX1waz+Nh1ZvVx56/pXTGvYx7vQmwm438/zj9Bsbw4uA0/T/IvD4GvTFGJhq93XaadgykPdbCv8zMvVmsIjs6gS0MvdgOXiEDoLtNqbjO2FY85iTW3KTQWTkB0pd9jSp9r6D4ysEuSpEBJkuZU2sdOluV4gNJH29peXJKkOZIknZEk6Uxy8r0p9IOiMtDTVtHOwbSpl9J0pIZDTgK49wNgTBcnAqPSuZqY3cQLa2Ic/aEkH5IvNfVKFBQUFBRKUQRgM2KUrxNWRro1WjbrQ5IkHvVz4lRkGtFpeTW2WxvrMbufB/+eTyAwqqZbqJ62Fp891olVs3tgY6LHq+uCefinI+y9lFilEjmkvR07XuxLDw8r/rfxAnOWBZKaW8SErq7seLEfHRxNef3vEKYsOsmVxGzm9PNkz8v92fVSPz4c2YFOTmZIErSzN2WUryOvPeTF/lcH8MqDXhjraVNYouaF1Wf552wsrwxpW27wsiU4jnWBMTwzoDW9PK3L1/PD3qtsDo7j9aFevPtw+1qDp8tMYUb+fIS4jHx+m9KFFwe3rbXyB7D0+HWi0/J5Y6hXnfsAhMZlUViioUtD552u7BAXhWa1VBWNS11MlQrg3aS2v8zqZfb69ukty7I/ok30GUmS+t3Ki8uy/IcsywGyLAfY2NQ+l9rSCbqRTmdnM3S17+P/pUQeFI+lAvAxf2d0tCRWn46u56D7AKfScVplDlBBQUGh2XAf/9+6+aGvo8Xc/h4cvJLMtpCaLZ118aifE9oqiUVHImvdPruvB3ameryz4Tx5deTW9fS0YuPTvflxkh+5hSXMXHKGx349Vh6WDqJi+Nf0rrw7oh0HLycz9PtD7L6YiIulIatm9+DDkR24FJ/NyJ+P8tTyQK4l59LWzoRpvdz4bWoX1sztyfzJ/nw0qiPPDGyNg5kBIGIXpv15iq0h8bw1zJvnSg1e4jLyeWfDefxczXlxcIXpS2BUGj/tu8pj/k481b+miyfAqcg0Hvr+EEuOX2dy91bsfWUAQzvWXdULjErnix1hDPK2pX8d5jFlbDwbi66Wip6eNQPka6AuhqSL4BRQ+3ZV6axiQebNz6Vwu8QAlQc+nYG4hu4jy3LZYxKwAdFSCpBY1iZa+nhfDnwVFKsJjcu8v9s/QbR/mjqDhbh5ZW2sx5D2dvwTFENhifomB9/DWHqI1vfYwKZeiYKCgoJCKYoAbGbM6O1OJycz3t98oTxq4GY4mhvwqJ8Tq0/fICWnsMZ2Iz1tPn+sM1cSs3l25VlK6siuU6kkRvo4sveV/nz2WCcSMguYvPAkk/44wfmYzPJ9ZvX1YMtzfbA10Wf20jM8szKIlJxCpvVy4+BrA3hhUBsOXUlm8LcHefSXo8zfH86l+KwqFUW1RubI1RReXnOOnp/vJTAqne8m+DC3VNBpSmcBSzQy30/wLa/w5RWV8MraYBzNDfhwZIcaM3gajcxvB68xacEJtFUSa+f25OPRHTEz0Knz80vKKuCp5YE4mhvw7Xjfeuf68opK+DswhmGd7BvmAKqlI5w+c+vQBufXCRHo3v/m51K4XU4DbSRJcpckSReYCGyuts9m4IlSN9AeQKYsy/GSJBlJkmQCIEmSEfAgcKHSMWV9vdOATXf7jTRHQuMyKVbL+N3PAlCjEQ6g7v1Eu3cpE7u6kp5XzK7Q+7jFW5LAuStEn2rqlSgoKCgolKIIwGaGtpaKz8d0Ij2vmM/+DWvwcfMGeFJYoqmzCjjQ25aPRnVkX1gSb/1zHo2mbqMZHS0Vk7q5sv/VAXzwSHuuJGbzyM9HeHntOWLSRZupl70JG5/pzStD2rL7YiKDvjnI0uPXMdTV5qUhbTn0+kDeHdEOtUbmq52XGfbDYdq+u51O7+8k4JPd+H+8mymLTrL7UiKjfB3Z8HRvHvWraJFccDiC4xGpfPBIB1pZGZU//9m/YUSl5fH1OB9M9KuKuuyCYuYsO8Pn28MY2sGeLc/1oatb3Vl+AFkFxcxZFkh2QQm/TemCmWHdQhFg87k4sgtLmNKjVb37VcHaCxJDaz5fUgjnVoLXcDCpGWiv0DjIslwCPAvsBC4Ba2VZDpUkaZ4kSfNKd/sXiADCgQXA06XP2wFHJEkKBk4B22RZ3lG67XNgiCRJV4Ehpb/fdwRFZQDg38q8SdfRpCSFQn5aeftnGX1aW+NkbsDq0zeaaGHNBNeeYgYwL62pV6KgoKCgANT0yldocjo4mjG7rwe/HbxGr9ZWtYaZV8fTxpgRnRxYcuw6T/ZyqzWMeUqPViRlFfDjvnDyi9V8Pc6nVjOUMvR1tJje253Hujjz64FrLDoSyZbgOKb0aMWLg9piZqjDc4Pa8IiPI//bdIH3NoWy8uQNXnnQi8HtbJnV14NZfT1Iyipg/+UkIlPyKCrRUFiiRiPL9Gltw6B2tjXWcDQ8hS93XhZRDQEVovBCbCbLTkQxo7c7PTyqtl+WqDXMWnKGwKh0PnikPdN6ud3UoTM5u5Bpf57iSmI2Pz/uf1MDi6ISDb8dvIa3vQkBt5J31mYI7P0Qki+DjVfF85e2iIvGLtMbfi6F20KW5X8RIq/yc79V+rMMPFPLcRGATx3nTAUGNe5KWx5BN9JxtjDA1uQ+DoCPPCQe3ftWeVqlkpjQ1YVvd18hKjW3ys2s+4pWvcTjjePgPaJp16KgoKCgoFQAmysvD2lLNzdL3vg7hAuxDZsPe/VBL4rVGr7dfaXOfV4a0pY3h3mzNSSeB74+wF9HI8kvqn8+xVRfhzeGenPg1QGM7eLMkmPXGfD1fpadiKJErcHN2oilM7rx8+N+FBSrmb30DKN/OcahK8nIsoytqT4Turry5jBv3nukPZ8+2onPHuvMiM4OVcSfLMtsC4nnqeWBeNoY8eXYzlVE3Bc7wjA31OHFIW1qrPG3g9c4GZnGl2M7M723+03F343UPMb+dozIlFwWTguodz6wjJUno7iemscbw7wbFv9Qht9U0NKF7W9AZgwUF0DoRtj/qYiB8BjY8HMpKDQjZFkm6Ea6Mv8XeRgsPWs1ehoX4IxKgjX3sxmMo7/4Dow61tQrUVBQUFBAEYDNFl1tFfMn+2NhqMvcZYGk5d58HtDN2oipPdxYeyaasISsWveRJIl5/T1ZPrM7zhaGfLjlIr2/2Me3u68QEpNRJQKiOo7mBnz2WGe2PtcXL3sT/rfxAg//dIQjV1OQJImHOzuy++X+fDGmEynZhTzx5yn6fbWfL3eEcTmhfiv0pKwC5i0P5JmVQbSyMmLRtK5VWjyPhqdw+GoKzw5sjWm11s/QuEx+2HuVR3wcecy//vw+gPMxmYz57RiZ+cWsnN2dAV61uvdXIaewhJ/2hdPTw4oBNzGJqYGxDTz4ibj7/V0H+NQO1k2DojzxvEr5Z6jQMolKzSMxq5CudeRv3heUFMH1IzWqf2U4mBnwgLcdq09H3/Rm2z2Ljj44dRHfgQoKCgoKTY50K6HjLYWAgAD5zJkzTb2MRiE4OoOxvx1joJctv0/tctPKU0ZeEf2/OkBbO2NWze5RazxCZU5fT+PXA9fYFyZMSoz1tPFzNae7uyU9PKzo7Gxeq7W7LMvsuJDAp/9eIiY9n0Hetrw1vB2tbY0BKCxRszU4nk3BcRwNT0GtkbE21iWgGtrYbgABAABJREFUlSXeDiZ42BiTmVdETHo+0el5HLycTLFG5uUhbZnVx73KugtL1Iz6+ShZ+cXse3VAlaqhRiMzav5RErIK2PViPyxuYsyyPyyJecsDsTbWY/GTXWljZ1Lv/mV8tOUifx6NZOMzvfF1MW/QMTXIuAEXN4lgeO8RwvhFVXcLrkINbqHs2jy5l76bANacvsEbf59nz8v9aG3bsH9L9xzX9sOy0TBxFXgPr3WXU5FpjP/9OB+P6sDUnm7/6fKaDXs/gqM/wJs3QPeea4Vt8d9NCgoK9xfKDGAzx8fFnDeGevPJtkssP3mDqTcxHzE31OWDke15aU0wP+0L56Uhbevdv6ubJV2nW5KcXcixaymcvp7GmevpfL1LtJEa6GjR1d2SEZ3sGdrBodwkRZIkhnVyYKC3LX8dvc4v+8N56PtDTOjqwtMDPHG2MGRMF2fGdHEmJaeQ/WFJ7L2UxOXEbHZeTKDsvoOutgoncwOGtLfj+UFt8LAxrrHGb3ZdISwhm0XTAmrMC244G8v52Ey+n+B7U/G3LSSeF9ecxcvehCVPdsPKWK/e/cvYfzmJP49GMrVHq9sXfwDmrtDruds/XkGhmXEiIg1rY108a/l3e99wZQdo64PHgDp36epmga+LOQsORzKpm+tNb8zdk7j2gsPfQMzpej8rBQUFBYW7jyIAWwAzertz+GoKH2+9SFc3C7zt6zcredTPmcNXUvhp31W6ulnSp411vfsD2JjoMcrXqdxwJj23iJORqZyISGP/5STe+Ps8/9sYSn8vG8YHuDDI2xaVSkJfR4unBngyPsCZH/ZeZdWpG6w9Hc3YLs48PaA1rlaGWBvrMS7AhXEBImYtr6iEG2l5WBrpYm2kV2/o+tHwFBYcjmByd1cGtavqlJlfpOarnZfxcTZjpI9jve9vfWAMr68Pxt/Vgj+f7FqjjbQukrIKeHVtMN72Jrwzol2DjlFQuB+QZZmTEal0c7e8tZnYewlZhsv/CkGja1jnbqL13oN5y4PYEZrAw53r/766J3HpBpIKoo4rAlBBQUGhibkPb0O2PFQqiW/G+2BmoMNzK8/WGeZemY9Gd8TTxph5ywM5GZF6y69pYaTL0I4OfDCyAwdeHcCmZ3oztWcrgqMzmL30DIO/O8iqUzcoKBYzLVbGenw0qiMHXxvI5O6u/HM2lgFf72f20jMcuZpSJQPQUFcbb3tTbE306xR/siyz8Wwss5eewdPGuFbxteBwBAlZBbz7cPt6ReTO0AReWx9M79bWLJ3ZrcHir0St4aW158gtKuHnx/3qdUxVULjfiEnPJy6zoIYj731F0iXR2t126E13HdLeHndrI34/GMG9OHpxU/RNwa4jRB1t6pUoKCgo3PcoArCFYG2sx/cTfAlPzuH9TbVkylXDWE+bZTO7Y2eqx5RFJ1l35vYd6CRJwsfFnP893J5jbz7Aj5P8MNTV4q1/ztPni338cehauSh1NDfgw1EdOfL6QOb29yQwKp0pi04y5LtD/Lj3KpcTsm968ROXkc+Mxad5cc05vO1NWDmrO4a6VYvV4Uk5/Lw/nBGdHOrN+otKzeXVtcF0djJjwRMBNc5TH59vD+NoeCofj+p4/843KSjUwfHSG0vd3e9jAXi5NFmkAQJQSyUxu68H52Mzyz+7+45WvSDmjDDOUVBQUFBoMhQTmBbG1zsv8/P+cP6cHsAD3jcPD8/ML+bpFYEcDU9lVh93nhvUBjODhlXA6kOWZY5HpPLL/mscCU/BykiXOf08mNKjFUZ6FSKroFjN1pB41p6J5lSkCAG2M9Wjt6c1zpaGWBnpYmmkS36RmvOxmYTEZnIpLgstlcTrQ714oqcbWtWqexqNzPjfj3M1KYfdL/erM3+soFjNmF+PEZOez9bn+uBiWXeLVnX+DozhlXXBTO/lxgcjO9zGJ6RwF2jxfYb30nfTK2uD2ReWSOC7Q+qtwN/TLBwMmhKYc6BBuxcUq+nzxT46OJqxZEa3u7u25sjFTbD2CZi5B1y6NvVqGpP79B+AgoJCS0WZAWxhPD+oDbsuJvD2PxfY+ZLlTcWcmYEOi5/sxodbQll4JJLVp6OZ3N2VKT1a3ZIgqo4kSfTytKaXpzVnrqfxw96rfLY9jN8OXmNGb3em93bDRF8HfR0txnZxZmwXZ2Iz8jlyNZlDV1M4HJ5CSk4hle8/mOhp09HJjCd7u9W7vqXHr3MmKp2vx/nUGz79ybaLhMZlsfCJgFt6r+eiM3hrw3l6elgpc38KCnVwMjKV7u5W96/4y0kS1ayBbzf4EH0dLab1dOOb3VcIT8opd02+b3DtKR5vHLvXBKCCgoJCi0KpALZAzkVnMObXYwzyblg0RBkXYjP5/VAE20LikAEvOxO87U3wdjCltY0xFkY6mBnoYmagg6WRbo3K280IjErnl/3h7A1LwtxQh7n9PJncw7XOmbsStYaM/GLScovQVkm4WRnd9GJyS3AcL645R7821vw5vWud7/3f8/E8vSKIOf08eHt4w0VcXEY+o+YfRU9bxeZn+2B5E2dRhf+UFq807pXvppj0PPp8sZ/3H2nPk73dm3o5TUPQMtj8LMw9DA6dG3xYak4hPT/fx/gAZz4Z3ekuLrCZ8lMXsGoDj69u6pU0Ji3+u0lBQeH+QqkAtkB8Xcx5a5iIhvjtYARPDfBs0HEdncz4aZIfbw7zZv2ZGM5Fp3MqMo2N5+Jq7KulkrA10cPOVB9nCwP8XS3o5m5JOwfTOoVhl1YWLJrelZCYDL7dfYUvdoTx076rjPZz4omerWq4l2prqbA21sO6AXEMWQXFfLE9jBUnb9DNzZKfH/evU/wlZBbw1j/n8XE247WHvBrwyQjyikqYteQMBUVqVszqrog/BYU6OBkh2rnv6/m/KzvA1Bnsb03EWRnrMcrHkb8DY3ntQe/yaJ37BteecGkLaDSgUmwIFBQUFJqCZi0AJUn6CngEKAKuAU/KspzRpItqJszs487Z6Ay+2hlGJyezBkU9lOFkbsALg9uU/56ZV0xkai4ZeUVk5heTkVdMcnYhCVkFJGQWcPZGBltD4gHRptnfy4axXZzp28amVjHY2dmcxU9243xMJkuPX+fvwBhWnryBj4s5Q9rZMqidHd72Jg2qXMqyzM7QBN7bFEpKTiEz+7jzyoNt6zRz0WhkXl0XTFGJhu8n+qHTwLwtjUbmlbXBhCVksWh6V9o2MCBeQeF+5GRkKmYGOnjb36f/TooL4No+8H0cbiMC48ne7qwLjGH16RvM7d+wG3j3DK16wdllkBwGdu2bejUKCgoK9yXNWgACu4G3ZFkukSTpC+At4I0mXlOzQJIkvhzTmauJ2Ty1IpBlM7vfdki5maEOvob1HxuXkc/p62kcv5bKjtAEtobE42ZlyIw+7owPcKk1IqGTsxlfjfPh7eHtWBcYzbbzCXy96wpf77qCtbEevTyt8LI3oa2dCQ5m+sgyyMgUlmi4EJvJmevpnIlKIzGrkPYOpiycFkBn5/rX+dWuyxwJT+H/Hu2Eu7VRgz+D7/deZfuFBN4d0Y6BXrYNPk5B4X7kREQa3dwt79/5v8hDUJwHbYfd1uHtHU3p4WHJkmPXmdnH/f4Khq88B6gIQAUFBYUmocXMAEqS9CgwVpblyTfb916Zs2kIsRn5TPzjOBm5xSyZ2Q1/V4u7/pqFJWp2hSby59FIzt7IwMZEj6f6e/J4d9ebZuUlZRew91ISx6+lEnQjnZj0/Dr3dTI3oEsrC/q0seZRP6ebVvN+P3iNz7aH8Xh3Vz4d3bHBs5HbQuJ5ZmUQ47o48+XYzvdvqHXzp8X/xdwL303XU3IZ8PUBPnikPdPv1/m/LS/C+XXwegRo37yFvTZ2hiYwd1kgv0z2Z3gnh8ZdX3NGluHb9iIYfvySpl5NY9Hiv5sUFBTuL1qSANwCrJFleXkd2+cAcwBcXV27REVF/ZfLa1LiMvKZtOAEqTlFLH6yKwH15OI1NiciUvlhz1WOR6RiY6LHnL4eTOjm0uCw9eyCYq4k5pCaU4gk/T979x0W1fE1cPw7u/SOFGkKWFCx995jN5aYaIymN9N7T960X3qvmsSYxBRNookae+8Vu6KoCCpNRHove98/BhSpCwK7wHyeh4fI3t0diIz3zJw5R6ATsvF9m6aO+LjYGvUamqbxydpTfL3pDOM7efPFrV2NLmATFpfGpG92EOzjxB/398baQjV7N2P1/iarIQSA87ZH8NbyULY+N5TmbtWvJFxvGQrgs/bg1wOmlfnPkVEKDBpDPt6El5MNf8/qV4MDrAeWPipbQjwXDhYN4qx1vZ+bFEVpXEyedyKEWC+EOFbGx8Ri17wC5AO/l/c6mqZ9r2laD03Tenh4eNTF0M2Gj4stfz7QFw9Ha2bM3cPcbWcpMNRNYN+nhRsLHujDwgf60MrDgXdWnqDfexv5YPVJEjMqb/braGNJd39XRrb3YkRwU4a3a8rQNp5GB39JGbk8uuAgX286w609m/H5tC5GB3/JmbnM+m0/DjYWzJ7RTQV/imKEjSfjaelh3ziDP4CzmyEtFtrfdF0vo9cJbuvlz77IJCISMmpmbPVF23GQkwrndph6JIqiKI2SyQNATdNu0DStQxkfSwGEEHcC44EZWn3ZrjQBL2cb/p7VlwGt3PnfihNMmb2TsLi0Onv/okBw2aP9GdzGgzlbwun//kae/usQO84k1HhAmpGTz6+7Ihnx2RbWHIvj+dFteO+mjkafpckrMPDQbweITspi9oxueDqV309QURQpPSefPRGXGda2EZ+TPfgb2LrKIOY6Te7qi07A4v1RNTCweiRwMFjYQthKU49EURSlUTLrIjBCiNHIoi+DNU3LNPV4zJ27gzVz7+zBssMxvPlfKOO/2saNnXyY1NWXfi3d6qTQQCc/F765rRtn4tOYuy2CFUdi+edANF5ONozu4EV3f1d6BLji7WzcDl9xmqYRfimd3/ecZ1FIFGk5+XRt7sKv93aknbdT5S9Q7HVeW3KMXWcv88ktnes0ZVZR6rPtpxPIK9AY2lgDwMxEOLkcetxT7bN/xXk52zCgtQf/HIji6RFBjaeojpUdtBwGYatgzIfVqqSqKIqiVJ9ZB4DA14A1sK6wMMduTdNmmXZI5k0IwcQuvgxo5c6n606x7HAM/xyMxt3BmjEdvOjb0o1egU2M6r13PVp5OvL+lE68MaE960Iv8u/BaBbuO8/POyMB8HG2oYWHA82a2BHgZoeHozWudlbYWemxs7IgMzef5Kw8UjLziErK5HBUCkeikknKzMNSLxjX0Zs7+gXQtZlLlYu2zNlyloX7LvDo0FZM6e5XC9+9ojRMm07G42htQc/GumhydBEU5ELXmTX2kjd39+PxBQfZdfYy/VsZ386n3mszBsJWQNxR8O5k6tEoiqI0KmYdAGqa1srUY6iv3ByseWdyR14bH8ymk/H8ezCaRfuj+HW3LI7TytOBYG8nAtzs8HezJ8DdjkB3hxpvfm5jqefGzj7c2NmHvAIDJ2JT2X8uiUMXkjl3OZM1x+NIzMhFCFkcriw6AUFNHRkZ7EWnZs6MCG6Kp2P1Uja/3XyGD1eHMb6TN0+PCLqO70xRGhdN09gUFs/AIHej+2s2OAd/Be/OVW7+XpGRwU1xtLFg0f6oxhUABo0GhNwFVAGgoihKnTLrAFC5fjaWesZ09GZMR2/yCgwcjU5hz9lE9kZc5tCFZJYfiaH48TwXO0sC3e3p0syFQUEe9Al0w9aqZoqjWOp1dPJzKdXLLyUzj0vpOaRl55GRU0Bmbj721hY421ribGuJh6N1pe0lKqNpGp+tO8WXG88wobMPn0zt3HjSrRSlBhyPSSU+Lafx9smMPQxxR2DsxzX6skWLZP8ciOKtie1xNLKCcr3n4CFbQYStgCGqva+iKEpdUgFgI2Kp19GtuSvdmrvy0JCWAOTmG4hOziIiIZ2zlzKISMjgTHw6f+w5z087IrHS6+jdogkzevszMrhprQRNznaWONvV3k1PfoGBd1eeZN6OCKb1aMa7N3U0ulKooijSxpPxAAxprAHgwd9Bbw0dptT4S0/p5scfe86z6mgcU3s2q/HXN1ttxsL61yElGpx9TT0aRVGURkMFgI2clYWOQHd7At3tGdb26tez8wrYG5HIttOXWHk0jlm/7aeDrxOvjA2mb0s30w24isIvpfPMX4c5dCGZu/sH8Nq4YLXzpyjVsPFkPJ39nPFwrN3zw2YpLxuO/AntxoNdzZ9/7NbchRbu9izaH9U4A8CwldDrflOPRlEUpdFopAc5lMrYWOoZFOTBK+OC2fLcED6d2pnE9Fym/7Cb+34J4eyldFMPsUIFBo25284y9ottRCRk8MWtXXj9xvYq+GukhBCjhRBhQogzQogXy3hcCCG+LHz8iBCiW+HXmwkhNgkhTgghjgshnij2nDeEENFCiEOFH2Pr8nuqS7EpWRyOSmZ4u6amHopphK2E7OQaLf5SnBCCyV192RuZSExyVq28h1lybw1NWspzgIqiKEqdUQGgGcjIyWdTWDxJRjRONwULvY6buvmx8dkhPDeqDbvCExj52Vbe/O84yZnmNebkzFy+3xrOkI838b8VJxjY2p11Tw1iYheVXtRYCSH0wDfAGCAYmC6ECC5x2RigdeHHA8Dswq/nA89omtYO6AM8UuK5n2ma1qXwo8E2NVtyMAZNgwmdfUw9FNM4+Cs4N5P962rJ+MKf7cqjsbX2HmZHCGg7FiK2QnaqqUejKIrSaKgUUBM7dTGNad/tutLe4MUx7bh3QKCph1UmG0s9jwxtxdQezfh0XRi/7IzknwPR3NUvgLv6BeBawxVEjZWVW8COMwmsOR7Hf0diyM4z0CuwCa+MDWZU+6ZVbhOhNDi9gDOapp0FEEIsBCYCocWumQjM1zRNA3YLIVyEEN6apsUCsQCapqUJIU4AviWe26Bpmsa/B6Po7u9KgLu9qYdT92IOQfhGGPIy6GqmIFZZAt3tae/jxH9HYrlvYItaex+z02Ys7PwKwjdA+8mmHo2iKEqjoAJAEzIYNF5cfASA72/vzl8hUby9PBR7Kz239mpu4tGVz8PRmvdu6sSd/QL4eM0pvthwmu+3nuXWXs24qasf7X2cai3VMq/AwLnLmZyJT+P0xXQOnE9iZ/hlcvIN2FvpmdTFlzv6BhDsY3xjeKXB8wUuFPtzFNDbiGt8KQz+AIQQAUBXYE+x6x4VQtwBhCB3CpNKvrkQ4gHkriLNm5vv73V5jsekcupiOu9M7mDqoZjGhrfA1hX61H4L2hs7+/D+qpNcSMykWRO7Wn8/s9CsN9i5QehSFQAqiqLUERUAmtAfe89z4Hwyn9zSmZHtvRjSxpP754fw8r9HcbGzZHQHb1MPsUJtvZyYe2cPTl1MY86WcP7cd4GfdkTiYmdJt+audG3mgqeTNU42ljjZWmJloSMv30CeQSMv30B2fgFZuQVk5xWQlVdAdp7hyn9n5RaQWfiRlp1HYkYulzNyScrMvaZfYKC7Pbf1bs7wtk3pFdgEKwuV1ayUUtZqRMmukxVeI4RwABYDT2qaVpSrNht4u/C6t4FPgHtKvYimfQ98D9CjR49yul2ar38ORGOl1zG+YyNM/4zYKnemRv4PbJxr/e3GdfTm/VUnWX4k9kql5gZPp4dO02DvD5B2ERwb6TlTRVGUOqQCQBNJSM/hg9Un6d/KjZu6yfNpVhY6Zs/sxtTvdvHWf6GMau9VL9IXg5o68unULrwyNocNJ+PZH5nEvnOJV8rGV4WFTmBjqcfOSn7YWlngaG1BSw8HegVa4WZvhb+bPa2bOtDSwwF7a/VXWKlUFFC8tKIfEGPsNUIIS2Tw97umaf8UXaBp2sWi/xZC/AAsr9lhm15+gYFlh6MZ3s6zVlu1mCVNg/VvgpMv9KybCpXNmtjRpZkLy4/ENJ4AEKDnfbD7WzjwCwx+3tSjURRFafDU3bOJJGbkkplbgE4I8g0alnoZ6AkENhZ6UrPz0TR5Rr6+cHOwZmqPZkztIe+jM3LySc7KI7XwI7fAgKVeh6VeYKnXYWupx8ZSj62V/GxjocNCr3bwlBq3D2gthAgEooFbgdtKXLMMmc65EJkemqJpWqyQKzA/Aic0Tfu0+BOKnREEmAwcq81vwhS2nU4gIT2XyV0bYRGlkysgOgQmfA2WNnX2tuM7efO/FSeISMggsLGcuXRrCS2HQ8g8GPAU6BvZYoOiKEodU3fbJhLU1JF3JnVg2+kEXv33GJqmcf5yJjfN3sn+80k8P7pNvW9ZYG9tga+LLe28nejdwo2BrT3o08KN7v5N6OTnQuumjjRrYoe7gzUO1hYq+FNqhaZp+cCjwBrgBPCXpmnHhRCzhBBFB7tWAmeBM8APwMOFX+8P3A4MK6Pdw4dCiKNCiCPAUOCpOvqW6sw/B6NxtbNsfM3fC/Ll2T/3IOg8vU7felwnmfq//HDJTeoGrtcDkBYLJxvcRrqiKIrZUTuAJnRrr+ZEJ2fx1cYzRCRkEHYxDYCf7urZ+G64FKUWFbZoWFnia3OK/bcGPFLG87ZT9vlANE27vYaHaVaSMnJZezyOaT2bNb6ztUcWQkIYTP0V9HX7z6S3sy09A1xZfiSWx4a3rtP3NqnWI8DFX54FVMVgFEVRalUj+1fd/Dw9IoibuskGwN7ONvz36AAV/CmKYnK/7IokJ9/AzD7+ph5K3cq4DBvfAd/u0O5GkwxhQmcfwi6mcTKuEfXG0+nlWcBzOyCuwWVTK4qimBUVAJqYEIIPp3Ri2/NDWfJIf5q7NZLS34qimK3M3Hx+3hnJDe2aEtTU0dTDqTsF+bD4Hsi8DGM/Ntkh7LEdvdHrBMsONbI00K4zwcIG9v1g6pEoiqI0aCoANAMWeh3NmthhY1l7TYYVRVGMtXDvBZIz8xpXJUqAjW/B2c0w7hPw7WayYbg5WDOwtTtLD8VgMNS7ziHVZ9cEOt4CR/6CrFItNRVFUZQaogJARVEU5YrcfANzt52lV2ATuvu7mno4def4v7DjC+hxD3Qz/fHOiV18iE7O4sD5RhYI9bof8jLh4O+mHomiKEqDpQJARVEU5Yplh2OIScluXLt/F0NhySPg1wtGf2Dq0QAwItgLG0sdSxtbGqh3Z/AfIIPx7EZ0BlJRFKUOqQBQURRFAcBg0JizJZy2Xo4MCfIw9XDqRlIkLLgVrB1g6nywsDL1iABwsLbghnZNWXE0lrwCg6mHU7dGvg0Z8bDtY1OPRFEUpUFSAaCiKIoCwJ8hFzgTn84jQ1shTFQApU7FHoEfR0J2Cty6AJy8TT2ia0zq4ktiRi7bTyeYeih1y7cbdJkJu76Fy+GmHo2iKEqDowJARVEUhaSMXD5YfZJegU0Y38m8AqFacXYL/DQWdBZwzxrw627qEZUyKMgDZ1tLlh6KNvVQ6t7w/wMLa1j7qqlHoiiK0uCoAFBRFEXhwzVhpGXn8/bEDg1/9+/YP/D7zeDsB/euA8+2ph5RmawsdIzt6M2a4xdJzc4z9XDqlmNTGPQshK2EMxtMPRpFUZQGRQWAiqIojdyhC8ks3Heeu/sF0MarAff9Mxhg8/uw6G7Z6P2eVeDsa+pRVWh6r2Zk5RWweH+UqYdS9/o8DK6BsOZlKGhkAbCiKEotUgGgoihKI1Zg0HhtyTE8HKx54obWph5O7clJg79uh83vQefb4PYlYGv+bS46+bnQtbkL83eda1w9AUGmgI56By6dhH1zTT0aRVGUBkMFgIqiKI3YFxtOczQ6hVfHB+NoY2nq4dSOxAhZ7CVsJYx6DyZ9C5Y2ph6V0e7qF0BEQgbbzjSyYjAAbcZCqxtg/Rtw8bipR6MoitIgqABQURSlkdp66hJfbTzNzd39mNDZx9TDqR2R2+GHoZAaAzP/gb4PQz074zimgzfuDtb8sjPS1EOpe0LApNlg4wx/3Sl3chVFUZTrogJARVGURiguJZun/jxEkKcjb0/sYOrh1I6Dv8P8SWDvAfdvhJZDTT2iarGy0HFb7+ZsCovn3OUMUw+n7jl4wpQfITEclj8FWiNLhVUURalhKgBUFEVpZPIKDDy+4CBZeQV8M6MbtlZ6Uw+pZhkMMmVw6cPg3w/uXQtuLU09qusyo3dz9ELw665zph6KaQQOhCEvw9G/Yf/Pph6NoihKvaYCQEVRlEbEYNB47u/D7I1M5L2bOtLK08HUQ6pZuRnw952w/TPofhfMXFwvir1UpqmTDaM7ePFnyAVSMhtpRcyBT0OLobDqBYg9YurRKIqi1FsqAFQURWkkNE3jreWhLDkUw3Oj2jCxi3m3QKiyxAiYOwJOLoeR78D4z0HfcArbPDykFRk5+Xy6LszUQzENnR5u+gHsmsCCW+X/b0VRFKXK6kUAKIR4VgihCSHcTT0WRVGU+urLDWf4eWck9w0I5OEh9TslspTwTYXFXqJgxt/Q79F6V+ylMsE+Ttzex59fd58jNCbV1MMxDQcP+f83LxN+mQDJ5009IkVRlHrH7ANAIUQzYASgZnlFUZRq0DSNT9ed4rP1p5jSzY+Xx7ZDNJTgyFAAO76E324CBy+4f5NsG9BAPT2iDS52Vry+7BhaYy2G4tVR9nHMSYFfbpQVXhVFURSjmX0ACHwGPA800n/pFEVRqi+vwMALi4/w5YbT3NLdjw+mdESnayDB3/nd8P0QWPea7Bd337p6X+ylMs52lrwwug37IpNYeqgRBz4+XWDmv5BxWQaBaXGmHpGiKEq9YdYBoBBiAhCtadphI659QAgRIoQIuXTpUh2MTlEUxbylZefxwPwQ/gqJ4vFhrfjw5k5Y6M162jdOWhz88yDMGwWZl+Hmn2Dab2DtaOqR1Ylbujejs58z76w8QVxKtqmHYzp+3WHmIkiNhbk3yAUBRVEUpVLC1CkkQoj1gFcZD70CvAyM1DQtRQgRCfTQNC2hstfs0aOHFhISUrMDVRTF1Or9tlVdzk17IxJ56s9DxKZk8fakDszo7V8n71tKVhJEbIOEMEg6B0mRkHIBhE4GbNZO8rOTD7gGQpMW0CRQNv7WW8kiLkIHMYcgYguc3QLR+2VBkH6PwcBnwMreNN+bCYXGpDL1u114Olnz5wN98XC0NvWQTCf6ACy6G5IvwNCXYcBT8u9H3an3c5OiKI2LyQPA8gghOgIbgMzCL/kBMUAvTdMqzPVQAaCiNEj1/iarLuam7LwCvthwmjlbwmnexI7PpnWhW/M6bIOgaRB7CE6vhzPrIGofaAb5mL0nuAaAS3P555w0+ZGdAilR8kxXRYQOfLpBi8HQZUaDT/eszN6IRO6ctxd/NzsW3N8HV3srUw/JdLJT4L8n4fg/EDgYJn8HTt519e71fm5SFKVxMdsAsCS1A6gojV69v8mqzbkpO6+AhXvP8+3mcOLTcri1ZzNeGx+MvbVFrbzfNQwFcGEvnFgGJ/6TO3wAPl2h1QhoNVwW7qhop07T5G5hYgQkRUBuOhTkQX4OGPLAvQ0E9Jc7g8oVO84kcPfP+2jt6cBn07oQ1LRxpMGWSdPg4K+wsrBsQJfboO+jdbFQUO/nJkVRGhcVACqKUl9U+yZLCDEa+ALQA3M1TXu/xOOi8PGxyKyDuzRNO1DRc4UQTYA/gQAgEpiqaVpSReOo6blJ0zSOx6Sy6lgsi/dHE5eaTa/AJjw9Iog+Ldxq7H3KlBQp0zEjtkDEVsi4JFM2Ww6DdjdC61GyZL9S6zaFxfP4goNk5OQzrWcznrohCE8nG1MPy3Quh8OOL+DwArmIEDwBut0BzfqAtUNtvKMKABVFqVfqTQBYFSoAVJQGqVo3WUIIPXAK2U4mCtgHTNc0LbTYNWOBx5ABYG/gC03Telf0XCHEh0CipmnvCyFeBFw1TXuhorFcz9yUkZNPQnoOUUlZnIhNJTQmlX3nErmQmIVeJ+jX0o2HBrekb0u3mmnxYDBAdjJkJMjgLjEcLoXJj/hQSI2W1zk0lSl3QaOg9Uiwcbr+91aqLCkjly83nubXXefQ6QQ9A1zp28KNXoFuNG9ih7uDVcMoAFQVaXGw5zvY96NMLxZ6WT3Uvz94dwZHb3n21MkHLK7rDKUKABVFqVdUAKgoSn1R3QCwL/CGpmmjCv/8EoCmae8Vu+Y7YLOmaQsK/xwGDEHu7pX53KJrNE2LFUJ4Fz6/TUVjMXZumr05nKWHosnKKyArt4C07Hyy8gquucbT0ZpOfs6MCG7KiGAvmlT3/FdOuiyjn59d+JEDeVnyTJV27XtiYQPurWU6ZrPeEDgIPNo0uIbr9VlkQgbzd51jZ3gCJ+PSrnxdCHB3sOaLW7vQr6W7CUdoArkZskLouR1wbqcsIlSQe+01Vg5gaQeWtvKzfz8Y/6mx76B+ARRFqVfq4HBI3du/f3+CEOJcFZ/mDlSaXmoG1DhrTn0YI9SPcdbFGFdrmja6Gs/zBS4U+3MUcpevsmt8K3luU03TYgEKg0DPst5cCPEA8EDhH9MLA8eqKvXzPYfcjvyxGi9WfalAPLDDHeaZ299Jc/w9MasxRYJ7/1fNZzyFzORnlFr0H4Xj2YNsQ2yU6s5NiqIoJtEgA0BN06p88EQIEaJpWo/aGE9NUuOsOfVhjFA/xmnmYyxrdb5k6kN51xjz3AppmvY98H1VnlOSuf18zW08oMZkDHMbD5jfmMxtPIqiKLWhkR0IUBSlEYoCmhX7c1FLGWOuqei5FwtTPyn8HF+DY1YURVEURakVKgBUFKWh2we0FkIECiGsgFuBZSWuWQbcIaQ+QEphemdFz10G3Fn433cCS2v7G1EURVEURbleDTIFtJquK0WrDqlx1pz6MEaoH+M02zFqmpYvhHgUWINs5TBP07TjQohZhY/PAVYiK4CeQbaBuLui5xa+9PvAX0KIe4HzwC21+G2Y28/X3MYDakzGMLfxgPmNydzGoyiKUuMaZBVQRVEURVEURVEUpTSVAqooiqIoiqIoitJIqABQURRFURRFURSlkVABYBmEEM8KITQhhFl2yxVCfCSEOCmEOCKE+FcI4WLqMRURQowWQoQJIc4IIV409XjKIoRoJoTYJIQ4IYQ4LoR4wtRjKo8QQi+EOCiEWG7qsZRHCOEihFhU+HfyRGHjdaWWmMv8ZC7zkLnNOeY6v5jbXGKO84YQ4qnC/2fHhBALhBA2ph6ToihKbVABYAlCiGbACGRRB3O1DuigaVon4BTwkonHA8gbDOAbYAwQDEwXQgSbdlRlygee0TStHdAHeMRMxwnwBHDC1IOoxBfIRshtgc6Y/3jrLTObn0w+D5npnGOu84u5zSVmNW8IIXyBx4EemqZ1QBZ9utWUY1IURaktKgAs7TPgearY7LkuaZq2VtO0/MI/7kb2JjMHvYAzmqad1TQtF1gITDTxmErRNC1W07QDhf+dhrzx8DXtqEoTQvgB44C5ph5LeYQQTsAg4EcATdNyNU1LNumgGjazmZ/MZB4yuznHHOcXc5tLzHjesABshRAWgB2l+4UqiqI0CCoALEYIMQGI1jTtsKnHUgX3AKtMPYhCvsCFYn+OwgwDq+KEEAFAV2CPiYdSls+RN/sGE4+jIi2AS8BPhellc4UQ9qYeVENk5vOTqeYhs55zzGh++RzzmkvMbt7QNC0a+Bi5ux6L7AW61pRjUhRFqS2NLgAUQqwvzO8v+TEReAX4P1OPESodZ9E1ryDTjX433UivIcr4msl3KsojhHAAFgNPapqWaurxFCeEGA/Ea5q239RjqYQF0A2YrWlaVyADMPk5rPrK3OanejAPme2cYy7zi5nOJWY3bwghXJG7x4GAD2AvhJhpyjEpiqLUlkbXCF7TtBvK+roQoiNy4j8shACZznRACNFL07S4OhwiUP44iwgh7gTGA8M182nmGAU0K/ZnP8w0hUYIYYm8Oftd07R/TD2eMvQHJgghxgI2gJMQ4jdN08zthiQKiNI0rWiHYxEqAKw2c5uf6sE8ZJZzjpnNL+Y4l5jjvHEDEKFp2iUAIcQ/QD/gN5OOSlEUpRY0uh3A8miadlTTNE9N0wI0TQtA/gPVzRTBX2WEEKOBF4AJmqZlmno8xewDWgshAoUQVsgD9MtMPKZShLyD/hE4oWnap6YeT1k0TXtJ0zS/wr+LtwIbzTD4o/D344IQok3hl4YDoSYcUoNkjvOTmcxDZjfnmNv8Yo5ziZnOG+eBPkIIu8L/h8Mxr6I5iqIoNabR7QA2EF8D1sC6wt2A3ZqmzTLtkEDTtHwhxKPAGmQFtXmaph038bDK0h+4HTgqhDhU+LWXNU1baboh1WuPAb8X3oCfBe428XiUumHyechM5xw1vxjHrOYNTdP2CCEWAQeQKc0Hge9NOSZFUZTaIswne1BRFEVRFEVRFEWpTSoFVFEURVEURVEUpZFQAaCiKIqiKIqiKEojoQJARVEURVEURVGURkIFgIqiKIqiKIqiKI2ECgAVRVEURVEURVEaCRUAKmZJCPG4EOKEEOL3Kj7vUSHEGSGEJoRwr63xKYrSeF3H/PS7ECJMCHFMCDGvsGG8oiiKotQp1QZCMUtCiJPAGE3TIqr4vK5AErAZ6KFpWkItDE9RlEbsOuanscCqwj/+AWzVNG12TY9PURRFUSqidgAVsyOEmAO0AJYJIV4QQuwUQhws/Nym8Bq9EOJjIcRRIcQRIcRjAJqmHdQ0LdKEw1cUpQG7zvlppVYI2Av4me47URRFURortQOomCUhRCTQA8gFMjVNyxdC3AA8pGnaFCHEQ8ANwLTCx5pompZY8vlqB1BRlJpWA/OTJbAHeELTtG0m+BYURVGURszC1ANQlEo4A78IIVoDGlB0ZuYGYI6mafkAxW+uFEVR6kh156dvkemfKvhTFEVR6pxKAVXM3dvAJk3TOgA3AjaFXxfIGy5FURRTqfL8JIR4HfAAnq6TESqKoihKCSoAVMydMxBd+N93Ffv6WmCWEMICQAjRpI7HpSiKUqX5SQhxHzAKmK5pmqEOx6koiqIoV6gAUDF3HwLvCSF2APpiX58LnAeOCCEOA7fBlfLsUcjiCkeEEHPresCKojQaVZqfgDlAU2CXEOKQEOL/6nS0iqIoioIqAqMoiqIoiqIoitJoqB1ARVEURVEURVGURkIFgIqiKIqiKIqiKI2ECgAVRVEURVEURVEaCRUAKoqiKIqiKIqiNBIqAFQURVEURVEURWkkVACoKIqiKIqiKIrSSKgAUFEURVEURVEUpZFQAaCiKIqiKIqiKEojoQJARVEURVEURVGURkIFgIqiKIqiKIqiKI2ECgAVRVEURVEURVEaCRUAKoqiKIqiKIqiNBIqAFQURVEURVEURWkkVACoKIqiKIqiKIrSSKgAUFEURVEURVEUpZFQAaCiKIqiKIqiKEojoQJARVEURVEURVGURsLC1AOoDaNHj9ZWr15t6mEoilKzhKkHcL3U3KQoDZKamxRFMVdlzk8NcgcwISHB1ENQFEUpRc1NiqKYIzU3KUrj0iADQEVRFEVRFEVRFKU0FQAqiqIoiqIoiqI0EioAVBRFURRFURRFaSQaZBEYRTEXeXl5REVFkZ2dbeqh1Bs2Njb4+flhaWlp6qEoSoOl5qaqU3OTotQNNT9VXVXnJxUAKkotioqKwtHRkYCAAISo94Xiap2maVy+fJmoqCgCAwNNPRxFabDU3FQ1am5SlLqj5qeqqc78pFJAFaUWZWdn4+bmpiYwIwkhcHNzU6t+ilLL1NxUNWpuUpS6o+anqqnO/KQCQEWpZWoCqxr181KUuqF+16pG/bwUpe6o37eqqerPSwWAiqIoiqIoiqIojYQ6A6goilHmzJmDnZ0dd9xxh6mHoiiKcg01PymNmcGgkZCRQ3xqDnEp2Xg6WdPJz8XUw1Iw37lJBYCKolQqPz+fWbNmmXoYiqIopaj5SWms4lOzueeXfZyMTSPfoF3z2LhO3rw8th2+LrYmGp1iznOTCgAVpR7IyMhg6tSpREVFUVBQwGuvvUaLFi144oknyMjIwNramg0bNmBnZ8eLL77I5s2bycnJ4ZFHHuHBBx9k8+bNvPHGG7i7u3Ps2DG6d+/Ob7/9hhCCt956i//++4+srCz69evHd999hxCCIUOG0K9fP3bs2MGECRNIS0vDwcGBZ599lkOHDjFr1iwyMzNp2bIl8+bNw9XV1dQ/JkVRTEDNT4pS93LzDTz8+wHC4zO4f1ALvJ1taOokP7aEXeLbzWfYcOIiDw9pxQODWmBjqTf1kOucmpvKp84AKko9sHr1anx8fDh8+DDHjh1j9OjRTJs2jS+++ILDhw+zfv16bG1t+fHHH3F2dmbfvn3s27ePH374gYiICAAOHjzI559/TmhoKGfPnmXHjh0APProo+zbt49jx46RlZXF8uXLr7xvcnIyW7Zs4ZlnnrlmPHfccQcffPABR44coWPHjrz55pt198NQFMWsqPlJUereuytPEHIuiQ9u7sQLo9tyR98ARrX3okszF564oTUbnhnM8LZN+XTdKW74dAunL6aZesh1Ts1N5VMBoKLUAx07dmT9+vW88MILbNu2jfPnz+Pt7U3Pnj0BcHJywsLCgrVr1zJ//ny6dOlC7969uXz5MqdPnwagV69e+Pn5odPp6NKlC5GRkQBs2rSJ3r1707FjRzZu3Mjx48evvO+0adNKjSUlJYXk5GQGDx4MwJ133snWrVtr+SegKIq5UvOTotStfw9G8fPOSO4dEMiEzj5lXuPnasc3M7qx4P4+5OQbuOunfcSnNa42JmpuKp9KAVWUeiAoKIj9+/ezcuVKXnrpJUaOHFlmyV9N0/jqq68YNWrUNV/fvHkz1tbWV/6s1+vJz88nOzubhx9+mJCQEJo1a8Ybb7xxTR8Ze3v72vumFEVpENT8pCh1JzQmlZf+OUqvwCa8OKZtpdf3benGvDt7MvW7Xdz3SwgLH+iDnVXjuP1Xc1P51A6gotQDMTEx2NnZMXPmTJ599ll2795NTEwM+/btAyAtLY38/HxGjRrF7NmzycvLA+DUqVNkZGSU+7pFE5a7uzvp6eksWrSo0rE4Ozvj6urKtm3bAPj111+vrGgpitL4qPlJUepGSmYes37bj7OtJd/c1g1LvXG38R39nPlqeleORafwxMJDFJQoGNNQqbmpfI1jCUBR6rmjR4/y3HPPodPpsLS0ZPbs2WiaxmOPPUZWVha2trasX7+e++67j8jISLp164amaXh4eLBkyZJyX9fFxYX777+fjh07EhAQcCUtojK//PLLlYPMLVq04Keffqqh71RRlPpGzU+KUje+3XKG6OQs/p7VFw9H68qfUMwNwU35v/HBvPFfKP9bEcrrN7avpVGaDzU3lU9omulWAYQQ84DxQLymaR3KeHwIsBSIKPzSP5qmvVXZ6/bo0UMLCQmpwZEqSvWcOHGCdu3amXoY9U45P7fSeRu1RM1NSkOn5qbqMfXcVFvU3GT+DAaN/h9sJNjbiR/vMi7gKMtb/4Uyb0cE/5vUgZl9/GtwhDVHzU/VU5X5ydQpoD8Doyu5ZpumaV0KPyq9wVIURakBP6PmJkVRFMVM7ItMJDYlmwldyi76YqxXxrWjfys3Pl4bRkZOfg2NTqlvTBoAapq2FUg05RgURVFKUnOToiiKYk6WHo7B1lLPiOCm1/U6ep3g6RFtSM7MY8He8zU0OqW+MfUOoDH6CiEOCyFWCSEafsKyoij1hZqbFEVRlFqXm29g5dFYRgQ3rZEKnt39XenToglzt0WQk19QAyNU6htzDwAPAP6apnUGvgKWlHehEOIBIUSIECLk0qVLdTU+RVEaJzU3KYqiKHVi+5lLJGfmldvzrzoeHtKKuNRslhyMrrHXVOoPsw4ANU1L1TQtvfC/VwKWQgj3cq79XtO0Hpqm9fDw8KjTcSqK0riouUlRFEWpK8sOxeBsa8mgoJr7N2Rga3c6+DoxZ8vZRtMWQrnKrANAIYSXKOzYKITohRzvZdOOSlGUxk7NTYqiKEpdyMotYG3oRcZ29MLKouZu24UQPDykFREJGaw6Fltjr6vUDyYNAIUQC4BdQBshRJQQ4l4hxCwhxKzCS24GjgkhDgNfArdqpuxboSj1UGRkJB06lOpkUCM2b97M+PHjAVi2bBnvv/9+rbxPXVNzk6LUPjU3KUrl1p+4SGZuARM6+9b4a49q70ULD3u+3RSO+ifsqsYwN5m0EbymadMrefxr4Os6Go6iKNdhwoQJTJgwwdTDqBFqblKUhqMhzU1K47P0UAxeTjb0CmxS46+t1wlmDW7J84uOsOXUJYa08azx91DKZ8q5yaQBoKI0Jm/+d5zQmNQafc1gbwdeHx8MOn2F1+Xn53PnnXdy8OBBgoKCmD9/Ph9//DH//fcfWVlZ9OvXj++++w4hBF9++SVz5szBwsKC4OBgFi5cSEZGBo899hhHjx4lPz+fN954g4kTJ17zHj///DMhISF8/fXX3HXXXTg5ORESEkJcXBwffvghN998MwAfffQRf/31Fzk5OUyePJk333yzRn8miqJUTa3MTT5OvH5j5cVx1dykKOVLycxjy6l47uwbgF5XZj/v6zapiy+frTvFt5vDzTIANNX81NDnJrM+A6goSgmaAQpyIC8TctMh8zLEHYXLZyDjEhTklfm0sLAwHnjgAY4cOYKTkxPffvstjz76KPv27ePYsWNkZWWxfPlyAN5//30OHjzIkSNHmDNnDgDvvPMOw4YNY9++fWzatInnnnuOjIyMCocaGxvL9u3bWb58OS+++CIAa9eu5fTp0+zdu5dDhw6xf/9+tm7dWoM/IEVR6hM1NylK+VYdiyWvQGNil5pP/yxiZaHj3gGB7I1I5PTFtFp7n/qmoc9NagdQUeqIMavhZdI0yEqC9HjIzwIEWDuChTXoLaEgH7KTISUKUmPBNQBsnK55iWbNmtG/f38AZs6cyZdffklgYCAffvghmZmZJCYm0r59e2688UY6derEjBkzmDRpEpMmTQLkBLRs2TI+/vhjALKzszl/vuIGspMmTUKn0xEcHMzFixevvM7atWvp2rUrAOnp6Zw+fZpBgwZV72ejmJ207DziUrJJy8knPTsfvU7QwdcZZ1tLUw9NKUe156YaoOYmRSnfssMxBLrb08HXqfKLr8PoDl78b8UJtp5OoHVTx1p9r6oy1fzU0OcmFQAqijnLToXUGBn4WdiAkx/YusjArzgnH8jLguRzkBgODk3B0RtkoUoKC1ZeIYTg4YcfJiQkhGbNmvHGG2+QnZ0NwIoVK9i6dSvLli3j7bff5vjx42iaxuLFi2nTps01r1M0QZXF2tr6yn8XHS7XNI2XXnqJBx98sLo/EcUMGQwau89eZuG+C6w+FkdugaHUNa09Heju78q0ns3o2tzVBKNUqq0gD3IzID8b8nPkR0GuTD3XW8oPnRVY2YG105V5xxhqbqo6IcRo4AtAD8zVNK3MKhJCiJ7AbmCapmmL6nCISg3Izitgb0Qi9w4MLPV7UtP8XO1o4WHP1lOXuHdAYK2+V33R0OcmlQKqKOYoL0umdSaGg1YALv7g0RYcPEoHfyBvuKzswD0IbJtA+kUZDBZOIOfPn2fXrl0ALFiwgAEDBgDg7u5Oeno6ixbJewODwcCFCxcYOnQoH374IcnJyaSnpzNq1Ci++uqrKxPSwYMHq/VtjRo1innz5pGeng5AdHQ08fHx1XotxTzsPJPAsE82c9vcPWwOi+e23s35cnpXfrq7J4tm9eXXe3vxzIgg/FxtWXE0lsnf7uSB+SGcUqlG5k0zQFYyXA6Hi8cgKQLSYiEnTc431o6gtwZDAWSnQXocJJ6F+FCZrWDIN+pt1NxUNUIIPfANMAYIBqYLIYLLue4DYE3djlCpKUejU8g3aPTwr/niL2UZ1NqDPRGXyc4rqJP3M3cNfW5SO4CKYk7ysuVZvswEEHpw8gV7dxBGrtXo9ODqD3oreUNmJVM52rVrxy+//MKDDz5I69ateeihh0hKSqJjx44EBATQs2dPAAoKCpg5cyYpKSlomsZTTz2Fi4sLr732Gk8++SSdOnVC0zQCAgKu5L5XxciRIzlx4gR9+/YFwMHBgd9++w1PT/M7eK5UTNM0ftwewbsrTxDobs/n07owuoMXNpalCxINbC2bF6fn5DNvewQ/bD3LqM+3cmvP5rw2vh12VuqfIrNRkCcDuKxEGcTpLMHBE2xcZBZCeQWnNANkp8j5KzVaBou2TcDJG3Tl//9Vc1OV9QLOaJp2FkAIsRCYCISWuO4xYDHQs26Hp9SUA+eSAOja3KVO3m9QkDs/74wkJDKJAa3d6+Q9zVlDn5tEQ+z70aNHDy0kJMTUw1AaM02DjEuciIylXatAuYtHYTqBEDKgEzp502TIlzdd2ckyzQrAzl2mcOqreWOsaXIHMTcTPILA0rYmvqs6c+LECdq1a1fyy7WbA1MHGsrcVGDQeGPZcX7dfY7R7b34eGpnHKyN/7ualJHL15vOMG9HBP5N7Ph0Whe6qbTQOlXqd6wgVwZv6QmABjbOYNekyimdgJx3Mi7Js8t6S2jSot7NQeUx9dwkhLgZGK1p2n2Ff74d6K1p2qPFrvEF/gCGAT8Cy8tKARVCPAA8ANC8efPu586dq4PvQDHWg7+GcDIujS3PDa2T98vIyafLW2u5p38gL40t9Xe8TpXze6ZUoirzk1p2VZSakJUEkdvh/G6IPQyxRyAnBUb9BYmlz0OVSW8Njj7ypqusNM+qEEIWg4k/AckXwL111W/iFKUcL/1zhL9ConhwUAteGN0WXRXLk7vaW/Ha+GBGBDflmb8Oc/PsnTw6tBVP3BBUa6XOlXIUD9bQwNZVLj5ZWFf61HJZ2YGVv8xeSIyAhFMyCLQ2r+IS9VRZvyAlV/I/B17QNK2gorNjmqZ9D3wPcnGqpgaoXD9N0zhwPpkBrepuJ87e2oIe/k3YcuqSyQNApfapAFBRqkPTZPuFsJVwag3EHpK7eXpr8OoAHafIM3u27uDW+mralKYBmrxWM8hdQJ3F1Y+aDNL0luDsC8nnZTqXnVvNvbbSaC07HMNfIVE8MrQlz41qe12v1aeFG6ufHMib/4Xy5cYzXEjK4uNbOqsgsLYZCmQrmYRTMutA6GSwZu9xfYFfSVb28lxyYrg8S+jSXC5wKdcjCmhW7M9+QEyJa3oACwuDP3dgrBAiX9O0JXUyQuW6RSVlcSkth27+dZsZMSjIgw9WnyQ+NRtPJ5s6fW+lbqkAUFGqIuE0HPoDjv4NKRcAAX49YNBzEDgY/HqChdXV60+cAGsHkw0X2yaQkQBpcXJl39izhIpShpjkLF799yhdm7vw1A1BNfKajjaWfHxLZwLd7floTRgC+EgFgbUj6Rwc/xdCfoTeH0OBjTxnbNekwnN618XCSmYgJEYUFqYqkIGmUl37gNZCiEAgGrgVuK34BZqmXSnjKIT4GZkCuqQOx6hcpwPn5fm/bnV0/q/IwNbufLAatp1OYEp3vzp9b6VuqQBQaTTyCgzsi0xk08l4wi6m09HXid6BbnT3d8W+ovNLmgZnNsDWj+DCblmcpeUwGPwCBI2WlTnNlRDg6CWr82UmylV+RakGTdN4btFh8g0an0/rgoW+ZhcTHhnaCoNB45N1p9DpBB9O6VTl1FKlBE2TO28nlkLoMpmpAODfX84FnsF1kxquswC3lpAYKfuVWtiadmGsHtM0LV8I8SiyuqcemKdp2nEhxKzCx+eYdIBKjTh4Phk7Kz1t6rgnX7C3E+4OVmw9fUkFgA2cCgCVBi8lM493Voay6mgcaTn5WOl1NHezY8eZBL7ZFI6FTnB3/wBeHtuudK+diK2w6T04v1OmL414GzpNlUFVfWHtBJZ2sjWEXRO1C6hUy56IRHacuczrNwbj72ZfK+/x2PDWFGgan68/jb2VnjcndqiV9zF7miZ/XzMSZHGorGT5OT+79LWGwnRyrUCmdmYlyeyEy4Vplzkp8jrfHjDiLWg3AZoEyuyEujwXLHSyQvGlMNlSwqPt9Z91bqQ0TVsJrCzxtTIDP03T7qqLMSk1a/+5JDr7udT4QltldDrBgFbubDudgMGgqUW4BkwFgEqDtv9cIo8vOMTF1Gxu6ubL8HZNGdDKHXtrCzJy8tl/LoklB6P5YVsEbg7WzBrcUj4xNxPWvgIh82RBhLEfQ7c7r03vrC+EAAcvSDorG8vbuph6REo99P3Ws7jZWzG9V/NafZ8nbwgiIyefH7ZF0Nbbqdbfz+Q0TfbZu7BX9tC7eFx+zk6p3uvpLGQxKbeWcrHKs63MVHA2g9V8nV4Gn5fCZFq6S7PKn6MojUxWbgEnYlN5cHALk7z/oCAPlhyKITQ2lQ6+ziYZg1L7VACoNEgFBo3Zm8/w2frT+LjY8PesvnQtUWbe3tqCQUEeDGjlTp5B4/1VJ/F1seVGzwRYfK8skNDvMRj2Ws0WRjAFGyfZzyszodwA8I033sDBwYFnn33WqJccO3Ysf/zxBy4u175eVV9HMX/hl9LZeDKeJ29oXWafv5r24ph2nLqYzv8tPUZrTwd6BDSwwiEZCRC+CcI3QPhGudsHcrfeMxg6TAGPdrL/nq2LPL9r41K6lYKmyaCqqK2MTg+W9qAz411+S1tZkCrzsvz+jJxb1fykNBZHopLJN2gma41T1ANw6+lLKgA0Qn2dm1QAqNQag0HjXGImR6NTOB6dQoFBI9jHiQ6+zrRwt6+11IYCg8Yzfx1iyaEYbuzswzuTO+BkU36qkU4n+OjmTsSlZDHnr+WMtXsTvY0j3L4EWtZN/51aJ4S86UqPg/ycGgloV65cWflFSoPwx57zWOgEM3r718n76XWCL2/tysRvtjPrtwP891h/vJ3rcR85TZMLSmErIWyV3O0rarnQYii0Gg4BA8DFv3G0a3H0kpWJ02Jlu5paoOYnpb46cD4ZoNSidV3xdLShnbcTW09d4uEhrUwyhobMXOYmFQAqNe5yeg7fbzvLH3vOk5adD4CVXocQkJMve+LZWuqZ0bs5jwxthat9zaVVaprGK/8eZcmhGJ4dGcQjQ1uVPtdXBhtLPT/c5E/27DtJzLPE+r41ODWt4ZvdVS/K1hHVpsmm8YZ8eUMpdODVEcZ+VO5ZmoyMDKZOnUpUVBQFBfm89sjtvPD+BEL2H8Td3Z2QkBCeffZZNm/eDMDhw4cZNmwYFy5c4Pnnn+f+++8nNjaWadOmkZqaSn5+PrNnz2bgwIEEBAQQEhKCu7s777zzDvPnz6dZs2Z4eHjQvXt3wsPDueWWWzhw4AAAp0+f5tZbb2X//v3X8TNQ6lpegYFF+6MY1cELD8eqLRwkZuRyLDoFX1dbmrnaYWVh/KKPs50lP9zRg0nf7OCh3w7w96y+WNbxeZhq0zRIioQLe2Rv0IgtshATgHdnGPIitB4B3l2utogxpeuem8rg1RHGvF/2Y3pLsPcgIz6SqTNmERUdS0FBAa+99hovvPDClXlFzU9KY3TgfBKB7vY0qcF7o6oaFOTOvO0RZOTkV1wkry7U9fxEyXunhjk3qQBQqTGX03P4futZ5u86R3Z+AWM7ejO4tQftfZ1o7emITsDZhAyOx6Sw9VQC83ZE8Oe+C8wa0pJ7+gdia3X9N0IfrA5j4b4LPDq0FY8Oa238E/Nzcfnvbgy6VCZmvsqdUXpubnrdw6khmty1M+TL/0bI4M+QDzmpstm7WyvZfLmE1atX4+Pjw4oVKwBIiTjEC+9+JYtGlOHIkSPs3r2bjIwMunbtyrhx41iwYAGjRo3ilVdeoaCggMzMzGues3//fhYuXMjBgwfJz8+nW7dudO/enZYtW+Ls7MyhQ4fo0qULP/30E3fddVcN/2yU2nY8JpWUrDzGdDC+8FF0chY/bD3Lwn3nyc6Tf9f0OoGfqy3TezXnnv6BRgWDrZs68uHNnXnkjwPM3hzO48Or8DtdU7JTZeXKlChZXCUvqzDtUi9TLTVNFmnJSpSVdjMT5M1K8bTOZr2h7yMQNEb25lTAwZPVfy3Ex82ZFStXA5CSksILL7xQ7lPU/KQ0dJqmcfB8EoOCTFtdfFBrD77bcpbdZy8zvJ3Z3AzVmVL3Tg1wblIBoFIj9p9L5MFf95OYkcuEzj48Oqw1rTxLl/kOaupIUFNHJnf146EhLflwdRgfrQnjr5AL/HRXT1p4VL80+HdbwpmzJZwZvZvzzMgq9ijb+BZc2IO4+WcS/nNi9bE4bq7pEsgVrDaVSdPkOZm0WBns2bnLKp6WdjJNTNNkM+ekSLm74NGm1E5gx44defbZZ3nhhRcYP348A3t0BDTIySjzLSdOnIitrS22trYMHTqUvXv30rNnT+655x7y8vKYNGkSXbp0ueY527ZtY/LkydjZyQB0woQJVx677777+Omnn/j000/5888/2bt3b9V+BorJ7Y24DECvwMrP4WmaxtvLTzB/VyQAk7r6MrGLD/GpOZy7nMGB88m8v+okf+27wBsT2ht1kzOukzdrQ334csNphrX1rLszKcf/hZXPQcYl4663cpB9N+1cZU/Q5r2hWR/wbGceu3wVqercVBN0FnTs1pNn3/qEF557lvETJjJw4MAKn6LmJ6Whu5CYRUJ6rsnO/2EoAJ2eHgGuWFvo2BVuBgGgCeanUvdODXBuUgGgct3+DrnAK/8ew8fFht/u601bLyejnhfU1JG5d/ZgZ3gCj/1xkCmzdzL3zh509696wYe/9l3gvVUnGdfJm7cmdjAq7fOKhDOw61vodieiw2RGnT3OH3vPVz31ITUGzm6BSycg/qS8cez6Bly2lAVYrOzlh4VN5ed8slPl6+Vnyec4t5SBX3FCyMeaBMoG9Ylnwa31NQUggoKC2L9/PytXruSll15i5IgRWFhYYMhMBALJzs4u8ZKi1J8HDRrE1q1bWbFiBbfffjvPPfccd9xxR4XPKzJlyhTefPNNhg0bRvfu3XFzc6v4+1bMzp6zibRwt8fT0abSa+dui2Dejgim9vDjiRuC8HUpfW5v08l43vzvOHfM28vkrr58MKVTpbuBb05oz67wyzz792GWPtofa4taDKg0DbZ8AJvfk60T+j0mK2g6N5NN060d5E2SZpCfQRZqqe+FokwgqGMP9q/6nZW7Q+X8NHKknJ8MctdYzU9KY3O1AbwJAsDNH8h+xy7NsPbqRFv7GwkNj4S8FmBZ+fzfkJS6d2qAc1M9OVChmKMCg8b/lofy3KIj9Ax0Zckj/Y0O/orr19Kdfx7uh4udFbf9sIfVx2Kr9Pw1x+N48Z8jDGztzmdTu6Cvat+ajW/JoGzYqwCM7uBFbr6BzWFGrPznpMHeH+CnsfBpMCyZBbtny3Qx28IJ3FAgUzVTLsClk7Lke1KkTBfLyy68mSxM88xIkAFpYrjs6+XiL4O6ksFfcZZ28rq8TEiNvuahmJgY7OzsmDlzJs8++ywHDh4kwL85+/ftAc3A4sWLr7l+6dKlZGdnc/nyZTZv3kzPnj05d+4cnp6e3H///dx7771X8tKLDBo0iH///ZesrCzS0tL477//rjxmY2PDqFGjeOihh7j77rsr/3kqZqXAoLE3MtGo3b89Zy/z/uqTjG7vxQdTOpUZ/AEMbevJmqcG8fjw1vx7MJqHfttPdl5Bha/tYmfF+1M6cjIujS/Wn67W92KUvCxYdI8M/jrfBnevhP5PyKqczXrJ9E0bZ7kTb+8Ojk3lhwr+qiXmUhJ2ji7MnDhCzk8HDhAQEHDlrIuan5TG5sD5JOyt9LTxqtsG8Oz5Dja/Cy2GQNMOEHuI4PSdhMamoi24Td6jNCKl7p0a4NykdgCVaskvMPD0X4dZdjiGu/oF8Mq4dtdVoMHfzZ7FD/Xjvl/28dDvB3jjxvbc0de/0p28/ecSeWzBQTr5uTBnZvcqFZkAICoEQpfC4BdlSXKgZ0ATnG0t2XrqEuM6eZf9vJx02PcD7PhCNl72aAtDX4a248C9DegLf7VOnJCpmZoGBTmQmyGDxuxU+bwiQnf1XJ7OEpx8wN7D+Kbtti6Q6y4DyGKl1Y8ePcpzzz2HTqfD0tKS2bNnk5V8iXsfmMW73/5G7779rnmZXr16MW7cOM6fP89rr72Gj48Pv/zyCx999BGWlpY4ODgwf/78a57TrVs3pk2bRpcuXfD39y+VKjFjxgz++ecfRo4cadz3opiNiIQM0rLzK23DoGkaL/17lOZN7Pjolk6V/t5aW+h5ekQQno7WvLrkGM/8dZivpnetsOnwsLZNuaW7H3O2hDOpqy9BTWv4Bik1FhZOh5hDsmF6v8cbR0XO8lyZszLl4lJBXumWEzau19Ub9ejRozz3zFPotAIs7RyZPXsOWVlZ3Hvvvbz77rv07t37muvV/KQ0dAfOJ9G5mUvVF7Kvx9FFsOp5aDsebvnlyv1L8NYTLFh5ltjwg/icWS8LVzUSZd47NbC5SWgNMKrv0aOHFhISYuphNFj5BQae/PMQy4/E8tyoNjwytObKBGflFvDYgoOsP3GRGb2b88aE9uUGlmFxadz6/S5c7KxY/FC/6lXM+nm83JV7/CBYX72hnPTNDuyt9fx+X59rr9c0OPQHrPs/Weyh1QhZ0c+vR5kvf+LECdq1a1f6gaLze/k5UJArz/hZWIOVo/xcnRvPgly4GCrbPVTUYFkzQNwx2RuwlkqwF/fxxx+TkpLC22+/bfRzyvm51fu78fo2N20Oi+eun/axaFbfCoPAvRGJTP1uFx/d3IlbelStuff3W8N5d+VJHhzUgpfGlvG7UkxiRi5DPtpE52YuzL+nV9VSvSszbzTEHoEpc6Ht2Gseik/NZk3oRY5FpeBoY4GrvRVN7K0YFORR7k6nuSv1O1Y0J+WkQW66DPy0op1ZnTxfrBkKP4q+LuSCk6N39YPlvCw5Bzv7yUWvOlbV+UnNTUptyczNp+Mba3locEueHdWmbt70zHr4Y5osVDXzn2tSPfefS5JHc1x/5QaHCJi14+ridi0r996pEanteye1A6hUSV6BgScWHmTl0TheGtOWBwe3rNHXt7XS893t3floTRhztoQTkZDBtzO64WJ3NbjLyS9gzuazfLPpDE62Fvx0V8/qBX9xxyByG4x4+5rgD8DXxZbQ2NRrr48/CSuehnM75GQ5fYFMC6uOovN7VvbVe35Z9FZyJzArSd5MlXdDJnQyjS07pbCdRO3du0yePJnw8HA2btxYa++h1J6YZHnOwaeSIGfh3vM4WluUv2NegfsHtiAqKYvvtp6lva8zEzr7lHttE3srnrwhiLeWh7LxZHzNFScoyJO9+fo/fiX40zSNRfujWLD3PAcvJKNp8v2zcgvIKkxZtdAJJnX1ZdbglmUWvTJbWmFLmewUGYDlZsiPosDOwkbOJZZ2srqwhe2184SmyQWntDhZ7TQ3Qy4mldOOpkKWtjLrITcTanA6NIaanxRzciRK9kvu5u9SN28YFQJ/3gEe7eT9TIlzfm29HBECQv1v44aTt8Oh36D7XXUztkauLuYmFQAqRsvMzeeJhYdYF3qRV8e1476BLWrlffQ6wYtj2tLa04GX/jnK4I820625C12bu9K8iR1fbzrDmfh0buzsw/+ND65yb7Ir9v8kb3S6ziz1kI+LDetPXETTNLnLcHIF/H2XDNgmfAVdZl5TbMVs2LjIADA3vVRQew1rR1m2Pi+zZoPQEv79999ae22l9sUkZ6HXCTwr+B1LycpjxdFYbu7uh51V1f9JEULwf+ODORqdwqv/HqVXQBO8nMsvOHB7X39+33OOt5eHMrC1R9XTvsuSdE4GP+6yenBmbj4v/yP7ibb1cuTpG4IY1cGL1p4OCCHIzisgOjmL33afY8He8yw+EMWkLr68O7ljjbSzKVNOugy2ctKufuRlXj2bUxSgFRWnMeTL76nobHHGpasfl8Jg8PeQKPu0oreWAZ+1o6xmWlkgJ4TMVHD1l0Vxki/I12wSWL35xNJGBqJ1TM1PijkJjZGLzh19XWr/zTIT5c6fgwfMXCwXhUuwt7Yg0M2e0DwHuei98R3ocLP8nVdqVV3MTSYNAIUQ84DxQLymaR3KeFwAXwBjgUzgLk3TDpS8Tql9l9JyuPvnvYTGpPLmhPbc2S+g1t9zSnc/Wno68Pvucxy6kMzmU5fQNLk799NdPRna1rP6L56fI/Pe246XBR1K8HGxJSffQGJGLm7nVsLi+2QD5+l/ygmzCq4EkXXB2hHQyb5kFQaAhcV6slNrNQCsDnNIS1dzkxSTnIWXkw0WFZzvXR96kZx8Q5VTP4uz0Ov4dGoXxn6xjecWHa4wvdNSr+P/bmzPnfP28vPOCB4YVANZCInh8nOTllxIzOT++SGEXUzjmRFBPDK0VamziTaWelp6OPD6je15dGgr5m6PuJKx8PPdPa/JWKiWnHQI3whxR2Rad/xxWTiq2oRMDbf3kMVrgieCrStak1YIK7vra1Nh5yZ3ChPPyg/PdqCr4q2FpS3kXJLBq7Hnnk3AHOYmpeEKi0vDzd6q+ovaVbH5fbkIfMcSWciqHO18nDgalQLT34Efb4CdX8p6B3WgTu+dGoCqzk+m3gH8GfgamF/O42OA1oUfvYHZhZ+VOpSdV8B980MIj8/gxzuvM/Cqoi7NXOjSzAWA1Ow8Tl9Mp62XY9XaM5Tl9FrITobO08t8uCilNP/gAtj4lFz9uu0veW6uPAYDJEVAejxkxIPQYaNvyeWEBNzc3etmItPpwcaxML2zgjRQvYVc6c9OBqeqp+3VFk3TuHz5MjY2Ji85/TNqbuJSek6lNyNHo1NwsLag03X25wt0t+eF0W14479QNpyI54bg8m9KBgd5MDhINiq+o28ANpbXuet2WQaA54U3N327g7wCjZ/v7sVgI/oUujlY88LotnT2c+HxhQe57Yc9/H5fb1yrmpaelw1n1sGxxRC2WraAETpwawXeXWTWgUtzubBj7SA/W9oXBkyF//Br2tUCLUXN6i2sZUXiEkGeTUQEl9NzcHNzuP4DbJa2MgU04ZRMC3WuYg9VC1v5PeTnyNcyQ2Y0NykN1MmLaXVT/TP+BOybC93vBq+OFV4a7O3EiiOxpHoMwKn9ZNjxpUwDdSo/Vb8m2NjYcPnyZdzc3FQQaITqzE8mDQA1TdsqhAio4JKJwHxNhrW7hRAuQghvTdOq1idAqTaDQeOZvw5zJCqZOTO712nwV5KTjSXd/WuoN86RP8GhqSx5XAaDptFdhOG58W0IGADTF5a9U6ZpEHMAjv0Dx5dAatQ1D/tZuRDV6/+45BoE1s7VOyNTVbkZsoH8pfyKy9PnpMl00Uv5VV+xr0U2Njb4+VXxBrKGqblJSsvOx9Gm4r8bsSlZeDvbVFjB01gz+vjz885IPl4bxrC2nhW+5oODW3DbD3tYcjCaW3s1v743TopAs3LgoX8iySvQWPxQvyqf6RvdwYsf7ujBA/NDuG3uHhbe3wdnOyN+3xMjYOdXcOQvyE0DO3foOgPaT5Z9CGup/5afnx9RUVFcumRko3tjZGZCbig4JVVtTinIhbR4uGSQZw7NlDnMTUrDZDBonL6YxrSe1c+kMIqmweoX5QJSYeurigT7yEXvk7Fp9Br+OpxYDpvegYnf1Oowa2V+auCqOj+Zz11f2XyBC8X+HFX4tVI3WUKIB4AHAJo3v86bAQWAjJx8nl98hBVHY3l5bFtGtfcy9ZBqRkEehG+GjjeXX9EqN4uPLedQ4OiLxa1/lB38XQyVE2nEFlnEoNVwGPycXP12aAr5uVjGHCAwai/seQ3yMqDNOBj8PPh0qb3vLz0ePh4OI9+Bfo+Wf92lU/DNCHmmsdsd5V+nlKVRzE0ZOfl4OVUcgMSl5lR4Zq8qLPU6nh7ZhscXHOS/IzFM7OJb7rV9W7jRztuJH7ad5ebufhWmqVbKygFDbhZhqUnMuaNPtQu6DA7yYO6dPbj7p328tvQYX07vWv7FF4/D9s/kjp/OQp6t6XgzBA6uk0p7lpaWBAYG1uyLJp2DLzpVPveUlJ0C7w+Sz+tchecpSgNxISmTzNwC2tR0e5uSwlbC2c0w5sMyj7+U1N5bBoChMSn0CgyE3g/Crm+g/1PgXnMV4EuqlflJuYb5JttLZS3/lpnkqmna95qm9dA0rYeHR92Xkm5ozsSnMfGbHaw6GssLo9tyfy0VfDGJ6P1ypb3l0HIvaX/icwJ1F0ka8Xnps3S5mbDiWZjTH2IPw+j34bkzcNufMjWi1Q0yrcKvO/S6H276Dp46JnsNntsB3w+BJQ/LvmPGyEmH0+shZJ4stlAZB09w8pU7kxVxby3PBEXuMG4cSnGNYm7KyMmvNN06LiWr0iCxKsZ39KatlyNfbDhNgaH8Mw1CCJ4Y3orwSxn8cyD6ut7zcLYnegp4podVhamnxhjY2oMnhrdm2eEYlh+JKX1BSjQsuA1m94OwVdD3EXjiCEyeLReR6qjMeq1w9ZcVBU+trtrzrJ1kFeOM+NoZl6KYubC4NIDaTQHNy4Y1L8vf0R73GvUUD0dr3B2srlZF7/sIoEHoklobplI3zP1fmiig+H64H1DGv6hKTTp0IZkZP+zG1krPb/f1pl9Ld1MPqWaFbwIEBAws+/HIHQRF/sbP+SMZ3XzAtY9lXIY/psogstf9MOQlo1bRsGsCQ1+Cvg/D1o9hzxyZMtp1JnSaCr7di1Xx02SOftgKOLVWvteVvlvI84g975PPK493FxmcVkQI8O8H53ZWPn6lpEYxN6Xn5ONgXf75uvwCA5fSam4HEECnEzw2rDWP/HGA1cfiKmwtMaq9F12aufDpulNM6OJTrbOA0clZfLCvgD8E3B9cUPkTjPDQkJasPxnPq0uO0a+l+9U2NUcXyVYyBfkw9BU5h9jWUFq7uQgaKXcIslPKrCxYJiHA3lNWK1WURqgoAAyqzR3A3d/KYlK3LzF6oUkIQTtvp6sBoJOPvF8JWwmDnq21oSq1z9x3AJcBdwipD5DS0M7YmJvM3HxeWHQEJ1tLlj82sOEFfwBnN4FP17IDt4J8WPYYKTa+fJB/K062xSbJxAj4cQRcPAbTfoOxHxkX/BVn4wwj34ZH9sh+Y/t/hrnDZdrUD8Nhdn/4NBhm94WN/5OB34An5YT9yF4Y9pq8sfrnfrkrWB6fLnD5jKzyWRH//pByHpLPV+37UBrF3JSdb8CmgrYGeQUaBo3rL8pUwpgOXvg427Bof8U73kIInhkZRFxqNksOVm8X8K3/jnPaINPbLZLCq/UaJVnodXwwpSPJmXn8tCNCnrVddC8svle2mpi1TaaCVyX4MxjkAtTlcIjaLxs4hy6V88CFvbJPaWoM5OfWyPdQbUGjZQuK8E1Ve569u2xRoSiN0MmLaTRvYlfjc+kVqbFy8bnt+Aqzn8oS7OPEqbh08goM8gttxsqF6dQGt+bZqJi6DcQCYAjgLoSIAl4HLAE0TZsDrESWWT+DLLV+t2lG2jgYDBpPLjzE6fg0frq7V42u6puNnDTZ/LT/E2U/fmwxJIazIvB9LLIdrvY1S4mCeaNklbo7lkLzPtc3jiYtYMpcGJciD1WfXC77YDl4yjLq/v2hzRhwLHHu0qMN9H0Uvh8My5+Exw+VvZLn3UV+vnhM7vKVx7+//Hxup6wwqABqbgJZVSw334C1EWfraro6vk4nuLGzDz9ujyApI7fCipoDWrnT3seJ77edZWqPZlUqRrPx5EXWHL/Ic6O6QIin3HmvIW29nBjd3outO7fz1LHP0KXHyqIL/Z8ybvU9OwWi9sGFfRC1VwZ9OSlGvLOQq/QuzeWHawB4tAXPYHBrWfuFqPx6yYWu8A3QfpLxz1MBoNKIhcXVcgXQDW+CIU8uQFdRsLcTuQUGwi+l09bLSQaRG9+Wu4A976uFwSp1wdRVQMuuwX/1cQ14pI6G0+h9tDaMtaEX+b/xwUaVP69Mek4+x6NTOBqdwrHoFJrYWzNrcAs8a/C8UJVFH5C7akWBT0l7vwO31mwRPWjqlCm/VpAHi+6R1TXvXQdNg0s/z2CQK2Kxh2R7BRsnaNISPNtWPB4bZ1nxr+sM478HSxt5I/nnTFk2vs2Y0tcUHc5OPFtxAOjZDqwc5Y1m51uNH0MDp+YmubsHsjBLeWqzOveNnX34butZVh2L47be5S9OCCF4YFALnlh4iA0n4xlh5Bm+rNwC/m/pcVp5Osgzzpf6QsTWwlYKNfONPdXTGpczb5GVrcf+nrXyXHBlYg7JFMrj/8idNKGTwVuHm2QgZ+sCNi7ys5WDnJdyUmXAmJMq2zAkX5C7+ud2wdG/ZX89kMWq3IPAtys07wf+fcE1sGb/R+otwLM9JJyp2vNsXWXWgqI0Mjn5BUQkZDC6tgrtRe+HwwtgwFNy8bmK2vsUFYJJlQGgRxt5f3NSBYD1mbmfAVTqyKL9UczeHM5tvZtzd/+A6369BXvP8/rS4+QWpgw0dbLmcnouC/ae554BATw4uCVONnXQEqGkqH3ys2+30o9FH5AT5egPiNufe7WwxYa34MIemPJj6eAvJQq2fy538NLKyABsORwGPiODsJq8yQoaLc/MHJhfdgDo3EzeOFbWPFqnlzeDUSE1NzalQShK97GyMGIHsOz6N9elvY8TLTzsWXY4usIAEGBcR28+XB3Gd1vCjQ4Av9l0hqikLBbc30d+j/4DZEpl8nlZzOR6ZVymzbo7ydDlc6/hdeZ7daXcfUyDQRZO2fUNnNsuF2V63g9tRsvzNiULUVVFXjZcPi13N+NDZfXRE8vh4G/ycQcv2Q6nx93yfHFNzFOuAbLSYFXYuEBW8vW/t6LUM2fi0ykwaLWzA6hpsPoleb8w8JlqvUSguwM2ljpCY1K5qRtyjmg7FnbPqdpZX8WsqABQISMnn5f/PUrfFm68OaH9dTXd1DSNz9af5ssNpxnY2p17+gfSwdcZD0drIhMy+GTdKb7ZFM7CvReYd1dPOhc2ea8z53eDe5uyz+7tmysbK3eZTuyGfbQO8pANmXd+CT3ukSXai2gaHPpdTqwFubLyZ7sJENBfponmpMozMLu+gZ/HykDwpu9lmlNN0FvKXcMdX8rc/pLN3PWW4OQny7JXxq8n7PhCpqCaaRNmpe7l5lceABavW1TThBDc2MmHLzeeJj4tG0/H8jMHLPQ67hsYyJv/hbLqaCxjOpZfOAYg/FI6320N56auvvRt6Sa/WLRTfm7n9QeAOenwxy2QEkXYsHnsXgEbTlwse1yJZ+GfB2Wap5MfjPyfbMtSUzdVljayKnHxhs8GA1w6Ced3yl3CsFVwZKG8ptcDsiXF9fTjc/WXC2L5ORX3Ii3O1kXeTBoMoDP38gSKUnNOXZQFYNrWRgB4bLFcwJ7wdbUXkvQ6QRuvYoVgQKaB7vwKTq+79t5IqTfULKuQlVdAbr6BsR29Kkz3qkx+gYGX/jnKlxtOc0t3P+bd1ZOhbT3xcJQ3AAHu9nw1vSv/PToAG0s9D/66n0tpOTX1bVTOUCAnQv++pR/LTJQTZedppBjsiE/Lob1rPiyZBV6dYNR7V6/NToEF02HpI/KG6eHdcOvv0Hma7AHo1lIWmRn4tGz/MOpdiNwO3w2Wu4w1pevtMp310G9lP+7qD8nGBIC9ZKrZhb01Nzal3svOlxUxrS3KLwJjpdchBGTn1Uz1zJJGtm+KpsHmsMrPhk3v1ZwuzVx46q9DHDyfVO51BQaN15cex8ZCz0tj2119wDNYBl3nr7MqbkEe/HUHxByEm+fRqd8YnGws2HiyRIsDTYMDv8KcgXApTDZWfuIw9Hus9lfUdTqZzdDzPrj5R3jmBIz/XAZfyx6DT9vB3h+qH9m7+AOacW1riti4yOfkVFK4SlEamJNxaVjpdQS4l9Fv+HrkZsK61+U9TJfbruulggsrgWpFc4JfT9lG6uSKGhioYgoqAFTQFS7jX88ivqZpPP3XYRbuu8CjQ1vx4c2dyg0mO/o58/0d3UnOyuWR3w9c2WmodRePy5uL5mWciTu8APKzoed9nIyTNyDDE/6Qwd7kOXIVHWQ61R+3ygp8o96DO5dDkwqalVrayr45966R2yU/jam5CdOtpWxlcXRR2Y+7+BtX3dO/Hwi9LNqgKIWy8+TvpY1lRTuAAjtLPZm5tRMABns74eVkw6aSwVMZbCz1zL2zBx6O1tz3SwjnL2eWuiY7r4CHf9/P9jMJvDCm7ZXFKUAGRc36yCyB67HpHfm7NP5zaDsOC72OgUEebDl16erNU34uLHtUfvh0hYd2yJYwpuoBaGUvU0Af2gF3r5JjWvksrPu/6r2ea4D8XFkKenFFFVGzEqv3nopST4XFpdHCw/66FuDLtPMrSI2CMR/I4x7XIdjHieTMPGJTsuUXdHp5/OT0OrnTr9Q7KgBUrnS0NlTQdLkySw5Fs+xwDM+MCOLZUW0qTSNt7+PMB1M6sTcykXdWhFb7faskuvCcW7OepR878pesnNm0PSfj0nAmHb/wBdD+JmjaXl5jMMCSh+QOweQ5sqefsalKPl3hgc1yl2HhDNj5dc3kzQUMkLsHuRmlH3P0gvR4ufNZERsneQbo+L+1k8un1EtFu3qV9dazs7aotQBQCMHQth5sO51g1EKRu4M1P9/di3yDxl0/7yUp42pLhJSsPO74cS9rQy/y+o3BzOxTRpqnbzdIOC1TOKsj+YJM++58G3S/88qXhwR5EJ+Ww4nYNLkq/9tN8gzeoOfhjmXg0qyCFy2Umyl/1y/skwtQxxbDoT8gcgekX6qZ392i3qC3/ysbRe/8Evb/UvXXKUqhTY40/jnOvvJzSvXaeShKfRUWl1bz6Z8p0bDjcwieVHEhOCMFe18tBHNFm3GQmwaR26779ZW6p84AKld2AKsb/8WlZPP60uP08Hfl4aGtjH7exC6+HItO4YdtEXTwdeaWHkbcBF2PqP1g5yar3hWXdE5W77zhTUCmYzxoux5dXoasmlVkwxuyMt8Nb1Yv593eHe5aIdNK174CCadg3CfXV5a9aQegsHG8X49rH3NoKlNEMy/L9hIV6XizDG6jQsoOkJVG52oAWPEih52Vnqzc/Fobxw3tmrJg7wV2n73MICOqE7f0cOD727tz+4976fnOelp5OhDs48Sx6BQiEjL48tau3NjZp+wne3UCNJkt0Lx31Qe79SP5eejL13y5qKrylrCLBG99Q6aET/6u8sq72Slwag2cWCb7/eVnlX+tjYus8OnfFzpOBa8OVR9/ESFgzIdyB2/F0zKgazHE+Oc7eIHe2rgzyEWK2tConqRKI5JSuKvWxsupZl94w5ty8XfEWzXycm29HBECQmNTuaGo0FaLwbJuwskVsg6CUq+oAFChoHDluDq1XwwGjecWHSa3wMBHt3RGX4UeXAAvjG5LaGwqry45Ric/l9rtgxMdIivqlfxGT/wnPwdPACA8Jp6XxGpoNerqTdTpdbJQSo97y+8haAwrO7j5Z5kmtu1jOL8LhrwIwZOrV/igaHxxR0sHgI6Fk3T6xcoDwLbjQf8kHFukAkAFkGeDofIdQNtaTAEF6N/KHQdrCxYfiDIqAATo3cKNPx/sw7rQi4TGprLtdAIFBo2f7+5F/1YVFGLy7iw/xx2pegCYGCELQ3W/u9SOnqeTDW2aOhJw8ANIXS7TxysK/i4el9WHz2yQvbscvGSKaLPesliKtZM8J6i3lEFawmm5oHTppNyB3PGFzDboeIv8MGaHsSS9BdzyE/w4Up5pvHc9eAQZ91ydTr6nMWeQizj5AUIFgEqjciq+FgrARG6HI3/CgKdrpqIxYG9tQaCb/bU7gJa20Gq4LCI19hNVvKmeUQGgQmpWHgDOtlXfiZq3I4JtpxN4d3JHAqtxgNlCr+PzaV0Z88VWHltwgGWFBWJqXHaqTJ9qf1Ppx0KXymIuTVqQm2+g88UlOOlTZREXkOmVy5+W1UNHv3f9ZdJ1Ohj+mgxGN7wlewx6fixTNXy6yJtQh6bGvY+LvywZf/FY6cccigWAdCz9eHE2ThA0UqaBjnr3us8LKPVfWrbc1ausXYuVhe5Ky4jaYGOpZ1rPZvyyM5IXx7TF29m4SrVdm7vStbnrlT8bDFrlTeKdfMDOXWYEVNXWj+RZ2nJKrd9tvZEx8X/LKpt9Hir7NXIzYcsHsOtrGeD1mSWrC/v2KP/myq2lvAkrknFZZioc/VvuAmx8W6akDnnh6i6bsWyc4bY/4Yfhsu/oQzuNP6foGlC1M4AWVvLnrwJApRE5GScDwBpb/M7NhKWPykynQc/VzGsWaufjxJGo5Gu/2HaczFCIOWhcn1PFbKhwXSG5MAB0sataABgWl8aHq8MY1b4p03tVP33Tw9GaT6d24dTFdN5eXkvnAWMPAZoMuopLj5fl19vJ3b9TcSncIVZx2a07NO8jr9nxJaSch/GflV3SPOG0rJi3cAbMvUFenxZX+ZjajpVFF6b8KAOuze/BH1PhkzbwcWuYP0kGiJkVFEUQQp5RvHi89GNFAaAxYwG5U5B+UQaBSqOXYuTCkKVed6XfZ225q18ABk3jl51V2FEqodLgD+Tvk1cHuFjFeSgjAQ4vlO1iSrZkAYg/wS2XvmRTQRdybvhf2Ys7l8PhxxHy3E7nW+HRENkSolmvqq2s27tBr/vh3rWyqmjvWTIY/LqX7FlakFe17801AG78AhLC4OCvxj+vSQv5PVXl/VwD5U6mojQSYXGpONpY4O1cfpubKtn4NiRFwMSvr6+VSxnaNHXkQmIWWcUzPlqPlAtfJ5fX6HsptU8FgIrRN3ol/W9FKHbWet67qdN19Q4EGBTkwYODWvD7nvOsOlpGQ/XrFXdUfi5K8Spydov8XJi/fvH4FprpLmHoWljAISNBrsYHT5Q9/ooryIMVz8DXPWTFvNgj8mvrXpNl1P++G3LSKh6XTi/P383aDi9dgLtWwuj3ofUoWQ1v++fwbV+ZClYejyAZhJbkWHgjmmrkz7PteHkGau2rkHbRuOcoDVZRZoBTJfOClV5HXn7tFg9q1sSOMR28+WPPOTJyau+8IQCOPnJhqCpOrZbnbbtML/2YpsGq5ymwsOfpvFmcS8otfU34Rvh+KKRGw4zFsiVEWb1Kq8o1QGYtPLZf7hKuf122o4k9XLXXaTtOVkjd/J7xBXICBkJuetXayzTvLRfrKps3FaWBCItLo01Tx+u+hwJkBePds6Hn/bJAXA1r4SGzvCISihWds2sii8ycWlPj76fULhUAKiRnyhsSZ1sro5+zOSyebacTeHxYa5rYG/+8ijwzsg2d/Zx5YfERwi9VswpfeeKOyoDIocQZorObZfGEwsDQ6fQSsjQr3LpPlo9v+wTyMmHoq9c+LzMRfpsim8f3eRgePwRPHYUHt8iV+36PydTSn8cZH0xZO8ogs89DMOkbeHCrrBxq6yKrBq5+WVYiLck9CDITSu8UWtrIdLZUI6vq6fRy1TA7VX5v2SnGPU9pkFKz8hACHK0rTvmztNCRU8s7gAD3DAgkNTufP/bUcoqggwdklK6qmZtvIDSmWB+s4sJWgZNvYRGZEk4sg4itJPR8jiScCI8vMbfFHYWFM2UP0Qe2QOtaKKbg0kz2Kr31D8hKgnljIGy18c8XAka+LTMEdn1t3HMCB4HQQcQW498ncLDsSXruOnsxKko9oGkaJ+PSaib9My9L9iZ2bgY3vHH9r1eGFu4OAJxNKDGHtRgC8cdl+rlSb6gAUOHg+WSsLHRGpyBk5xXwxrLjBLrbl11KvZqsLHR8Ob0rFnodk77ZYVTvL6PFHZXn/IrTNBkABg6SwU9+Lu0S17PXug86WydZWn3fXNlAtXjxg7Q4mep5fhdM/FausBfvBejeWlbemr5A7sz9OAISzlRv3N6dZBDY4x7Y/Q2ElpGe6V44trJ2AZ18IDWmCu/XGabNh0snZEprXna1hq3UfzEp2Xg4WFeaOqlpGjWwdl2p7v6uDAry4IPVJ9lwohZ3qO09oCDnmobkGTn53PXTXsZ+uY1J3+xgXejFq21z8rLkDl6bMaVTOw0FsPF/4NEW+373AxCdXKySZ1oc/DFNLvLMXFx+wYaCfLmgtO7/5E3egumyOMucAbJx++E/ISWq8u+t7Th4YBO4t4KF02XqurGa9ZKZEDu+NG5Ry9ZFtr85W4UAsFkvsLCRRbcUpYGLTckmLTu/ZgrAbHoHLp+BCV+CtcP1v14Ziuo8nL1Uou1UwED5+dyOWnlfpXaoALCRMxg0Vh2LZUiQB/aVrPQXmbMlnMjLmbw9sQNWFjX7V8jfzZ5lj/aneRM77vllH19vPF32intV5OfI6nglA8DL4bJJalF58/ANOBjSONpkpPzzgZ+hIBf6Fav6aTDAPw9AWqzs39V1RvnvGzRKNorPTZcN4C9V82yLpS2M/Vi2fFj/Zummq26FrTculxUA+hq/A1ik1Q0wabbs7bPonorPICoNVmRCBgFGFHZKz8nHwci543p9fVtXgn2cmPXbftYcN/Jsa1XZF2YJZCQAMkNixtw97IlI5N4BgSRl5nH//BDGfrmNsLg0GeDkZcoAsKRj/8gzbUNexMneBiu9jkvphb+/uZkykMtKhukLyz47mJ8Du+fAV11lJc7ds2U6ePJ5eR7Z3kMGhv8+AJ+1hy86yzkiK6n878/RS6aatx4pU9fXvFJ2ZkFZhr8ug+PN7xp3fYshELVPZhUYw9JWjit0aeX9SxWlngu7WFQA5jpbQESFyOq/3e6ElkNrYGRls7XS4+tiy9mSGVo+XcHSTlYfVeoNFQA2cgfOJ3ExNYdxncq4+ShDZEIG324O58bOPgxoXUE59evg52rHoln9mNjZh4/XnmLG3D38ue88cSnX7kZl5xVw+mIaSw9F8/6qk9w/P4QFe8+XDhjjT8i0oqYl+mJFbJafiwLA0KWkaPYkeg+SN0T758vHiu/+HfhZpjSNfl/226r0m+kOdxemWv00RlbKqg6dXu4qJp+TDaSLc/EHvZWsclqSSzPZi6uqQXSnqbIP2KlV8FkHeS7Q2LOESoMQeTmDQLfKA8CMnHzsreumaqyTjSW/3debDr7OPPL7AVYcqYW/kzbO8nNWMvFp2dz6/W5CY1L5dkY3XhsfzMZnBvPZtM7EpmTz+fpTsim7pf3VVfDidn8DHu2g3USEELg5WJGQVngGcNvHEHMApsyVO/0lndkgz/+ufkGmr0/7DV6Jg2dOyuJRd/4nG7Y/HyHTxUe9Bx5tYftn8EUX2Pl16cWiItYOMh201wMypfPfB+QuY2XcWsrzRft/MW5nr+VweTYydGnl1xbpeAtkxF9tz6MoDVRYUQXQptexA5ibCf/OknPEyLdraGTla+Fhz9mEEjuAFlayRY0KAOsV1QaikVt+JBYrCx3D2zU16vrXlx3HWq/jtXHtKrwuNCaVn3dGoNcJHG0scbS2oHuAK/1aGhc02lrp+WxaFzo3c+G7LWd5YbEs4iIPS8PF1GySMq9Wl7PUCzwcrFkXepG1x+P44OZOeDoWprQWlXQvWQAmcoecNJu0AIMBw+l1bDJ0xsvVQVYGTTkPw4qd/cu4LFfXAwZCtzuM+j4AGUDevQp+nQw/j4ebf5ItF6qq5TBZDn7HF3Klr6gcu94C3FrLXc6SPIMhN00Gjq4BVXu/3g/K9Nhtn8jVxd2zZQpYrwfkZF8Th9YVs5SWnUdCeq5RO4AZOQU4WFe9hUx1OdlY8uu9vbn7p708tuAAuQWdmdzVr+beIF8uNOXqrLjjx72cT8xk3l09ryx4Weh1TO7qx5GoFH7ffZ4C393o/XqUrhB8OVwu+Ix850oVT3cHaxLSc2S65q5vZLDTdmzpMRxaAEtmyblpxuKKzwXq9HJu8+4MfR+WFYHX/R+sfQX2fi/PA7WfXPr3VaeXizyO3rJdhN4KJnxdecXR4a9B+AZYfJ8MRCvqMerfD7y7yDmk83TjWki0HSfT2je/B+1uVC1plAYrLC4NLycbnKtYgf0a616T2T93LLu6eFWLWrjbs/hAtEz9Lz6nBAyQFUgzLstKxIrZUzuAjVhOfgErj8YyOMjDqBSuTWHxbDl1iSduaI2nU9nnBUNjUnn6z0Pc+PV2Vh2NY/2JeObviuSTdae47Yc9PPrHASJLrh6VQwjB3f0D2fXSMFY/OZAXx7SlqbMNfq62jO3ozTMjgvjkls6sfHwgx98czfYXhvHGjcHsDL/M6M+3sfFk4TmVc7tkqlSTFldfXNNkimPAQHljFHsIXWYCmwu64OVsK8umW9hee3O24Q2Zzjn2o6oHP+6tZFl2F3/44xZ581TVSptCyN6EyedKt2rwbFt2AFhUlCKujD6BxvBsJ3coHtsvA7/T62HeKHmuMVLl+zdURVXeAt0rLyOelp2HQzV2APMKDEQnZ3ExNZuE9BzSso1vF+BgbcEv9/Sid6AbT/15mBcWHSE2JavyJxojV37vn2+N5mRcGt/c1q3MbIebuvphUZCJiD8uF0RKOroIENDhau9RdwcrGQBueEvOQcP/r/TzIrfLc30BA+GhXVUvCtO0vTxPOPMfWVhq0d2yL1heGT+fojllyMuyif3qFyvPFrCyh1t+lkWi/nuy4uuFgMEvyLL0R/82bvw6PQx9Wc5nxxYb9xxFqYdOXUwj6HrO/51aK+sU9H0UWgyuuYFVoKWnA+k5+VxKK5FdcOUcoNoFrC/UDmAj9uuuc8Sn5XBH38oLuWTlFvB/S4/RwsOe28u4Pie/gGf/PsJ/h2Ows9JzV78AHh/W+srKVlZuAbO3hPPD1rOsPhbHbb2b8/zotkYFnkII2no50dbLiVmDW1Z47V39AxnQ2p3HFxzi/vn72fzsEJqd2yFXoosHbZdOykp/gYPkn0+vQ0Ow1dCJ4YY8GWC1GSNvoADiT8KB+XKi9ax497NcTt5w/0bY/qlM0zq1Vu6ydbwZPNoY9xpBY2Sa147P5fOKviePdvJmKSf92gPgnu1kj56YA9BufPXGDTJ4Hv2e3BE9vBC2fgw/j5XtKka/J1PDlAbj8IVkANr7VLyinJiRS2p2Pn6uVes3tf10Aq8sOcq5y5nXfD3Q3Z4e/q70DGzCoNYeeFVQmMrOyoKf7+nJR6vD+GVXJEsORXNX/wBmDWqJ63VUJjbkZKADFh5K4uEhXRnatuwdrg6+Tgx3PI8uz1A6ANQ0GfD495eFmAp5OtqQEX0cjvwJ/Z8s3Zg94YwsvtQkEKb9Kiv5Vler4TKFffP7sPVDuHgUpv5adqGZwc/Loje7vpZz3vDXKn7tpu3lXLDuNfm9dL61/GvbjIGmHWHrRzK13JgdvXYT5XM2vyd3L/V1t8OsKHXBYNAIv5RO78Bq7palX4KlD4NnexhWye9rDSqqBBp+KePajYDi5wCDJ9bZeJTqUzuAjVRKZh5fbTzDoCAPBrb2qPT6Lzee5kJiFu9O7oi1xbX/gGflFnD//P38dziGx4a1YteLw3ltfPA1aQ22VnqeHhHElueGMK1nM37fc55bv98lV8NrWCtPR364sweaprFq+15IuSBvxIqL2Co/FwWAZ9aT37QziThhH7UNMi/L9Kwiu7+V1ekGPH19g7O0kavbD+2UPa+2fgTf9ILZA+SN2rldkF9Gn7AiOp1s8nzx2LVn/jzbys8JJc4BWtmBb/eqVeKriJU99LxX7gje8IbsO/TdYDihmsA2JPsik2jqZI2fq22F150qLGJg7Cp2YkYuT/91iJk/7kEnBG9PbM+7kzvy9sT2PD+6DS09HFh34iLPLzpCn/c2cMucnfyyM5L4tLKr0Vpb6Hl1fDAbnxnCuI7efL/1LAM+2MiHq0+SmFHB71E58gsMrDkYDsDtg9rx3KjyF2aEEIxzOYcBgcG3+7UPxh2RaVkdb77my02drJma8w+ahS30e/za52QmyuwAnR5u+wtsXas8/lJ0ehj2Ckz/ExIj4fvBZVfYFEI2ne92pzybuP2zyl+77yOyN+DK5yuuQCqEDDATw43f0dPp5LgTz8KhP4x7jqLUI9HJWWTnGWjlWY2KnZoG/z0ud+Gn/HB9C0VVVNQLsFSrLgsraN5HnQOsR1QA2Eh9s/kMqdl5vDSmbaXXnoxL5YetZ7mlux99Wly7WpWRk8/dP+9l2+lLfDClI8+MbFNhPrunkw3vTO7I3Dt7cCY+nZtn7+RCYma511eXr4stQ9t4EnV4vfyCf79rL4jcDs7N5Wp4ThpEhyBaDQfAK3otWDvJFXSQKWFH/5YBYU3ltru3hhl/y4IOoz+Qgdrm9+Gn0fBBgKzMV15PnTaFaakniwVdnsHyc1HD++KCRkF0SNWbP1fEyg4GPCXPALm3hj9nyLQ2VbmvQdh/Loke/k0qbU5cFAAaU8QgPi2bkZ9tZdkhuVC06omB3N43gNt6N+f2vgE8PKQVc+/swYFXR7D6yYE8PSKIlKw8Xl92nL7vbeSR3w+w5+zlMqsCN2tix6fTurDmyUEMbevJ7C3hDPxgI28vD722aXEFjsekMOnbHURHnydPZ82ToztV+v13MxzjhKE5J5NL7GqdXCl74JVYCfexM3CjbheZwVNLzyVbP5IFm27949q2MjWhzWjZ/sHJF36/WbamKFn5UwgY/xl0uBnWvwGb3q04vVOnh0nfyiIvv06G9Ara9rQdL3f01r5mfFXhoNHyzPPG/1Vc1VRR6qEzhQFUtQLAA79A2Eq5CNu0fc0OrBJeTjbYWupLt4IAeQ4wPvRKBWXFvKkAsBGKSsrk552R3NTVj3beFZcfNhg0XvrnKE62lrw89trUx/ScfO6Yt5d9kUl8NrUL03o2L+dVShvaxpPf7+tDUmYeN83eSWiMkWXCq+C23s1pkxNKnoXD1QCpSFSI7DkFcGEPaAb0LQZipRf4Xd4pSykXFXUIWyXLvFeU5lRdjl7QZ5Y8H/j8WVnpr914ueP4RWcZFJaszufkI3f1igeATVrIHYOokNLv0et++dj6N2t+/C7NZIGbbnfIQg+rX6r591DqVExyFtHJWXT3r3wHKiwuDUcbC5o6WVd67furTpKSlcu/D/fnmZFtsLEsOxVQp5Mp348Pb83apwaz9qlB3NM/gO1nEpj2/W5Gf76NJQejyc0v3bogqKkjX9/WjbVPDmJ4u6b8sjOSoR9vZubcPSw9FE34pXTyijWtzy8wEJOcxUdrTjLh6x3EpWQz0ScFS69gRGXFUPKy8Ug+wi5DMDvDS9zwRG6T52/tmlzz5Q7ZIViLPC54j772+tRY2PejLJTSvE/F71tcdorxFX7dWsJ966HrTBlsLr6n9LlAnR5u+h663g5bPpALURW9vltLuVuZEgXzJ5a/aKXTwaRvZGbFyueMG68QMP5T+Zx1rxv3HEWpJ8LjqxkAJkbIf2cDB0Pvh2phZBXT6QSB7valm8GD6gdYz6gAsJHJzM3nyYWHEMAzI4Mqvf6HbWc5eD6ZV8e1u+ZcTX6BgccXHOTQhWS+mt6VSV19qzyW7v6u/D2rL3ohmDJ7Z9ktHK7DkDae9LE8zVFdGzRR7K96ShSkxVwNAM/tBJ0FolkvOtvG45R3CVoU66VzdBE4+kDzEruINc2uiax6d9P3svhDyyHyDMzaV0pf23a8rDCYfEH+WQjw6ymD2ZJsnGHgs7JyX02lghZnaQMTvoI+D8Pe72TvM6Xe2nFGBjO9AptUciUcjU6hrZdjpTtlf+27wD8Horl/YAs6+lWtUl1QU0deGRfM7peG8+GUTggBT/55iJ7vrOeFRUfYFV56V7B1U0e+nN6VnS8O45kRQZy9lM4TCw8x/JMttHttNUM/3kyfdzcQ9Ooq+r2/kW82hTO5qy/rnx6MR8Zp41bVo/YiCnKIcOzG1tPFAsC8LNn7LrB0Wwj/hK0ka/YcFiUyL3Z+JXfSBj1b+fsmRsjFltn94f3m8GELGXytfU3OVRWtvlvaykqfI96C40tkVeKSO3c6Pdz4JfSeJdtY/PdExTv7Af1lH8PEs/DbTbIsfVm8O8vv79gi4xu9e3eWqaYHflHzitKghF9Kx9XOkiZVPa+8+iWZXTBpduUVe2tJCw/7sncAVT/AekUFgI1Idl4B988P4cD5JD6d2gUfl4rP9+w/l8RHa8IY08GLycUCPE3TeG3pMTaejOetie0Z29G4HoJlCWrqyNJH+9Pd35WX/jnKg7/ur9bZnbLoc5JpqZ1nY0YLVh0r1jQ6ap/87NdDfj63U5Yqt7Ln5iby/I8hoLCiVmai7PPV4abKJ9u8LNns3Zh+WpXxbCt3A/s8AnvmwIFfr3283QT5+eSKq1/z7yebTqdfKv16Pe8DJz9Y/3rVewIaa8Rb4NdLVjBMKKMpvVIvLDscQ7MmtrT3qTg7IDYliyNRKQxpU0EbAOC/wzG88M8RBgV58MQNras9LlsrPVN7NmPl4wOZd1cPhrbxYPmRGKb/IHcF/9hznqzcawMVTycbHhvemm0vDGPpI/355JbOPDCoBcHeTgxo7c4jQ1vxzuQOLH2kPx/f0hkXQ7IsDlWyZ2hZIraB0OHWbii7whNIySqsYnphLxTkQsCga68vyMfh3Hp26rqzIyLl6tfzc+DwH3Lxp6LUzxP/wQ/D4MsuMt3aygGGviIzBrKS5Tyx+F74vDDVsrxAUAjo/4ScX+JD5WtePH7tNTqd7HU68FkZfP37IBRUUKW1xWC45ReZZv7vA+U3lh/wFLi3geVPX6m2Wqlhr8l5ZemjshiXojQAZ+LTq777d2qN7M07+Hlwrvqie01p4eFAVFImOfklFob0ljKDIWKbaQamVIkKABuJ3HwDD/9+gJ3hl/n4ls6VNn5Pzszl8QUH8Xax4YObrz0L8/XGMyzYe4FHhrZkRu/SFeWy8wr473AMz/59mDeWHeebTWf4K+TClfNCJTV1smH+Pb14dVw7NoddYvTnW1l5NPb6dwMvyEAv3qUL7686eTVl7MI+WdClaUcZtEXvv3JGcIAulCjNnSOZhelvJ5aBIe/agjAlRe+HpY/Ax0HwTU94zxd+GC7TpyK2VlzUpTIj3pK7kcufgvPFdvfcW8lqoMXTQIsK3ZSVfmFpI4sqxByUFTxr46ye3hJu+Ummzv51R9ll5xWzdjE1mx1nEpjcxbfSXb21x2Ubk1Htvcq9ZseZBJ768xA9/Zvw3czupQpIVYdOJxjWtimf39qV/a+N4MObO6HXCV7+9yh93tvAVxtOk55z7SKMXifo3MyFKd39eH50W76Z0Y2Pb+nMMyPbMKO3P52bucgLLxa2SzFmBzByG3h3ZkiXVuQVaGw6GX/160JfOpXzwh5EViLxPsPZcSYBg6Fwfju5Qp5x63p7+e8Vukz+TuVmwIi34cljcO8aeSM44St4cAu8FA33b5LZATu/gs87yX6AKdFlv2a78TJ925APP44qnR0ghKwGesMb8gx00fuXp81oGPWODFQ3vFH2NRbWcOMXssfqpnfLf61rnmMFU3+R547/nAHZNX9coL4RQowWQoQJIc4IIV4s4/GJQogjQohDQogQIcQAU4xTKV+VA8D8HNmmxa21SVI/i2vpYY9Bo1QVZ0CeA7x0ouyFaMWsmDQANGISGyKESCmcxA4JIcpomqRUxmDQeG7RYTaejOd/kzpwU7eKmyZrmsZzi44Qn5bN19O74WRztajLov1RfLLuFDd18+XZkddWyAuLS+Plf4/S8531PLbgIBtOXGTxgSg+WhPG84uOMPKzrTzy+wHOxJcOBHU6wX0DW7Dkkf40sbfi4d8PMP2H3ZyIvY5/7C/sAaHnxnE3cj4xk9/3nJNfjzkoz+dYWMmiKQW58mZN0/BOO0KI1o6lh2MKv6nVsoF6ySbyRQ7Mlyvox5fIFfwJX8ndNgtr2PMd/HKjTNFacJtspB53rPzV8bLoLeDmeeDsB3/dLlf6i7S7UQZ7RSv93l1k8Zoz68t+rU7T5M7hpv/B3Bsg5pDx4zCWsx9M/k7uLOz/peZfvw41xvlp2aEYDBpGpXSvOR5HSw/7cm9isvMKePnfozR3s+PHu3pga1W94M9g0K45t1ecjaWeqT2aseLxAfw9qy89A1z5ZN0pBn6wkTlbwsnMreJu/IW9gACvjhVfl5NWmOY5iC5+LjR1smZ1UZbBuV1yvrApsYMauQ0QuHYczeWMXE7EFc5tp9bIPqXF086vea90WPG0/P2+fxP0f1yevS3Jwgp8u8mqgI/sle0Xdn4lzxJveKvs1EyfLnDfBrmb8Osk2P556QyBAU/B2I/lWegfR8oU1PL0eRh63As7voAtH5Z9jX9f6H63POdc1pnlsjj5yN6DiRFyN7Iqc2gDI4TQA98AY4BgYLoQosQhdzYAnTVN6wLcA8yt00EqFbqcnkNSZh4tPaoQAO76WqZZj/lA/q6bUFEriLMlK4HC1cwHdQ7Q7JmsD2CxSWwEEAXsE0Is0zQttMSl2zRNu44GZo2bpml8sOYkSw/F8NyoNmXu2JU0b0ck60Iv8tr44Ksr48DRqBRe/uco/Vu58f5NV3cFNU1j8YFoXv73KDoBYzp4M6WbH31buqHXCbJyC4hPy2bx/ih+3B7BqmOxTOziy7Oj2uBbIg012MeJ5Y8NYMG+C3yyNoxxX25jSjc/xnbypm8Lt3ILR5QpOgSatmdgsD89/KOZv+scd/Vtjog7Cp2nyWuKKmN6d4a0WHQZ8eR6TuW/wzG8MjoIi3M7ZB+qsnZDUqJh9cvy4PP0BVd7BhbJSYeILfIG7+xmCCtM17RylDeY3p2vfrgHyWCvLHZNZBD4w1DY+wMMLiyi0G6CLOZwcjl0v0v+oxA0Su4ojP+89Ovp9DB1vjwntOYl+H4INO8rA8m248ruD1YdrUfI84h7v5PN4010TuF6NMb5Sf4eR9G5mQstKrkxScrIZU9EIrMGtyj3mh+3R3Ducia/3tsLx2KLSOXJKzBwJCqFXeEJbD2dQFRiJmnZ+aQXBnG+Lra08HCgpYc93f1d6dPCDXcHWXxGCEHPgCb0DGjC4QvJfLruFO+vOsncbWeZNbgl03s1x96InqOcWS+DqMpaMJzdInfOWo1ApxPc0K4pSw5Gk5+ThUX0fvn7WFLMQfBoQ+92AbAknO2nE2SfxegQmeJY3u/JntkyLfXWBXIXzBgeQXDzj7LR/Ob35JnBI3/DmPdlFeHi85mzrywOs/RRmSIeHQITv702gO11v0xPXXSvnDem/Fh2g3ohYOxHsmjWpnfknDPwmdLXjXhLngNc8jA8uNW4MvYBA2DUu7D6BVmgZmijLTjVCzijadpZACHEQmAicGVu0jSt+J25PVBLef9KdZypagGYlCiZudN2/NXq5CYUeKUVRFnnALuApb08B9h+Up2OS6kaUzaCr3QSU65PSlYezy86zJrjF7mtd3MeHlJ5s+6/Qi7wvxWhjAxuyj39A658PSY5i/vm78PdwYqvpnfDykLerCRn5vLKkmOsOBJLnxZN+Oa2brg5XFsR0NZKj7+bPU+PbMNd/QP5bms4v+yMZPWxOB4b3or7BrS48noAFnodt/fx58ZO3ny+/jR/7rvA3/ujsLHU0beFG/1budOnhRvtvJ3Q68pJUzMYIPrAlT5cM/v48+Sfh9i8Zz9Dc9OurvDHHQHbJrI8+qnVALTo1J+Elbls3bWDYTmppVtIgFwlX/6UvAmc8FXp4A9kQ/a24+QHQPJ5mRsfcwBij8izNXmFq/KWdnJi73QrtB5ZeoXPt5tsur77G1k11LowiHQNkOlhRTec7SbIdK1z22UT6JKEgE63yJu3Pd9D6FIZDK55Sf4M/HrK4jjNel/dJa2OPg/Bonvg9FqZGlb/NLr5afmRWE7GpfHBlEp2v4A/9p6nwKAxrqNPmY8fvpDM5+tPMaaDV6V9RuPTsvl+y1kW7D1PRuEZvg6+TvRt6Y6jjQVOtjJ4jEzI4GxCOvsiEvlpRyQAbb0cGdrWk1t7NsPfTd6UdG7mwi/39CIkMpFP153ifytO8PWmM9zRN4A7+vpfCRpLyUqS6dwDjSjEcma9PINX2AB+YGt3ft9znsN7NtA9P0sGK8VpmgwAWw7Hy9mGDr5O/BVygft6uKK/fAa63Fb2+2Qmwo6vZNDWrGfl4yrJ1R8mz5HppSufhYW3yfll7MfXLvhYO8odtt3fyvODF4fIdhRF/UUBWt0AD2yGP2fKVhLDXpXBXcnFMZ0eJn4DmkHuPDp4QdcZ115j4wQTvoDfpsCW92WaqTF6PygX7ba8L8fWfnLVfyb1ny9wodifo4DeJS8SQkwG3gM8gXFlvZAQ4gHgAYDmzY2v4q1cnyq3gFj7qvx9GmVk2nQtc7CWlZ/LLARTdA5QFYIxe6YMAI2axIC+QojDQAzwrKZpx8u4Rk1kJVxIzOT2H/cQlZTFq+Pace+AwErP9CzYe56X/jnKwNbufDm965XrU7PzuOfnfWTmFPD3Q32vVK06HpPCvT+HkJCew3Oj2jBrcMvyA7JCTeyteGlMO27v48/by0P5cHUYi/ZH8b+JHejXyv2aa13srHhjQnteHNOW3WcvsznsEltOXWJT2AkAHG0sGNDKnXsGBNIzoETFwoRTkJMqAxrgxs4+zN4czsbN6xkKVwPA2CPyv4Uo3A0UdOs1iDb7D3Bg51qGgWy5UNLRRXB6jZyQje3Z5dJc3ggV3QwZCuDyGZmKGbVXBmMn/pMB6ej3r+5SFhn8PMwdDiHzZBEHIWTAt3u2LAdv4yxv0izt5GuVFQAWsXWFIS/Ij8vhMlCL2ifPR4YukddY2MhgsN0E+eHY1LjvEwqv95E3lPUzAKyx+ak+zE3pOfn8b0UoHXyduLl7GemFxWTm5jN321mGtvEguIxCMSmZeTzyxwE8HW14d3L5wWRCeg7fbgrn9z3nyCswcGNnH0a396JXYJNSi0jF5RcYOBaTys7wBHaeucz3W88ye3M4A1u7M6N3c0YGe6HTCXoENOGP+/uw/1wSc7aE8+WG08zZEs6Ubr7cO6BF6Zuvs5vlTVZlK+yaJgPAFkOuLJAMb9cUb2cbIkL+pTtCVsYsLi0W0i/KKnnAI0Na8dDvB9i9bQ394co8VcqOz+U8Nuy1isdUmYD+cqdtz3dyR3DOANnzr3ijeiFkxU2frvDXnXKuuekHaDv26jVNAmXLmmWPw8a35Tw74evSC0U6vdxFTIuTC2UebcGvxDza6gYZmO74QmYhlDXPllTUqzAxHP55QM5jFc1zDVNZ/8iW2uHTNO1f4F8hxCDgbaDUlq2mad8D3wP06NFD7RLWkTPx6dha6vFxrrgQHyCzDY7/C0NerrksnRrQ0sOh7FYQIBfANrwpzwE6VLwAqJiOKXOzjJnEDgD+mqZ1Br4ClpT3Ypqmfa9pWg9N03p4eDTuv3Bn4tO5Zc4ukjLzWPBAH+4b2KLS4O/X3ed46Z+jDG3jwQ939LiSaplXYODh3w5wJj6dObd3p62XvOE7fTGN23/ci07Akkf688jQVpUGf8X5udrx3e09+OnunhQYNG6bu4e3/gslO690cRIbSz1D2njyxoT2bHp2CLteGsbn07owvpM3u89e5pY5u5gyeydrj8ddLawQUVjQoLAQg14neGFMGzwywjCgA492sqpd/Anw7iSvjTkE7kHobBx4dFgrvNNDybN0hCYldk4zE2HV87JJce9ZRn/Ppej04NFGBnrjPoGnT8Jtf8uv/fuALL+el13sh9ZDnhPa+dXV8zxtx8siNUVl1a3sZArmieXGF3pxayl37G6eB08dhWfCZKpoj3sh7aLcOfikDfxxq9zFNIbeUqaNRWyBi/Vy06zG5qf6MDd9sf4UF1NzeHtih0p/j3/ffZ6kzDweHVa6oqc8P3yYi6nZfDOj2zWtY4o7fCGZsV9s45ddkYzv5MOGZ4bwxa1dGdPRu1Twl5GTT/ildOJSsknPyUcnBF2aufDwkFb8dl9vdr44jKdHBHEmPp1Zvx1g/Ffb2V6sLUN3f1d+uKMH658ezJRufvxzIJobPt3CHfP2sj70IgVFc8aZ9WDtLH+vK5JwClIuXBMoWup13NE3AN+k/WS7ty+dQhpzUH4uDABHtfci2NuJsP2b0RBXvn6NtItyl77TVGha8ohXNegtod+j8NAOOccsvhf+nVW6Mbt/P7nT59ZK7hhu+fDaM3dW9jBlrtwBPPIn/D5FLkCVej8Luavo2FTuGpbVKH7UO+DoLVNBjS2WZWkDt/1ZOL4ZV9P4G48ooPgqjR9yAapMmqZtBVoKIdzLu0apW2fi02npaY+usnsmTZNtoFz85dlfM1LUCqLMYn1X+gGqXUBzZsoAsNJJTNO01KJcdk3TVgKWahKr2PGYFKZ9t4t8g8afD/YpvTNWhrnbzvLakmPc0M6TObd3vxL8aZrGi4uPsv1MAu9P6UT/wh26yIQMZszdg4VO8Mf9fejge21fL03TOB6TwuzN4fy8I4Klh6LZeuoSF1OzS7330DaerHlyEHf29Wfejggmfr2Dk0XFEcrh7WzLpK6+vHdTJ3a8OIw3bgwmLiWbB37dzwO/hshS8KfWyGpZTa6eURraxpOB9tGE40e6ZgVJ56Ag52qT+IQw8JTN7sd29KajdSwnDc0xlIwFTvwHWYkw9kMZxNUUvQUEjYQ7l8vCC/t/hnmjrr1BG/ScPA906Hf5Z7+e4ND06q4dQPubICMewjdWbxyOXhA8EUa/C4/uhYd3y/5dkdvg235w8DfjWkl0nSk/l1eUxrw1mvkpLC6NeTsiubVnM7o2r/jsW3ZeAd9vO0v/Vm5lNopfG3qRtaEXeW5UG7oUOz9c3IojsUz9bheWeh3LHxvAJ1M7E+huf+Xx1Ow8ft4RwcO/72fIR5vo8MYahn+yhT7vbaDD62to9cpKJny9nY/WnGRX+GVc7ax4fHhrtj0/lC9u7UJKVh4zf9zDXT/t5XSxysOtPB1476aOVwLGU3Fp3Dc/hEEfbuK7tYcwHFsiC6eUdxa3SFHrlVYjrvny9K7udNOdZq9WRrBW1GahMJDT6QTPjAzCPfsc6XZ+ZaeQn14D+Vlyt78muQbI6p+Dnocjf8HXPeX5wOK/086+cM9qWf140zuyv1/xAE4IORdNmiPb6Pw46mpP0uLsmshU0qxEWPJQ6eItNs5yR+/SSZktYCxbV5i5WD5/4czyG9A3TPuA1kKIQCGEFXArsKz4BUKIVqJw1VcI0Q2wAhrVD8mcnb2UYVwBmIitslDdoGdlD08z0sLdgZSsvLLbdl05B6gKwZgzUwaAxkxiXsUmsV7I8apJrBy7wi8z/fvdWFvo+OvBPld268qTnVfA60uP8b8VJxjb0YtvZ1wt065pGu+vOsniA1E8PSKIm7vLyqEXEjOZMXcP+QaN3+/rTUCxG7dzlzP4bN0pRn2+lXFfbueD1Sd5479Qnlh4iDvm7aX/+xt55I8DbDl16eqqO3KH782JHfjp7p5czshlwlc7+HhNGGnZFfSdKmRnZcFd/QPZ8twQXh3Xjg0n47n7h81okdtlQZRihBB00J/jSIE/328JlxW1QAaJhgJ5A+MaAMgdw9aWCYTluv0/e2cdHsXZdvHfrMTdFZIQQYK7e4EahbpTd/e+dZe37u5GSwuFUgqF4hokJASJu7snuzvfH8/MeiBQWuD9cq4r18LO7O5sYJ99zn2f+xz+3F9u+6KZK0WmXsSwI17fMUGrEzMxF30rbOl/u9uyOes9TpC+LW+LzZRGA/3PER1A1R496XThKrjxteOT+RfST1T7b9okuqVLbhGyriM9t1cI+PYSM4+nHv5frE8mk8j09HbTcf/svkc8/9ttBVQ2tnObk+5fY1snTy3NoG+YN1ePd5RFy7LM22syueXbXSRH+rLk1vH0C7esUfnVzTzx6z7GPreaJ5ZmsK+kgb5hPtw1I5HXLhzMc/MG8vDpfbl+Uh9ctBreX5fDxR9tZczzq3ll5UGqmjqYOySS1fdM5uHT+7Irv5Y5b2zg+d/327iBBnq5CsL4wFTeu3QYvQI8KFz3OZrOJu4rGMVnm3KdFqvM2P+r+OzbOXH6Ve/BVerk6/IYimrtHDerMsWa4WJZL6f1DSHRrZ4DLT6U1Tt5vfwtQg4echy6f/bQ6kUszA3rxZr387ViZtfaZVjvDvM/FLENBVvgg0lQtNP2eYZcLIhYQ4mQjDpzFg4bKDp9WX86J3mJs8Sate4l8TzdhU8EXPiVkNYuuvr45K+eApBl2QDcCvwB7AcWyrK8T5KkGyVJUiUp5wLpkiTtQZhZXSj/7VylHhwPNLcbKK5rJb47BHDre+ARBAMv+Ocv7CgRpxjB5FR1NQc4umcO8CTHCZsBlGXZIEmSuohpgU/VRUw5/j5wHnCTJEkGoBW4qGcRc45fU0u4Z+Eeegd68vlVI4nyP7xb3KHyRm7/bjcHyhq5ZkIsD5/ezyz9MplknlqWweeb87h8TG9umxYPQHFdKxd+sIWWTiNfXzOahFBRtZZlma+25vPsb/vpMJoY2TuAp89JZk5yGBpJoqa5g5rmDlbuK+OnXUX8treUCF837j4tiXOHWfLGRDdwIk8uzeDtv7L4dnsBt02L55LRvY6YH6bTarh2YhxR/u788sMnSNp2KsImYRNR3VSBvqUCOex8PlifwzUuWfiCIICNpUJKqWrsO9twb6ug3m0a36zLZmb/UHGdhnbI/gsGX+TcGfRwkGWRoyWbhIHEkdwx+54BUx4SszZJZwjzFkkSstNF10DeejH/kjxfOG4e/F3ISXUugrAtvQP2fOtowHCs8I8R3clVjwoCGjEUhl95+MdEDrXI304h/H9Zn77els/23BpemD/QPNvbFcob2nht1SEmxAcxOtZWWSDLMv/5JZ2yhjbevHgMOq3j/+3X/szkzdWZnDMkghfOHWQjM3/9z0O8tzYbrUbizEERXD0+loFRvg7PYY2Gtk62ZFfzY0ohb/+VxXtrs5mdHMbdMxO5flIfzh0WxQu/H+CDdTksSy3lybMHMKO/ZY5Vr9UwZ2A4c5LD6HzrVio6+5NOAj8uzeCpZRmM6O3P6QPDOWtwhMU4pq5A/H92ZlqStwFZ0pKq7c8t3+5m4Q1jLOtWdabI7rSCJEn0ca3n944+PPrZdhbeONYmcoeCLcKltzvrjNEA6T+JGIfmSvAJFzO4PuFifRswT8wg2yMsWcz0bXxN5PIV7RBzf73HqhcpDKYihws56GdzBCEccrHlOeKmiEzCb86HL+eK7qK9ZHXENWLd/PMJMY9oL3md9Ry8M1oY0Jz3yZHfr4rI4XDmq6IoteYp4S76/wCK4mC53X3vW/35ReDFf/u6enBkqMYpRzSAqc4WxnST7++eS+6/DLWDmV3R5Fxp1nu82Ls0V4Nn4L98dT3oDk6kCUx3FrG3gbf/7es61fDxhhye+W0/o2ID+OiKEfi6d225Lssy32wr4OllGXi76fhswUim9rXQpE6jif/8ksbClCKumRDLI2f0Q5IkKhvbuezjbTS2G/j++jHCvhyobGzn/p9S+etgJVOSgnlh/iDCfG0XK3VjOSo2gPtmJ/FnRgUfb8zh3h9TWbSziGfnJZtt5wO9XHnz4qFcOzGWF34/wJNLM/h4Qy5XT4jlwpHReB3Byn12cjhD95bQfMiN+ctM/BzbRoiPcj1lewGYNHEa8g+d7N27h4l6T9Ety98szvFTCGC9kDMl9U3m6R11bMutYUxcoKhodTY7dBedoqlCkLKDy4UErLlKSLpUuHhDYJzYxEQOF1VwD7uFdPydQs66/B6xKfONEnN/br5Cihk3RVjI+0TCvp8txjFDrxDkb+UjQtZm/7zHCo1GbLLK98Hy+4TUo6uMRBAbvYwlQsZ6vK7hX8L/+vqUV9XM88sPMCkxmAtHHt74BeDxJfvoMJp45pxkh5nihSmF/Jpawr2nJTK8t+O/s2rCcsGIKF6YP8g8+5JT2cSdP+xhb1E9F4yI4p7Tkgj1sawfsiyTXdlMRmkDJpOMjIyEREKoF/3CfJg1IIxZA8IoqG7hq615fLe9kD/2lXHdxDhunRbPy+cP5vwR0TyyOI1rv0zhnCERPHH2APw8rMhu7nr0NZmEnPMevw+ZRFZFE8vTSlmeVsqTSzN4+Y+DXDMhlusmxeGzf6l4TL+zHX9BueuRIobyxJgx3PTNLp5ffoAnzh4gCj9VWaJoZA2TEX1LOUOSzyZrdxM3fb2TzxaMEo7IjeVQmwsjrzn8P4qxU8zhrf+vOD80WRSOGstEN604BVqqYdXj0GeqkGX3PVPklKrQaIXELG6qKCx9frpwQp38gEUOGzYQrlsLP14Ji28UyoQZT1qOh/SDBcvg09nw1TwhH7U2x5Ik4Zb83ngxd3jDettrCIiFCXeKeIcRVzm6qB4OQy8Tjs+b3hDqiH5ndf+xPejBv4ysSiFLPyIB3PYBaHSieHISIsLPHRedxnkHEKzmADdBfyfrZQ9OOE4oAezB34Msyzz7234+3pjL6QPDePWCIYfNyatv7eTBRXv5Pb2MSYnBvHL+YIK9LV/CdS0d3PzNLjZnV3P79ATumpGAJEnUt3Ry+SfbKKtv4+trR5nJ357COq79YgcNbQaePHsAV4ztfUSzGVedljMGiar7dzsKeOH3A8x+fQO3T4/npikWI5lBUX58c+1o1mdW8c6aLJ5elsHrfx7i0tG9uWp8jM0m0e6XQmj5ehpiJlOVDXct3MOXV48Wz1sqCGBIwgiuGFuCYVsWbSG9cZMkqFNC4hUJKLXi7yOHDiMwo4X31mYLApi5EnTuEDup6zepmsSk/QTIovLee5wgmp5BIGlFkHR7gzChSftJOHu6eIkQ+XG3WypmWp2wcX9/oqhyX75YVAOTzxNzgK114O4nKvzbPhBW9u7+gqid+ZqQba18BM45ivmaI0GjFSYQ70+EhVfAzdu6rlCqMtniXc5zw3pwQmAyCbMWnVbixXMHHvFzuyK9jBX7ynhgdl8b2TdAVkUjj/+6j/Hxgdw0Jd7hsV9uyeOF3w9w1uAInrcif4t3F/PQz2m46jW8f9kwZieHmx+zObuKZXtLWXewkuK6VofnBPB11zMqNoDpfUOYNyyS/5zRn+smxfHC7wd4d202i3cX89TcZGb0D+W32yfy7l/ZvLUmk03Z1bwwfyDT+yndwB0fCanlgPmA2JjdPj2B26cncKi8kTdXZ/LWmiy+3prPCu8fCAlNRgq0M4ZqbxIREuNuZ87AcK4aH8Nnm/IYHRvAnBgNdDRCkJ1stqkCTAZ6xcTzYtwg7vkxlQcW7eXVCwaLrFJwbg6joiZXhLfX5okizEXfQuIcR2VBbb4oBu35Rsg83f1FYPvYW21zBaOGw40bYPn9sP4lsXE7/3Mh5QaxJl3+i1hPtrwNFRnCLEqdX/SPEcc/myNI4HVrbIs+HgFw1uvw7QWCrE2+3/Y6x98Je74Tr3/jxqPLD539PJTuEWYy4UMc5Lk96MHJgqyKJrQayRxb4xStdaLAO/C8o3Pf/heh1UjEBno6D4MHsXbp3EXRvIcAnpQ49RKae2DGiysO8vHGXK4c25u3Lh52WPK3R3HdW5VRzkNz+vL5gpE25C+7sol5724mJa+WV84fzN0zE5EkieZ2Aws+305OZTMfXjHcXN3fU1jH5R9vw8NFx7LbJnDluBibTWS7wciW7Gq25VSTXlxPTmWTMGdRoNFIXDq6N6vvmczMAaH8d+UhLvloK6X1ls2eJElMTgxm4Y1j+eXmcUxKCObD9dlMeHEN9yxMdW4WU5MD9YX4DDiNJ88ewKasat5fly2OVWUKxzl3P26ZGk+ktob9LYrMrFlxDfRUXBpbhfGKq08oV0+IZd2hSvaV1ENRinDj7Gog+9BKeHcM7FssXLtu3AR37BWzNLOeFeYu428X8zdzXoQrf4UH8oXrXuIssTF6faAwmlER2EdIznLWih+AIZeCoU2EwIPYvJo6LQYVAKEDBJnc8w2kfHZ85gFVeAYJglmbd3iTl0CFEDQUHb/X7sHfxqebctmRV8vjZw0g/AhW5PWtnTy2JJ3+4T5cO9F2ts9gNHHPwlTc9Vpeu2CIg4Pokj3FPLZkHzP6hfLqBYPNx7/aksedP+xhUJQvK+6YZCZ/OZVNXP35Di75aBtLdhfTP8KHZ+cls+LOiay5ZzJ/3TuFP++exKsXDGb2gDAOljXy4M9pTHrpLz7dmIu3q55XLxjCjzeOxcddz7VfpvDYknSMJpk7ZiSw+JbxBHq6cM0XKdy9cA/11eVwcAUMvthpESMx1Ju3LxnG0lsnMC2kidD6VH7uGENTu928Wf5mkQmqFIYemtOPwdF+3P/TXkrzD4hz1OKSihZlXNQzmHOHR3HPzER+2V3M639mQl2eOGbvQGwN1Wb94h/g+nWi8+eMNPn3FqHpd6QKgtZrnDB2eXukKD5Zrwuu3jDvPZj3oSjafDhFEFsVWr1Yt85+S9jTf3exrVNxSD/hZFxfBL/e5rjmJM4SHbpNbzq6j7p4wIzHoWKfZV3rLnSucN5nQqK/9vmje2wPevAvIquiid6BHjbZxw7Y/ZVQGo256d+7sGOA6gTqFDoXMQeY32MEc7KihwCeovh4Qw7vr8vmsjG9eOLsAV1at8uyzKcbc7ng/S1IEvx441humNzHXIWXZZkfUwo5551NNLR28u11ozlXMXypamrn0o+3kVpYx5sXDzUHOqcW1nH5J9vw93Th++vHkGg1C5hWVM9jS9IZ9exqLv5oKxd+uJUz39rItFfWMfLZP3lkcRr7Sy3ELcTbjXcuGcYr5w8mrbie09/YwIbMSof3MbSXP+9cOoy1907lklG9WJ5WyuzXN3DLN7tsXajyNojbmElcMCKaswZH8OqqQ6QV1QuJlOIK6u/pQqRLCwca3diZX2sJZFdNGjqURc3Fg8vG9MbLVcfnG3NE1Tt0gPN/lO0fwbfng0egqH7PfErM2BxphkejEdWy8z6FW7aJTdSPC0TAu4rhV4JniIiAABEM7x+rdBmVv/v1Fq5+1pjyoJBiLLsTvr3w6EwWjoT4GaKbcHB51+e4KQTbmU18D04ICmtaePmPg8zoF8K5wyKPeP7zy/dT1dTOi+cOQm832/f2X1mkFtXzzDkDLVJrBbsLarnvp72Mjg3g7UuGmh/71dZ8HlVI4RdXjyLM1w2jSeadv7KY9fp6tufWCBOXx2by0RUjuHR0b/qG+RAX7EVskCfxId7MHxbFi+cNYt19U4QZVaAnTy3LYOJLf7EivZSRMQEsuXU8106I5cst+cx7dzMF1S0kR/ry660TuG1aPEv2lPD2u6+Jwol1Hp4TDIzy5b+JGZjQ8Er5UM58cwNbc6z8fnLXgdbVHDvjotPw9sVDkST4eNl6cY6vXVeqXVkHXYURzq3T4jl/eBRvrM4kbf9+If/yCsEpSveKbLCxN4ucze7MCWq00GcaXPwtLPgNPPyF5PPT2Y5zuoMvFLOBkhY+nQO7v7E9PuwKOOc9sd7+uEBIUVVEj4SZTwoSt+Njx+uY8pDoiG59z/FY/3ME6f3r2aM3dfHvLaJnUr8Tyooe9OAkRFZF0+ENYIwGEf/Se8LhxytOAsQFe1JQ00Kn0eT8hN4ThFzcvtjTg5MCPQTwFMSPKYU889t+zhgYzpNnO87jqKhsbGfBZzt4alkGkxKDWHrrBBub99yqZi75aBv3/bSXvmHeLL5lPCOUYd6sikbmvSsiGd67bDizk8MA2FtUx2WfbMPPQ893148hws/d/FqXfLSNs97eyPc7CpmUGMyHlw/n62tG8+Hlw3ntwsGcNiCUhSlFzHljA+e+t5nUwjrztZw7PIqlt00g2NuVKz7dzpurMy2ZflboFejBk3OT2fzgNG6fnsCqjHJOf2MD29TNWN5GEYsQJOSrz5yTjL+HnkeXpCPX5ArSBCDLeBjqaNL68sXmPEH4dG6WWIdOpROpd8fXXc+UpGCyD6ULouiMAFbshz/+AwmniW6emi14tAhOElX6iGHw01Vifg5EhXv0DZC9GsrSxYYv+Vyx8WwsF38fdrn4e+VBy/PpXOGKJTDreWEp/c4YWHSd2Hzlb4GG0u7nBdpDqxOD3oer8Ll4io1sDwE8afDyHweRJHjaySyfPdYfquT7HYVcNynOwZRlc3YVb6zOZP7QSM4YFG5zrLS+leu/2kmYjxvvXWaJllmaWsJjS0TkzHuXCdWCwWji7oV7ePmPg5w2IIw1907m+kl9cNVpMZpkVmWU8/iSdO76YQ/XfpHCJR9t5fEl6axIL6O+tZPx8UH8cMNYFt4wljBfV278ehf3/5RKp1HmkTP789mCkZTUtXLmW6K45KLTcM9pSSy5ZTxz2EyuKZTHduhtnEIdYDIhpf6Aps8UXr12DiYZLvpwK88syxCbn9x1ED3KRhkQHeDBR1eMwL2tDIBDbXauzG22BFCSJJ6dN5AZ/UI4lHmQJpfgrmNm1jwDbn5CxnksiJkguoZnvSlC1T+aBn89b0u6wgeJtazXaFhyM/z+oO1aMfhCOP2/cOh3x4iHMTeLtfCPh23XIxDrZ7+zYdv7QrJuDdUBufIA7Pn66N/XxHuElH7NM0f/2B704B9Gp9FEfnXL4ef/Dv4G9QUnffcPRBSEwSRTUNPi/AR1llf1WOjBSYUeAniK4c+Mch78OY0J8UG8euHgLjt/6cX1zHlDVKmfPieZj64YYQ5lNhhNvLtWVNvTS+p5bt5Afrh+LNEBYh5kS3Y189/dTGuHke+vH8usAWHm57zsY0H+vr9+LJEK+UstrOOstzayu7CWR8/sz46HZ/DWxUM5bUAYExKCOG1AGPOGRvHqBUPY/vB0HjmjHyV1rZz73mbeXZtljoToE+zF4lvGM1fp2l352Xaqm9qdvj9/TxfunpnIzzePw02v4eKPtvLmn4eQczeIRUfZ2Pq663lwTj8OFpYhNZVBQIx4grY6JJOB6Oje/J5eSmtzg41FO51KB1Av7hsfH0RwiyIltSeAhg74+Xohn5r7jq25wbHAzUdYq0cOhx+vErJTgBFXg94Dtrwj/j7wfOEoqmYADr9KdCG2f2j7fBqt6BTctAnipwkiuOJB+Gw2vNoXng6G1wfBomvFLKIaj9Ed9B4vZKD1xc6PS5LoAvYQwJMCe4vq+DW1hGsmxB5R+tnYJmaG+wR7cteMRJtjlY3t3PH9HmKDPHn6nGSbY60dRq77UuRxfnzlCLMJ1Lacau5euIeRvQN4+5Jh6LUaOgwmbv12N0v2lHD/7CTeuWQYId5uVDS28ebqTCa+uIbrvkxh0a5iUvJrKK5rpaXDyMKUIm78eidDn17FRR9uYWd+LaNiA/j5pvHcOjWen3YWcfobG9hdUMvUviEsvXUC4b7uLPhsB59vykWWZZJ92hhqSqMw8nS+3FrA6W9sYGd+F5Xq/E1iUzb4EsbEBfLHnZO4YmxvPt6Yyw0f/CGyumInOzxsdFwg1wzQ0oAn5362z1KoAjEHDOLzrsBFp+HdS4fT37OJAy3e/LzLiXS6YJvICBx/h5j/PVZotEJZcNtOYTO/7gVhAKPMPwNi7u+yX2D0TbDtPdExNFityaOug+mPQ9qPwqhKlXxKEsx9V6xXv93jKAWd/IDogDrrAvY7C6LHCFfS9i7mi7qCRwCMu010H9V1swc9OEmQX92CwSQfPgNwy7tCzZM059+7sGOEOQqiKxlo5DBRWO+RgZ6U6CGApxAOlTdyx/e7GRDhwweXD+8yGmF7bo05D/DXWydw+RiLOUtBdQsXfriVl1YcZHrfEFbfPZlLRvdCo5EwGE28tuoQl32yjVAfN365ebw5zPlgWSOXf7INbzc93147xkz+fkwp5PwPtqDVSCy6aRzXTIjF16NrF1I/DxeunRjHijsmMSs5jJdWHOSyj7eZZ/88XHS8duEQnp8/kG25NZzx5kZ25HUtH0iO9GXZ7RM5a3AES1avRWoqQ1bdpxTMHxrJzHAxp9Lpq7h8KsHBQ/v2odMok1daaSZ74sRWkDRi5gUY1yeQJKkQGQmC+9lexKY3hMPoWW90LdlSYTIJwmgyHn4mz80HLv1RhLIvu1M8ziMAhl4uNluNZRDSV7j+qTJQzyAhZdvznXPCFdhHmDrcexDuPgCXLIQzXhHuexFDBDFcdhe8ORTWPHv496Gi9zhxW7Cl63NcfWzzxXpwQiDLMs8t30+Apws3Tj7MbJmC55YfoKyhjf+eP9hmvthkkrnnx1QaWjt555JheFo588qyMJfZV9LAGxcNMcvDC6pbuPHrnaIrduUI3PRa2jqN3Pj1TlbsK+PRM/tzs2IgsyK9jOn/Xcerqw7RJ8SL9y8bzp7HZrLh/mn8fsdEFt8yntTHT+OnG8dyx/QEsiubOfe9zdz41U6Kalu4d1YSP9wwFpMsc+GHW1maWkKvQA8W3TyOqUkhPLE0g4d/ScOQ/guSbGLSvBv57roxGEwy572/heeX76et064rnvq9cO3tewYA7i5anpqbzBsXDcG7dBsA6W5DnP4e/dtLcAuOJcTblcs/3c6K9FJxoF35jNqFwLvoNPT1bMLgGcqDi9Ic1791Lwg5+Ogbjvhv2C24+cL8D+DcT4SS4f0JcMBK1q3VwZwXhKR93y/w/aW2ks+Jd4vZ5pRPYcN/Lfd7BQspaN4GSF9k+5phycKNdOv7jiRPkuC0p0W+3zYnBPFIGHOTyE77q5trWA968C8hq0L8X++yA1i8Cwq3iqinrrr/JxFU9/bcqi4KNTpX4cyrjub04KRCDwE8RVDf0sl1X6bg4arjw8tH2Gy6rPHXgQou/2QbIT6u/HjjWJLCLPN5C1MKmfPGeg6VN/LGRUN477Lh5rmd/OpmLvhgC2+szmTu4Ah+vnmcuSOYVdHEpR9vxUWn4dvrRpvvf3dtFvf9tJcRvf1ZetsEszsoiIyuX3YX8WNKIUv2FLM8rZSsikbzcV8PPW9fPJSXzhtEalEdZ765UcziIaRQF4/qxS83j8NVr+HCD7bwwu8H6DA415l7uep4/cIhPJokulBfVdo6EWo0EtcNFde8plj5vRnF3GCovy8T4oPIrGpDNlnJnzQ60V1TSFqvAA/i3Bpo1PrZOue11Yu5vL5nQr8znV4frXViA/nT1fByHDwTDE8FwJN+whb9r+dFB8GeELr5ik1XWZplAzXqejGzlPqd+HvyfCjaLkwXQFhGdzZD+s/Or0WFT7gwZBh5LUx/TLj53XMQbtsFgy4ULoB7fzz8c4CQ24JlnskZDO2iCtiDE4q1ByvZmlPDHdMT8HbrukgDQt753fYCrp0YZyMbB+Hquf5QJY+c0c8myB3g4w25LNtbyv2z+ppdNhvbOrnmix2YZPj0ypH4uusxGE3c/M0u1hyo4JlzkrlmQiwGo4lnf8vgxq93Ehfsyep7JvPVNaOZnRxmzhVsajeQWd6ISZYZERPAnTMSWXffFO6emciGzEpOe20976/LZkRvf369dQJDovy47bvdvLU6E08XLR9ePpybp/Thu+2F7Fm7CINfLIT0ZWyfQFbcOYmLRvbig/U5nPXWRvYW1Yk3ZTIKmWPSHNvPPjB3SCRPDG2kDRfOW9LKV1vzcYiCbCrDxT+Kn24cx4AIH27+Zhc/7CiwmKc4MZSSmisY2q8vUf7uXP9lCvnVSoW9tVYYQQ27wlax4AyVB4Vz8GsDhSvnqsfFOlKV6bz4NPA84b4Z2Edk/m3/yPb4+DuE8VPWKhEBY/0c0x8X83vrXhZZiSqGXgGBCULuaY/RNwoS7MxEKnqUiLjZ9dXRm1e5eovswpy1PbNHPTipkK04ZvbpigDu/UGoeI5Xdu8/DF93PYGeLuR2FQUBwoOgLN1R7t2DE44eAngKQJZFxb2krpX3LxvmkLOnYuW+Mq77MoXEUG8W3jDWPJ/X0mHg1u92c/9PexkY5cuKOycxd4gwf+gwmHhvbTazXl9PZkUTb148lFcvHGLeIGZXCvIH8O11Y8zWxd9tL+ClFQeZOySCL68eZZZ51bd08tqqQ4x/YQ13/ZDKfT/t5Y7v93DzN7uY8ep6bvp6p9kERpIkLhgRzdLbJuDtpuPyT7aZSSDAgAhflt02gQtGRPP+umyu+WKHo/ueAkmSmKzdS6lLb55Y38Ch8kab48n+oqL/fXqT+gDll2visjG9qOxwwdhmRWLUzZUiBZUkiViPdqqNdpuutB/FJmbiPU6vi+w18M4o+OUGyN0gbNqnPQJTHhaPcfUW2VfvT4CFlztuWAbMh9CBiilCpwiTjh4jTBlkWWy6wDIrGDkMgvsK58+jhSSJzd/cd4S089dboWTP4R9jVORg2i5kr7IMLVU9QbAnAd5fl010gDsXj3ISCG4Fk0nmqaUZ9ArwcJB+Fta08MKKA0xNCuayMb1tju0qqOWFFQeYPSCMGycLsyVZlnn4l3Ryqpp577Jh5giJN9dkmcnfZWN6YzTJ3PfTXj7akMsVY3uz8Max9An2wmSS+W57Aee8s4lhT68i+fE/mPnaeoY8tZJrv0jhhx0FtHWauH16Auvun8qsAWG88PsB7vtpL95uOr66dhTzh0byyqpDPPvbfiQJ7p/dl7cuHEjftjSWNSWYN2Verjqenz+QL64eRWObgXnvbua1VYcwFO0Ujp1dZH/616SiixrG2IQwHl2czjVfpNi4GdNcDR5B+Hu68O21Y5iQEMwDi9L4a78im7b/7Bg7oa0eV59gPlkwEpMM132ZIta+nHWiMJUws+t/wIKtwp3znVGQtkjM8jVXCun4T1fD2yPgo6liXtrhzfQWQe5Jp8Pye0WHzhojrhZxDTs/s0jRQenaPSNuV1uFsWs04jFFO0Qhyxq9xh7eRGrQRSKep3Bb1++1KyTNEb+nrNVH/9ge9OAfQlZFE+G+bs7zjE0m8T2eMNNinnYKIDbI8wgEcDwgi3WpBycVegjgKYDPN+fx5/5yHpzTz2nIMohYhtu+201ypC/fXDeaQC+xqSisaeHc97awPK2U+2cn2cg31x+qZPbr63lxxQEmJQSz8q5JnD04wvycfx2s4Jx3NmEwynxz7Rizbv3PjHL+80saU5KC+e/5g9FpNciyzEfrcxj/4hreWJ3JuD6BLLppLBvun8rqeybz+x0TuX1aPBszq5jzxgZu+nonFQ2iAt4n2IuFN4wl1MeNBZ9uF46dCrzd9Lxw7iBePm8Qm7OrufCDLVQ0WtmOq+hoQcrbhP/AOXi66PjvH7bGA5JSfUqr0YkNn6T+15cZFx9EE+7oOpssRgYuSoWuw7Kw+dFIlcnTtsKf8auocNvndRnahSnMV/PEJueqFaLDNu89mHQfTHlAdN6uXgH3HhKk8ODvIlvPemBao4HpjwoH011fivsGXwTVmUJ2GthHhDTvW6y8UUlERBTtcDRf6C60ejj/CyGj+ukqW3MHexgUB9au5h7bG0S3VY3X6MEJQXlDG9vzajhvWPTh7ceB39PLOFDWyD2nJeLuYpEhybLMY0vS0UoSz823zQ5sbOvkju93E+bjxovnDTIf+2V3MUtTS7hrRgLj+gQBsDO/lnf+ymL+sEgziXxzdSa/7C7m3tMSeWpuMq46LYfKG7nggy089HMaBpOJWQPCeGB2X169YDAXjIgmo6SeBxaJCIjvthcQ6OnC25cM5c4ZCfy0s4hrvkih0yjzygWDWTAuho835vLUsgxkWeYs/wK8pFY2mwZy7nubSbGSWU5ODOYPZS18Y3UmP333CbKkEQ6a9jC0Q2kqul6j+PjKkTx2Zn+2ZFdz2qvrWbijENlksimAuLto+fiKEVw2phe7cyoAqO+we061COQRQGyQJ+9cMoysiiYeWLQXOWs1uPpC5AjHazEZhTzz01liszX5QbgrHS76RnT2Hi6BGzYI45amCvj8DPj2Isd1Qu8OF3whZvFWPCBmkqwx/XFh4rLyEVuC5RctzF/SfoQiq+iIwRcJBUDKZ7bPo9VBwiw49IetpFRFvzNFjtjeHxyPHQkRw8T6lfnH0T+2Bz34h5BV0dS1/LNoOzSWWoq6pwiOSAAjR4gil7OCUw9OKHoI4EmO9OJ6nl9+gOl9Q7h6fIzTc4pqW7j2ixRCfFz55MoR+Cjduy3Z1cx9ZxNFtS18tmAkN0+JR6ORqG5q5+ZvdnLFp9sxyTKfXzWSD68YYTaFkGWZD9Zlc/XnO4j292DJrePNUtJdBbXc+t0uBkb68u6lwshBDaR/dvl+RscG8PsdE/ng8hEM7x1AdIAHfYK96Bfuw92nJbHhgancPi2etQcrOff9zeaFI8THjW+uHY2Pu57LP93GwTLbDt75I6L5+MoR5FQ2c9GHWylvsCOB+ZvA2I5bv9O4flIcKzPK2VVgJTlQNlV1eLJ6f7mFAMoyPm563L38xN9V8xcnBNDL1EiN7G3pQrbUWEJOrd0UTSZhjb7lbSGxvH4t9B7bdbCxV4gghdesFOTr8zMshA6Em170GFj3kpCN9Ttb2LPv+0Uc73+OrQx00IXi+M7Pnb9ed6DO79TkQP5hFm5zB9DF+XH7fMUenBAsTytFlnFw67SHySTzxupDxId4ceagCJtjK9LL+OtgJXfNTHQwkHl0cToldW28efEQfN3F+pNX1cyji9MZFRNgDohvajdw98I9hPu68eTZwkxpQ2Ylb67JZP6wSG6ZGo8sy7y1OpPT39hAVmUTL583iKW3TuD5+QO5aUof5g+L4qm5yWx6cBrLbptAcqQPD/2cxhWfbqe4rpU7ZyTy4rkD2ZRVxWUfb6Ox3cDjZ/XnmgmxfLYpjyeXZiDvWww6N2697kb8PVy45ONtLE21RKT4uut57cIhvHfpMAa1bmOXKYGPUurMhlVmlO4VBY7oUWg1EldPiOWPOycxINKH+xft5ebP1onjHkHmh7joNDxzzkBO6+uHQdZwySc7qLWOsjHnA4rHTEgI4t5ZSfy2t4TW/SshbrIgT/bY9IYwP5nyENy1T2T/eVpeF52L6AaOuk4Yv0x/XKyb744Vkk7rPD+tXuTq9Z8LfzwEm9+2HNNoYN4HQmmw+CbzPLW42LvEZ33lfyzSTY8AGDBPELl223Wd/mdDW53obNrD1VuQwPSfbY1nugONRnRsM1cdfZxED3rwD8BkksmubOraAGbfYkGUkmb/q9f1dxET5El5QzvNXaiz0Lspc4A9BPBkQw8BPInR0NbJLd/uItDLhZfPH+zUsr2xrZNrPk+h3WDkswUjzZ2/1fvLueLTbfh76Flyy3imJAlzkrUHK5j9xgb+zKjg3tMS+eOuSeZjADXNHdz23W6e//0ApyeH89NNY4nyF3MvB8oauPrzHYT5uPHJgpF4uOgwmWT+szjdHEj/0RUjHOaCrOHn4cLdpyXx/fVjaG43cv77m0kvFh2/CD93vr1uNK46DZd9ss0y96JgalIIX1w9ivL6Ni760DY0nqzVolrcezxXT4glyMuFF38/YOnWtdaCqw+J4QH8mVFhIYDK3F9IsNgoGZoV0qhKQK1m2zyM9dTJXpbcwUN/gGwUlXJr7PhYyJpmPS9MVroKjbdH5HC4cYOomC2+GWpyxf2SJDqGTWVig+cZKDaBKklUK4ZqeLx3qCCB2z+ydfQ7WvQ9QxBhlWg6gxqX0dWMX1O5uLXaAPfg38eyvaX0DfM+vP04sDy9lEPlTdw+PcHGYbip3cCTSzPoH+7DgnExNo9ZsqeYxXtKuGN6glmh0GEwcfv3u9FpNbx2kSUg/umlGRTWtPDqBUJmXt7Qxp3f7yE+2ItnlFiKN1dn8cqqQ8wZGM7quydz/ohop2ufJEkkR/ry7bVjePqcZHbl1zLrtfWsOVDOhSN78e6lw0gvrmfBp9tp7jDyyBn9uG5iLJ9vzqVhz2Lk+On0Cg/h55vGMTjKl9u+2807f2XZdPjnxOroTy75AeN5dvl+Lv5wK3nW1e6i7eI2aqT5rl6BHnx77RieOKs/mXni87eryvGrNjnUHUnnQmZFExd/tNXieKwSQHeL2uOGSX04J6oFj7YyasInOjwX1dlCJt7/HOGwaTer6AC9uzBvuX23kGhu/xC+nu9IAs/9RJC3lf+BPd9ajrl4wLkfiXX1j4ct97v5CAJasMW2OzjiauhoskjVVcTPEHK3rtaYQRcKgpi95vDvxxkSThOPtQ6y70EPThBKG9po6TA6X4NV+Wf8DAdTqJMdcYqs//Ay0AlCsdTjBn5SoYcAnqSQZZmHfk6jqLaVty4eap6xs4bJJHPrt7vJrmzi/cuGEx8iFo5NWVXc9PUu+oX78PPN44kL9qLdYOTJpftY8NkOAjxcWHLreG6dlmB2EpVlmUU7i5j+ylpWpJdx36wk3r5kKB4uotKcW9XMZR9vw02n5curRxPk5YpJmdv5dlsBN03pwxNnDzAHzB8Jg6P9+PHGsbjqtFz04Vaz013vQE++vmY0BqOJSz/eRmWjbeV3VGwAX14zisrGdi78YKvleMkuIcPUu+HpquPmKfFsy60hVZWTmgyg0TGjfygp+TXUSorGvknIsEIixcxSQa4ih/IW0Rc0lptfWysbMaClWiWAZWmCdIZZhbV2tgonvJiJx5bj4+oN538mSJ+1fXrsFPAKg/1KOHzibCELrc0Tc4H+MbYVtmmPiBkY+0iIo4HeXXQSpcO4kRXvErchfZ0fVwOZgxKO/Tp68LdQXNfKzvxazhoccdjzTCaZN1dnEh/ixRkDbTuF763NoqyhjWfmJZsNWQAqGtp4dHE6w3r5cfMUi7Poq6sOsbeonhfPHWSWnK/cV8YPKYXcOLkPo2IDMJlkbvtuNy0dRt69dBgeLjq+2prPa38e4rzhUbxx4RBzQcsabZ1GG5Km0UhcPqY3K+6cRFywF9d9uZPFu4uZNSCMty8Zxt4iQQLbOk08fHo/7h3jjW9nJUsb4jGZZPw9XfjqmtGcPTiCl/84yIOL0jCowcbl6QDMO2suL583iP1lDcx+Yz2fbswVOaU1uYLAqOuF1TUtGB/L55cPAeCzbaU88NNe26xBWUar0fLJlSPIrWrm4o+2UtXULkgL2EQ8aDUSjw4XMsln93o7ZqTuVOSVc17sXii8Cs8gOOO/MP8j0Q1cfKOt5Furh/kfi/Xs9wcsHX0Q0vOR10H6T9Bg6Z4y9HLhmLrfiuxFjRSE1n4OSOcqZgFLdjm/vpgJolhnH1TfHahxPbV5R//YHvTgOEN1AE1wRgCLdkBjCQw459+9qOOA2ODuEMDxYj/SMwd4UqGHAJ6k+DW1hN/2lnL3zERzOLs9Pt2Uy7pDlTxx9gDGx4sOS1ZFIzd+vZPYIE++vHoUvu56WjuMXPN5Cp9tymPBuBiW3DrepkuXW9XMZZ9s454fU4kN8mTZ7RO4ZWq8uepe3dTOgs+2Y5Lh62tH0ytQVJffX5/Nol1F3DkjgQdm93Wo0udVNXOwrJGsikZyKpto7bC1Vu8T7MWim8YR4uPKTV/vNFfAE0K9+fyqUVQ0tPPE0n0O73t47wC+umYUZfVtvLTigJh9KUuDcAsRO3d4FAAbMyvFHZIEsokxsQGYZNhfg5ilqS8EIDhGbBaaSxQC6CseT4NVDpckISHT3qlskKoOCvJlLe3c+YXoek158Og2YtbwjYJpj4rQd9X9U6OBvqdD5p+CZMZOEvfnKvbKvcaJqru6MfaNFPKtXV8dfZaWitZaYXDjH9P1OXkbRGaRXxfGImVpYoPc1fEe/ONYe1AUOWYnhx32vNSiOg6VN3H9pDib7l9bp5Evt+RzxsBwhtk5gr7zVxYtHUbzLDAI46iPNuRw4Yho82u2G4w8tSyDvmHe3KkYy/yeXsb23BoeP6s/CaHeFNW28MyyDKYkBfPC/IE2xaSKxja+2pLHRR9uof9jK5j2yjreXJ1JoVUAcXSAB99dP4ZRMQHc+2OqmHFODuPNi4eys6CWe39MRZbhlr7i8/B5rj+P/7oPWZZx02t546Ih3Do1nh9SCrn+q51C0lR1CAApuB/nj4hm1V2TGRsXyFPLMrjow600V+aDT2SXv9MoP9EZnzEgnIU7CznjzY2kFtbZnDMxIZjPrhpJQU0LV3yynXZVheBqq6QIbMnGJOn4tciDpXutCJehXXTnEmc7ENFuY9AFMPNp0Ylb9ajtMa1OKBk6mh0D1kddJ9bflE8t9+lcoM9UIb+0zgWMGOrcVCo0WcwhdrY5HtO7Q0AclDt+DxwRquy8ueLoH/svQZKkRZIknSFJUs9e7H8cmYoxXUKokw5fxmIh/0w8teSfADGKMWDe4Qhg1EgxJtIjAz2p0LPonISoaGjjsSX7GNrLr8u8rqyKJl764yAz+oVw6Wixua5t7uCaL1Jw1Wn4ZMEI/DxcaOkwcPXnO9iUXcV/zx/ME2cPMGd6tXUaeXXlQWa9tp69hfU8c04yP904jr5hlo1Ha4eRa79Moay+jY+vHGGWL+zIq+GVlYc4c1A4d0y37e7UtXRw67e7mPLftcx6fT0zXl3PtFfWMenlv1h/qNLm3DBfN969dBj1rZ089qvlS35wtB+3TYvnt72lrMooxx5De/lz5bje/LSriOLsNOhssSGAvu56Iv3cOVSuun5qAJkgb9FRqG7uEERLmZvT+PeiU9bi2qDILj1DQKO3zNWByABExttNmb+pPARBSZaL6myDTa9D7wmicu0MRSmw+2tBFFM+hfIM5+eNuk5smFY8ZJFN9D1TzCjmrBXzN57BIrsPxIxhS7V5wwqIDmR7vSUy4mihVs67IoAmo1jQY51I0lSUpUHYoGMnwz3429ieW0OIt6tZqtMV/thXjk4jMau/LYn4Pb2UxjYDl46xJfHlDW18t6OQ84ZHmfOgAF74/QDuei33zbZ8Nr7dVkBRbSsPnd4PF50Go9Ws4fkjogHMLp3Pzhto02X8aH0OY55bzaNL9lHV1MG1E+MI83Hj1VWHmPjSX1z3ZQr1raI75uWq48MrhpMQ6s1NX+9kX0k9pw8M56E5ffktrZT/rjyIVJqKLGkYN24yX23N5wVFKi5JEvfOSuKZc5JZe7CCCz/cQkvxPlHAUPI9w3zd+HTBSHM3MDc3k5wOX9vOnjVkUSyaOySSb68dQ1unkXPf28yPKYU2p43rE8R7lw1nf1kDv21XilD2ToAV+5GC4okPD+DlPw7SblAKagd+E5/94Vd19U/bPYy7TcTMbHkbtn1geyw4SaxJu74Qlu4qAmKF42bKZ7YELnGWMLQo22u5L2IIVGRYZOMqwgYKKX3lAefXFdJfPO5o4eYrNtVNJy8BBN4DLgEyJUl6QZKkLqQUPTjVkVneRKCni6Oayyz/nC4k1KcY3PRaInzdDt8B1LuL0ZYeAnhSoYcAnmRQZZVtnaKqrnUiqTQYTdzzYyoeLlqzG5/JJHPnD3sorWvjg8tHEOXvQXO7gQWf7WBbbjWvXziE85SuGMC6Q5XMen09b67JYs7AMFbfO5nLxvS2qbqX1rdywQdb2FNYxxsXDTFX/2uaO7jt291E+7vzvJ0b4HrleVekl3H7tHjevXQYb148lP+ePxg/dz1XfLqdp5dlWDYvQN8wH+6ckchve0tZZlXZvmFyH5JCvXl0cbp5g2eN6ybGodNIbNmozJqED7I5nhjqZRUHIYEs4+8hFt/alg7hWlcnNmIuehcK5BA8GvPE6RqN6KJZEUCTDBJik0lHM9QXiI2Rir3fi03P5PsdrpXyDPj2Qvh4usjmWnq7CF1/byx8NV+QOmt3UY1WVN2bK0QXD4QMy9UX9i8ThCp2kujAybLoAIJtIHvUSOGGt+2Dwzt5dgUzAezt/HhpqpCrxU5xftxkFJX7sIFH/9o9OC6QZZltOTWMig1wOkdnfd7KfWWMiQvE18M2I/CHHYX0DvRgTKxtlMcH63IwmmRzgDvA1pxqVmWUc9OUPgQp8s2mdgNvr8libFwgkxKEUmHZ3hIOlTdx5wwxa7glu5rf08u4dWq8WTIK8NPOIp5dvp+Z/UNZedck/rx7Mg+f3o/vrh/Dxgemcsf0BNYerGD+u5vMM8Pebno+WzASH3c913yeQkVDG9dNjOPiUb14d202xRlbkIISuefMoVw+pjcfrM/hjdWZ5te8bExvPrlyJDmVzRxIS6HVL8GmgCFJEuePiGb1PZPpratja5UbM15Zpxjt2GfWqR0wjcgavGMSY+ICue+nvaTk12J99tSkEO6ZmUhecZm4w34WqCoTKSiRh+b0pai2lW+2Knl7u74A32jRdfs7kCSY/YIoNP3+ABxaaXt88gOCVK140HatGn2DcDrdZ5U9Gq/EVFg/R8RQQfTsu3nq+mAfE2E+PkhIbY92fkiSBHE/iQmgLMt/yrJ8KTAMyANWSZK0WZKkqyRJOnxYZw9OKWRWNJIQ6kT+WZwCDcWnnPunNWKDPck5HAEEUSgu3dOTzXkSoYcAnmR4/c9DrDtUySNn9u/SLeqD9TmkFtbx9NxkQryFxEiVgz56Zj+G9/anrdPIgs+2szO/ljcuGmrO/TMYTby44gBXfrodrUbi22tH88ZFQ83PoyIlr4az3tpEblUzH14+gtnJYibIZJK5Z+Eeapo7ePuSYTaB0i+tOMAVn27H203P4lvGc/dpSZw+MJyzB0dw3vAolt42gSvH9uaTjbnMfXsTJXWWSvANk+IYFOXLo4vTzXN9LjoNL503iMqmdp79zbECHOLjxtmDI6nP3Y2sdYUg28yyxDBvciqbxTyPRgsmA/7K5ra6SekA1hWALOOi05Ajh+PVlGt5At9om1BjExIaZLzcdMIdEyDQKnQ+41dxDao8U0XaTyLnL38LzHgC7kgVLn13pIpZvbI0+HIurHna9nGRw8V8zM7PxIZL5wKJp4lQalkWhLCxVFxLYB/RESywysySJNEFrM60JYbdhTq/59cFATy0QtzGTXZ+vPIAGFp7COAJRFFtK2UNbYyOdS4jV5FV0UROVTOzBoTa3J9X1czWnBouGBFtUxyqbGzn2+35zBsaaZaEm0zCDTjc141rJsSaz/1ofQ7VzR08MEfIxA1GE2/8mUnfMG9OTw5HlmVeWXmQMB83rp0YZ37cXwcreGDRXibEB/HWxcNItJNORfl7cNfMRL66ZjTVzR2c884mtueKzUWYrxsfXzmC+tZOrvtqJ+0GE0/PHcDkxGA0FemUeyYhSRJPnj2A84ZH8fqfmbz+p6V7PrVvCAtvGEu0XMKKUi/W2SkXAEI8dHgba5k8fCA+7npu/mYX89/bzLYcK1dMlSgpt74eej67aiTnD49iV0EdHQYjHQZLcebmKfEMCJRokV3ZUWjlmGkyipnfgDgmJgQxPj6Qt//KoqmqUBSPhl4u1ri/C40Wzv1YyDKX3m7roOkRAFP/I4pOeRss98dOFooENaYGhBFVxFBb85bwIeK2dI/ta/rHgt7Dst7YI3IoIHdNEA8Hj0BBTk9iSJIUCCwArgV2A28gCOGqE3hZPTiOkGWZzPImEkKcyD/3LRbyyFPM/dMaR4yCAGFwI5vEetWDkwI9BPAkwur95by5Jovzh0dx2WjnM1NZFY28/uchzhgUbjZ1OFTeyIsrDnBa/1BzrtbjS/aRkl/LGxcNMZ+nyjnfW5vNxaN6sfz2iYyLd3RnXLy7mIs/2oqXq5Zfbh7HzP6WTeHnm/P466AgmsmRFonSwpRC3l2bzYUjohVrdscgUze9lifnJvPpghEU1bZy0ze7zLbqOq2GV84fTHO7kWesyN7gaD9umBTHwpQitmRXOzzntRNjCZUrqHcNE4YFVkgM8abDaCK/pkVsBDpb0Bla8PPQCyfPkP5CIlmXj16rYZ8cg09TrsWqPDBezKYom7d2rQdeUoulAwi2Mq3Kg6LjZt1p6WwTFfOIoXDHHmGT7h8jyKd/jIh/uDNNZPdteAUOrrB9gwPPg+os8QPQe5yQe9Xli8o4CKIlSeL9VNptotTA6ILNHBVMJiEdjZnoXJbS2Qo7PhE5Xl4hjsdByFokDfSZfnSv3YPjBpUQjTwCAVy1X8isZ9rJP3/eVYRGgnOHRdnc//nmXDoMJm6ZaimA/J5eRlpxPffNSjLLzOtbO/l4Qw5zksMYEu0HwG9ppeRUNXPnjEQ0SvcvJb+WW6bFmx9XUN3CzV/vom+YN+9dNuyw2YVj4gL55ebx+Hu4cOnHW9mqELABEb68duFgUgvr+M8v6ei0Gt65ZAghUh1LcjVkljei0Ui8eO4gMwl8568s8/MmR/oS6GpC4+rF1Z/v4KedRbYvrNGCpCHSx4Vlt03gpXMHUVrXxoUfbuW6L1Moqm2xrA9W3Su9VhS2hscGg8nA7d/tNpu6aDQSU+I8aZfcuPmbXdS1KIZTLTXCyMonEkmSeGB2X2qaO1jz15/ieFdFmGOB3l2oGBpLHSNghlwiNquZVtxEkkRGYskeQVRVhPS3NWDxVoyFmu0ImUYjslK76vC5KXOnHS3Ojx8OnS0WR+eTEJIk/QxsADyAs2RZPluW5R9kWb4NOLxlbw9OGZQ3tNPYbiDRvgOoyj/7TD+lwt/tERvkRX1rp22cjT0ihoGbn/A26MFJgR4CeJKgvKGNe39MpX+4D08rdujO8PzyA7jqtDylZGgBPLd8P+56LS+cKwKYt2RX80NKITdM6mPO8lJnAdcdquTZeck8P3+gebOloqGtk3t/TOXOH/YwrJc/S26ZYDOwnF3ZxMt/HGRKUrCZaAJUNbXz7G/7GRUbwHNOntce0/qG8sw5yaQW1vHL7mLz/Qmh3lw1IYalqSUUVFu+7G+fnoC/h55vtjlGGvQL9yFGX0cZgQ7HPJQQ606jyWzUIDeU0NZpxE2vsYS3l+yhprmd3aYENJgsjnMh/YTEUYkyaMSLIG2reH9GZaFT8+86W4VhTIClgwFA2kJorhSh7x5dbML1bnDGq4LQ/XK97aYpYZa4VbttahW9ZI8woAGoUuRrYQNFFd26au/uLx5jTyyPhJy/RPdz+ALnx/d8Kyrr4293flyWhYFNzETRDejBCcHB8kZcdBrnlWcrHChtJDrAnTBfWyXA7sI6+kf4ONy/5kAlY+ICibWaK/w1tZgwHzfOGWIxRVmVUU5zh5HrJ1k+F8v2lhLh62buNv6eXoa7Xsv5VhL1zzfn0Wk08dEVI2xUBl0hNsiTX24eT5S/B3f/sIf6FiEZn50czu3T4lm0q4gle4rxkpvRYqJJ68M1X6RQ29yBViPx0rmDOGeIcAG1JnoaYM6gCMbGBXLfT6n8vMvWFApXb2hvRKfVcMHIaNbeN4X7ZyexMbOKma+u57M9SjHJrgslSRLD40JxlQys2FfK++uzzcdc5Q48vbyobmrn7TUKIVWNTLyEscmgKD8mJgRReihF3B/S74i/o6NCwkzQezrGM7h4QvRosT5YIzRZdPurLe8D3yhBItWQd61OuIO21jm+nt5DkDVnUE22ZKPz44dDc9XJHkHzsSzL/WVZfl6W5VIASZJcAWRZHnFiL60HxwvqKEq8/TpcskvsG05B909rxAYJFchhZaBaHcRNEfEwDlL5HpwI9BDAkwAmk8zdC/fQ1mnizYuHdkmg1h6sYPWBCm6dFm+2R9+UVcXag5XcOi2eAE8XOgwmHlmcRnSAu9mcRZZl7vx+D9tyq3n1gsFcOtpR0rc5u4o5r2/g511F3DYtnq+uGW0zC9RuMHLbt7tx02t4Yf4gG4L6/PIDtHQYeG5estOZRWeYOySCwdF+/PePgzbuoFeNi0UjSXy6ySLFdNNrOXtwBCszys0bO2uESzUUGfwd7m/tFM/rrteCjyDCzdWFtHWaCPVxEzbhGj2U7CavqoU9JsVwp0jZVKnzfYo0qcrgTrBOka2qBFCn2NSrpC3QyrTHZBIBymGDHGWh9tC7wQVfiJGhhVdago/9osXm6tAf4u8h/UGjE/N3br7CrKZaIYChyWBog5ps2+fuf7aYM6gvptvY+bmwbbfPOARR5d/8lqjo9R7v/PGlqaJrmXxu91+zB8cd2RVNxAV5HvFzmV/dTO8Ax05JZnkTiXablvqWTg6UNTAmzlJ0ae0wsu5QJTP7h9pIRX9NLSE6wN3c/WvtMLIhU5wnSRKyLPPXwQrGxwea1z2D0cTPu4uYlRxGhNU84JHg66Hn9QuHUNHYziNL0s3zeLdPT2BoLz8eWZxOcbGY+Z03YQhlDW3c+PVOOgwmNBqJl84bzIT4IB5ctNfKrErGRavloytGMDYukHt+TOW77RZZOK4+NuHmbnotN0+JZ9XdkxjXJ5AnV+TSihtVFaWOF6woFs4ZFMJ//zjIxkyFJBpacXH14LzhUXy5JV90EtU5Nk9Lt/2cIZGEt2XT7hV1/LsHenchSdu/1DFIPW6KkGM2WcliVZl3uZVM0zcKkG0jItz9hbuws9frigCqMTSmoySAJqN4Lc+TmgA+4+S+Y9Dr9+BkRqYaAWHfAdz3iyL/nHMCrur4ITZIvK9uyUAbS4/N1KkHxx09BPAEw2SSefiXNDZlVfP4Wf27DGruMJh4alkGMYEeXDU+xvzY55bvJ9LPnSvGivs+2pBDdmUzT52djLvSAft4Qy4rM8p5+PR+zBsa5fC8zy3fzyUfbcNFp+Gnm8Zxz2lJDpKrF38/SEZpAy+fN9imG7A1p5pFu4q4bmKcY3XrMJAkiUfO6EdZQxsfb8gx3x/m68bZgyNYmFJoY/xy3vBoOgwmlqWV2D6R0YC/sZqsdl8HAwZnBLCpQmzegr1dBXkL7Q+le8irbqYeL4z+fawIoFJVrxQugaUdrvhplAXOXNVWSLI6ExhgmX0ia5WIihh3W/dcMAPi4Jx3xYzMjk8s9yecBvmbReVc7yaq/eocTVCibQcQHGdl+p0tbg/8duRrALHZPLhcyL1UgmuNA8vEPNL4O7p+X+mLBFF1RiB78K8hu7Kpy1lia+TXtNA70DY8vL61k7KGNgfb8h15NcgyNnOFG7OqaOs0cZrVDGFlYzubsqqYOzjSXDDapJw3Q5GVZ1c2U1TbypQkC7FJya+lrqXTIYuwOxgc7cddMxNZmlrC4j2i4KHTanjzoqFIwGtLxN46tlcvXjp3ENtya3h0sSCLLjoN7102zOwgml5cLyrVkoS7i5ZPrhzJ5MRgHvo5jQ/WKUUWVx9ob3C4jih/Dz6+cgTvXTqMWnzYmHqALzbn2a5RWvHZevasROJDvLj9+90U17UK2bjejTtnJCJJIlORZoVsWcmtZyWH0U9TSI4m5qh/T93CgHlCbm497wcQp5jN5K6z3BecJD7v1muPGo/RYFV48vCHVicmEIfrAErH2AFsrQVkIf8/ySBJUpgkScMBd0mShkqSNEz5mYKQg/bgfwhZFY0EeLqYjbEAsbZk/Crk06ew/BMgyt8dnUYit+oIkVPxyjhI1p///EX14IjoIYAnELIs8+iSdL7fUcitU+O5cGR0l+d+uSWPnMpmHjurvzm8/ZfdxewraeD+2WLmpqC6hTdXZ3L6wDCm9hUbhZS8Gl5YcYDZA8JsjBkAciqbmP/eJj5cn8Olo3vx2+0THHK+ANYcKOfTTbksGBdj3rgBSrcxnSh/d26bdvRB3yNjApg9IIz31mVT0WixEL9mYiwtHUabSntypA+JoV6OczhNZWgwkW/wp7LJNjRe7Sy6uWjN8ycdVXkAogMIootVvJuCqkZ83fVoe42Cou1icfYKEQtzVSYVje1UGjzxMiqbPZNSFVer06pZjF+M5QL2fCPC2wfM6/4vpd+ZwtFzx8eW+xJnic2PaqEcPthixR7YxyK7CkoU12Nvpx6UIMhld4evd34u3t+wKx2PmYyw7mVh3NAVuTN0QNqPYq6hK9lrD/5xtBuMFNS0EBd8+Bmo+tZO6lo6HQhgVoXobNnPrWzLrcZFp2Gw0tUDWJVRhrebjtFWTqG/7S3BaJKZOyTC6rxyvF0t56kZhVOSgs3n/JlRjotWw6REy31Hgxsn92FUTACPLd5nzgmMDvDg9YuGUFutRMq4B3DO0Ehz7t8nG4XiwNtNz+dXjcTPw4UFn+3AJGnMn3V3Fy0fXj6CMweF8/zvB3hpxQFkNx9BkpxAkiTmDAwnJDyKeI8WHv91H7d8u4uGNrV4JOTjnloT7182nA6DiZu/2YXJ0AY6dyL83FkwPoZfdhdTVqqse1ZkxksvESeVsLkhWMjcjzfiZwiSar9ZixgipJyFVoZTOldlZtoqhkYputFo1f1083MuAdW5Os8BBHOUxlFDfV3PY/t/9A9jFvBfIAp4FXhF+bkbePgEXlcP/gEcKm9yLO5XHRJO4qdg9p899FoNvQI8yKs6wpyuTwSEDOghgCcJuiSAkiR5SJJ0vyRJ90mS5CZJ0gJJkn6VJOklSZJ6hpOPA15bdYhvthVw4+Q+3HNaYpdzfw1tnbyxOpPJicFM6ysImMFo4tVVhxgc5ctZypzfK6sOotNIPHammA80mmTu+TGVKH93XjrfVraZVdHE/Pc2U1TbyoeXD+fZeQPxcNE5vHZzu4EHFqXRL9yHB+fYRhT9kFJIVkUTT80dYO42qsivbubyT7Yx/91NXPjBFi7/ZBtfbM5zeP4H5vSlw2Di/bWWLuCACF/G9Qnkqy355oq5JEnMHxbF7oI6IYlSociv6mVPCmts86Ua25SNm14LLh4Q0AdNhahQh6kEMGYCtNdjKt5FTKCHkDQ2VwpDF0kSOX+VovtZJgfgYmwWZgVqSLO9cYH1v2FdoZCZao88w2SD5PlCxqkSu9BkcasSO59IcY0mo5A3tdZaXEJdvGwkaWZoXW0D67tCexNsfVd8KQUnOh7f/bWQeU17pGvXwbSFYvM16rojv94xomd9OjIKqlswyRyRAKqfp2h/WwKYUym63fYdxD2FdQyK9LWRqm/IrGJSYrCNcmDV/nKSQr1tOojrMyttztuaU01csCdRVq+9MauK0XEBwmzpGKDVSLx6ocgEvefHVLPByrS+oZw9UKyfqw4K0nb3zETmJIfx7PL9ZglmqI8bX1w9kk6jidzOAIzVFjm6i07DGxcNNUdKpHVGiViDw8Ss6AJ6M8Cjlofm9OWPfeVc+MFWETKvV+StnS3EBXvx3PyBpBbWUVnfLLppwM2T4/F21bHjkEIAraMhOsQ8Y2mnh1ODrL8Nvbv4UeXuKjRaYQxlb8qi97A919y5s+p6mozO18OOZnDt4mOrFtd8o5wf7wpFO8StVT7syQJZlr+QZXkqsECW5alWP2fLsvzzEZ+gB6cMhANoIwn2BFB1yFW7Yqc4YoK6EQUB4v3mbxF7jR6cUBxuR/g5EArEAr8BIxAVKwkRXtqDv4GfdxXx5posLhgRxQOzkw6b0fXdtgIa2wzce5olc271gQqK61q5aUo8Go1EbXMHv6eVcf6IaLNEc0V6GfnVLTw0px8+VkYKze0Grvp8OzqNxK+3TOC0AWEOr6nihd8PUNnYzrPzkm02fLIs88XmPAZF+ZpJqYpOo4nbv9/DnoI6PF11yEBxXSuP/7rPMueiIDbIk1nJYfy8u8jGDv3swREU17VyoMxCZsb3EbMcuwvqLE+guHG24GZ2FFWRX91MpJ87ejVUOmIIntXpeLvq6BWgbDjjpgAQWL6ZUbEBllBzNWA9pC9U7mdTZhXlklJJri+ydLZUOZOyYTN3BkFIKb2OwQAlfoa4zVQytFy9wDvC4gTqEQTIwhnQ1Ud0B1VXUhcPy5+t0dEsyOGRsPMzQSgn3ut4rK1BRFVEj+l6ts9khI2vQ+hAy/v4Z/A5PevTYZFdKb5gjyQBbW4XnXIfd9uNuSqh9rQjYg2tBhspkyzLVDa20zvAlkDmV7fQL9xCWDoMJkrr22ziHIrr2hwC6ssb2hy6kUeLKH8PHj2rP9tza/jayjzqTMUR+b212WRXNqHRSLxywWDig72484fdVDSILlR8iDdvXDSE/Z2h1BfZzqtoNRLPzUtm3tBIvirwFxJQ+7lbawTEIdXmc8OE3nx85QgOlDXw5NJ9gjCBORj9rEHh9A3zpryuGVkp1vh66Dl7SATFlTXIktaWPCmf81bc2Jb7DxBAQAwlO/lu0ujAZDePLWlsu3XqzJ51ocjQBjpbQyFAFNK6ksGZ5fVxzo93hcLtovt3tI/7FyBJ0mXKH2MkSbrb/ueEXlwPjisqG9tpaDM4xNiQvQYCE8DPueP7qYbYIE/yqprNBbcuET9drB09ofAnHIcjgImyLN8D3AIMAG6TZXk9cD9w8pXUThGYTDKvrjrE3QtTGRMXwDPnDDws+Ws3GPlkYy7j4wMZGGX5gvx6az7hvm7M6Ceknov3FNNhNJllpLIs8+H6bGICPWxiHEDMlBTWtPLeZcPNGV7OsHh3MV9tzef6SXEO0tAtOdVkVTRxuZUbqIq312SRWljH8+cO5KtrRrPwhrEsv30iccGe3PdTqkOo+7whkdS1dLIpy0IOpykS1jUHLCG+SWHeuGg1YjZHRYfY5LbIjrNqOVXNtt2P8CH4d5YzIVKyGFV4BtHo359x0l4mJgQrEQ29IH+TOB7cD1qqSTuUhW+4spGoKxQGKWAJNVXdQNUKuCwL99BjccAMiBVyTmur9aAEIRlRrhkQXUB106TOIXU1S9PReGQCaOyEre+JLmj0SMfj618Wrzn7+a5n/w4sE6Y0E+/q3tzjsaNnfToCspUOXmzQ4TuAKtFz09t+HRiM4otcr5Uczrfu+De2GzCYZPw9XMz3GU0y5Q1thFuZuJTWC6IT7mchAJWNbQRbZZAaTTJ1rZ0EeDqZPT1KnD88ikmJwbzw+wGzFFSr/J/UayVu+WYXrR1GPFx0vHvpMJrbjdz+/W5zIWlKUgjeEUn4tpWw+aCtgZIkifgIfdQwAPalrKNL+EaJIk1TOVOTQrhlSjwLU4rYUaJIHpXPqyRJXDMhlvbOTupbLfNuZwyMQGdqw6C1I07K44IDA9hgV1g7bpBx/jnW6GyLXeBIANU/S1b/rw5LAP2cX0Ntnjjm7jiecFgUbBWOpf/sOnSsUD+UXoC3k58e/I/gULliAGPdATS0CwLUZ9oJuqrjj9ggT1o7jZQ3diHlVtFrrNin9MhATziOqAmThQZvuXKr/v24eLhKkjRbkqSDkiRlSZL0oJPjkiRJbyrH90qSNOx4vO6JQn1LJ9d8sYM3V2dy3vAoPr9q1GHzrQC+2pJPRWM7N0225G3lVDaxIbOKS0b1QqfVIMsy328vZHCUL/3ChTRxT2EdqUX1XDMh1sYBML24ns825XLxqF6MjOl6PutgWSMP/ZzGqJgA7p+V5HD8qy35+HnozRmDKnYX1PL2X1nMGxppjqAA4Y736gXCoe/JX/fZPGZiYhA+bjp+TbUYvIT4uDEoypfVSj4ZCPlVUpg3aTYEUGxym7HdVMiyTHaFrQFGa7AwSZnha2skk+Y6jKFSJqMilQ1s1HAo3qVciJC9aqoOEBevmMLUFzp2ANXKvGoO01orqlzH0gEEiJ8pviBUmVVQAlRlCWKpEsCWKsecMb2HuaNgg47mI+dh7VssDBvG3eZ4rDpbkMMhl0JkFx9DWRZZhgFx0P+cI73D44Ke9alr5FQ2E+rjesQYhTYzAbSV9BoUWaNOa7tGtXYabc6taxb/5/2sXIOrmtrpNMo2Lp6qRFuVmnYaTVQ1dRDibSF7tS0dyDIEeBz+mrsDSZJ4fv5ANJLEgz/vtTFguW9WEgfLG3lsiZilTQj15ulzktmaU8MbVoHwY0ePRSvJvPnTnw6FKxedhocXzKMdF7ZvXsPuAifulgA+inRRccO8Y0YCQ6L9+Ghrmbjf6vN61uAIXDVQVG+RUo6KDcBfb6RVthBswFz8io8MZW9RPVV2M9DHB110ALV6y1qnwoEAKiRWsusA6u0IoCyLuJ2uOoANxeDb9Xy8UzRVCKOqXmOO7nH/EmRZ/kC5fdLZz4m+vh4cP2Qqs9Q2ZlqF20QB53+IAKpKjiM6gepchSt6DwE84Tgc+0hRZ2lkWb5avVOSpD6AkyGjo4MkSVrgHWAO0B+4WJKk/nanzQESlJ/rOUWlXUaTzKKdRZz19kY2ZlXxzDnJvHzeoCPm5dW3dPLWmiwmJgQxIcFiZf311gL0WokLR4kvxT2FdRwsb+SiURYpwXfbC/Bw0XLOUEsml8kk859f0gjwdOHB2bbzfNZoajdw09c78XTV8fYlQx02gKX1razMKOfCEdE276Glw8BdP+whzMeNJ+cOsH9ahkT7ccuUPvy8u5gV6WXm+111WuYkh7NyX5lNJMS0viHsLqyj2mpjkxzpS3pxvWUzp2ye2rDdHJU3tNPcYaSPVQcwzRgDwFC9bZ7g0sYkXCQjbsVbxR2Rw8VwdlOF2Qk0SSpk+IAkMUtXly9mY1y8LFboqlumuplTrc6Ptmqtos80MLaL+AYQpivt9WKjpD5na62F1KlEUau3REioaKkRncnDXYssw+Y3hSRFzR60xqrHxHuc/ljXz3HgNxH/MP7OrucDjx961qcjIKeqibigI8t+26zdcq3QqXQAdXYREm0dRptza5Wwcj+rDmBxnfgcRFp1+9RZwyh/QQpVwhLiYyGANUqQcIDX3+8Aitd356HT+7Ipq5rvtheau0Ejevlx27QEftxZxA87xIzZecOjOG94FG/9lWVWI7iEic9/aGsmjytk0Rpe7m5owgcyXJfDlZ9uZ3uuE4dLX2UNrhcRFHrFlVRVLRjbLLMwbnotwV56qps7zRJerUYizl9Lo0ErZgdVKJ/z/tHiu8FeXv+30dkm1jN7wgZiPZHstg+mTrtun7IOaa3W5o5my+yj+b6mw69PtflHP/+Xv1ncRo8+usf9y1Bmln0kSdJLkrRakqQqK3loD/4HcKi8CT8PPUFeVp+D7DUigipmwom7sOOMmO4SQBDjIbW5trmhPfjX0SUBlGX5WlmWHaY0ZVnOBiYeh9ceBWTJspwjy3IH8D0w1+6cucCXssBWwE+SpKP3Bj+B2FtUx7x3N3HPj6notRLfXz+Wy8b0PqzsU8WXW/Kob+3koTmWkF9Zllm6t4QZ/UIJUaRTq/dXoNNInDnI8qtZc6CS0/qH2lT/M0obSC2q5+6ZSTYZf/b4MaWQnKpm3rx4CCE+jl/+S1OFu98lo2216++tzSavuoVXLhhsM3NojdumJzAgwofHlqTTZLWZOXNwOM0dRjZayUCnJIUIXmJlcNA/3JuGNgPlDcrmQqk4m9BgvU9Vg1f7WMkutpYYyJdDiGrPNN9X3tDGz9XRGCQXyFFkXBFKI6dkD3iH0aTxYYhLCf0j/ITTnRq74Nfbkv/nrTreKd1Fc2fO0SK+W1DjJNQMLXUTZuiwVNk1Osu8n7qpaql2tD1X5xl7je369bLXQNleEe1gbxaTv1lIOyfcCd5dzIsa2mHVoxDcV3QJ/2H0rE+Hh8kkk+nMec4J2jvF/yd7NUJXS5RosVq6aR1Gx8erBkzW60CtkuHp7yk2Qk3KOdZmL2oByOMIxbGjwSWjejE+PpBnfsugtFm5bkM7d0xPYEJ8EI//uo9MZb14au4AYgM9eWRxunDWDE0GV1+ujchn8Z4S0orqHZ5f32cSA8kk0tPEvT+mYrB35FTJi0IAAXoFenD5JFFP2J9vq0gI8nZDQmb5Xot7ZqSfOzKwPc+KYCozhDG+Et5uOnbkOSGffwf5GwWps8/67GiGmlzxWbdGbb7ILVWhunCqa4bJJCTkVlmGgJWDspMun6FdSMqPNug+ezW4+lrW8pMXp8my3ACcCRQBicB9J/aSenA8kVUhDGBs9nxZq0Vxoivjo1MQYT5uuOk15FZ20wgGxO+hBycMR5SASpJ0iyRJflZ/9wduOg6vHQkUWv29SLnvaM9Rr+t6SZJSJElKqaysdHbKv4rqpnYe/iWNue9sorS+jTcuGsKfd09meO/udYQ6DCa+3JrP5MRg+kf4mO/PrGiisrGdqVa5WRmlDfQJ9jKTvZYOA1VN7Q75XWpFeUTM4a9h8Z4S+of7MK6P8wDdvw5U0jfMm96Blu6awWjim20FnNY/1CYg2h56rYan5iZT0djOIqtIh1GxAXi4aFl3yDLzNyDCBze9xsb0JVLpHpQo80Sqw5yMrYRtf6kgXv3DLb+7jVlVFLkm4FJhqeSv3l9BOy60h4+w5F2FDwIkKNlNbUsnew3RjHQvFnOD1rN4AbEWgwLzJk95T+o8SxcW8UeEumlSCaBG2UibDFYZhC4WAqh+kTRXOdqe5/wlzGIih3f9epteFyR20AW298syrHxUxGiMuaXrx29+S/wuZj0H2mNzbzwWnArr04lYm3KqmmhqNzAoqgtZnRVUMmdflPJVTGHspY8hPq6UN1jmPEKVQpT1fYEKyatutkgZ1edrUJ5PNZ1RySJgniNUu4rHA5Ik8d/zB+Oq0/DqX8o/l6HV7Bbq6aLj9u/30Gk04eGi45Ez+5Fb1cw3W/PF/+XYiQxo24WXq5aPrDJLzYibgmQy8MzQBgpqWvjdSt0AiGKQm5+F6CiYOqgPAPvybEPi9To9Xi4adllJStXuqrquAWZHUE2HkLp3q/J+NMj8U8zr2XcpyjMAWVknFbQ3Ckm6v1XUkLp2qWtja41Yv+yLSLWKIsM/xvEaKg+Kx4Qld/+6ZVlsLOMm/6tr0TFCrZCcDnwny/JxZvE9OJGQZZlD5U22e7GmSlFs7TP1xF3YPwCNRiIm0LN761BAnFgremSgJxTdyQG8TpblOvUvsizXAsfD391Zfdl+dqc754g7ZflDWZZHyLI8Ijj4xOX+tBuMfLAumykvr+WHHYUsGBfD6nsmM3dIZLe6fip+SyuhsrGdq+2y+1SZz7h4C8naX9pg47ZnnrWxc+XLrmhCI3FYh70DZQ2kFtYxf5hTnk1jWyc78mpsgpsBtubUUNPc0eXjrDG8tz99w7xtZv5cdVrG9Qlk7cFKs7xTr9UwKNLPZiMU7isIYGmdutlUCaBkY0yRWdFEiLereePU3G5gd0EthpCBQnqgRCWs3l9OlL87HnFjhZ17R4vYWAUlQslulu4tYb+pF+HtucLVLjhJdP0M7WIRq80TlW3vcCF/qlfMIrQ6sek7VgLo4ikq2GoVXZVUmgwWoxmNzjwHhIuXIIOdzeBlTwDXQszErjdDxTtFl3DszY7B7xlLhAx16n+Ew6gz1ObD+v9C/7knwtL6pF+fTsTalFooOlXWWX1Hgv2b8XMXn526FlsCGOHrTmm9heypEs4yq/uClbm+ykaLHNlfUR2o5M4ZwQxQZFI1zcePAIJYN165YDAHqhWyqUi1Q7zdeH7+QPaXNpjD3acmhTA+PpA3VmeKa+szDU1DEbcMgt/SSm1jaEBU8rWuDOvcQ1ywJ++vy7YNfAfR3aortLnLxUOs2cXllbbnSxp83LTsLqwz3++i06KTYH+plbpZjYRobyROceA7rshaJcifvWSzLFXchlkRwBolKiPAmgAWCwKpSjsbFWJsPxddpxBA6wxVFeXKvHjoURDAygPitf9ZF+LjhaWSJB1AuBivliQpGDiCi0YPThVUNrVT39ppawCj5vH+D83/qYgL7iYBBPH5zNvgOLLSg38N3SGAGsmKuSizMS6HOb+7KAKsNR9RQMkxnHPSIKOkgZmvruf53w8wMjaAP+6cxONnDehSDtkVZFnmk425xId4MSnBtgv318EKYoMsuVl1LR2U1reZzV8AS/ixv+0Xd3ZlM70CPMxB8s7w/fZCXLQazh3mfOZiY2YVBpNsdulU8VtaCR4uWgdi2BXOHhLBzvxa87UCTE4Mpqi21SZLZmgvP/aV1NNuENKwcCXiotShAyjZzCVlVdjK37bn1tBplAnuM1TcUbGfVkVyOqNfKFLUCGFaUKpsbiKGQsluFu8ups47EY2xTWxyghKFBLM6WxBAY7uQfWp1ggQ2WLkFegQeOwEE8Am36gAq5E022nYA1SwdV2/R/QPbDmBLjSCphzND2PCq6FIMX2B7v6EDVj8p5iCHXNL14/94WOgFZz3X3Xd2PNGzPjlBSn4tXq66I0ZAgG1MmzVUU5c6u25cmK+bDdlz02sJ9HSxIYUBni5Iki0BVIsxKqF002tx12ttnt/TRYuLVnPcCSAoOYDDhZNvSpbln+m0AWGcMSicN1dnkVXRhCRJPHx6P+paO3l3bZa5Un9xUDYS8PGGXNsn1rtDrzFIeeu5YVIc+0oabKTsgJCL23UAVVdeQ2uD7aZJo8XHVaKupdNqLZTQazW2HUDV1be9idggT0rq22xmqP8WanJF7IwzElW6VxS3rOfyapXfiX0H0CfCoiVu6oIA1uaJ96Iaa1mjPF2QyIA+3b92tatwCuSrybL8IDAWGCHLcifQjKPUvAenKLLMDqBWHcDsNcJF/CTMp/y7iAn0pKCmxVEG7wzxM4QRTsGWf/7CeuAU3SGAfwALJUmaLknSNOA7YMVxeO0dQIIkSbGSJLkAFwG/2p3zK3CF4rY3BqiXZbnU/olOBrQbjFz3ZQodBhNfXTOKTxeM7Nb8jTOk5NeSXtzAVeNjbLqGdS0dbM6uZnayRUKToWwIbAigGuxs3wGsbDrshrDdYGTRriLmDAwzz+nY46+DFfi46RjWy898n8FoYkV6GTP6hR7R2EaFGl6/dK9lIzY5UZDHdQctMrkh0X50GmUySsT79HXX467XUqJ2AM0zgBYCqDqAWv/+N2ZV4arT0KefQgCrs9mUVUW7wcSMfqEWZ8vSPeI2Ygg0lVFYkEtUXyUSoTxdSEABqg5a8qXUQWbfKNtNnmeQmHk5Vrj5Wdw91UwtJEvXT+8uCKbeU5i/qK9tLbEqUdxMu5JQVRwQ5i2jrrcNmQbY842Qdc58smtTl0N/iPnASfcdvVHD8UHP+mQHWZbZkFnJ2D6BNg7AR4K9QEHt0NXadQDDfd0ob2iz+ZIP93OzFGUQ3fsADxcqrDuAnrYdQBAk0/r5JUkiwNPFRjp6PLFgsphb+3l7tg3peuKsAXi4anlwkXALHRDhy/yhUXy2MY8iKQz8Y/ErXMPcIZH8sKPQgRQTNxnK0zkn0YUQb1c+XG8nFfWNFp9Pa7atc0XW6PCSWm1jHDRavF3EP4ZZ/i5JuGplciqbzKY96FwEcWqpIjb4KAwYuoO9C8Vtop0hlCyLiJzIYbb/YcozAMk2c68m19a9U1VH+NiNydbkCOLoTCFTmipmDY9GynlgOYT0P1Hr0bGgH3ChJElXAOcBp53g6+nBcYLqRZAYquxFZFkQwLgp/4ZR2r+O2CBPDCaZolonTuQOJ08UpnoHf//nL6wHTtEdAvgAsAYxV3MLsBqRtfW3IMuyAbgVsYHbDyyUZXmfJEk3SpJ0o3LaciAHyAI+Am7+u6/7T6GmuYPiulZumBwn8uT+BpalluCm1zBvqK2ccl9JA0aTzMR4S1dQnZ8JsCJsGuWL1D4Y3VWvdZjnsUZjm4HGNgNDDiMb21VQx6jYABtn0N2FddS2dDLrMIHy9ogO8GBItB9/WM3L9Ar0IDrA3cZJb0CEmGFSF1JJkgj2dqW6WdlYKmHEnbLOTD6rmztobDcQYzWjuDm7muG9/XH1UqrM7Y2syijH21UnAuC9QkUXTDV4CREGDUmaIoaPGC3knRUZogMoaQRxCkoU55pnAuMsM4EgOoKNf4MPtDdYzGSalDgMrxDLnKFfL/F6quxKJa9hVpVFdY6nKwOYja8KIjnabmzOaICNr4m5wYQu9iOdbfD7/eL3MPbWo357xwk965MdMiuaKKptZXJi99ahrjIz1HgG69k+EMHyJtmSbwWiwp1WVG8TAtwn2Iu04jrz36P9PdBqJA5YyRij/T3IqrD18ukV4EFOpYO/z3GBXieIhE6SuXvhHvMaGeztysNz+pGSX8vyNLEm3X1aIkZZ5qut+ULenLOWy4f40NppZFOWXWc/dgoArgUbGRkTQLH9Bsivl5Bnq+7AAJKE5OaLj9Ri+zvWueGKIJhlKqnWe6CX2zHJ2MY9+MdAbR5hilnXcYmCaG+C7R8KN2D7EPWS3aIzaB/zkrtOdDTclEKksVPIN8MGWs6pOiTWIvtIh/IM5yYvJpMggIebXbZHfbHoKAyY1/3HnEBIkvQV8F9gAjBS+RlxQi+qB8cNmRVN+LjpzJJ4KvaLTvj/oPwTMOcud6sQ5eIJCTNF/JTpOCkXenBU6E4OoEmW5fdkWT5PluVzZVn+QJbl4/KvJcvyclmWE2VZ7iPL8rPKfe/Lsvy+8mdZluVblOMDZVlOOR6v+08gyMsVSXKclzlaGIwmfksrZUpiCB4utlXPAkUuaR3e7qmco4Y5A+bOl/3GakJ8ILsL62hsc36Nfu56JMmx4q+ipcNATmWTmZSpWHewEq1Gsomq6A5m9g8ltajeZvMzoncAOwtqzbMvkf7u6LWSjSzUx11nNpJQ5ZCd6HBVXAhVWWkvpQPa3G7gYFkDI2ICzF0uU3sjf+4vZ0rfEOFeKEkiAkElc6EixmKSTwXxkSFiI1SRIciSfwxU7hedNlcfYVQA4pyGYkskg08kNJR2rbE7ElprbednXH3FollXADp3ITGtKxDyMhCbM58o2xnArD+dz/GAqNCn/QQjrgZPO+Oefb+I2ZyJ93RtB7n5LSHfOv1l0Y04AehZnxyxcp8gMDP7dy+D0qT8/9TY/TsHe7viqtPYyLQBs5FVSr6lUDM+Pojq5g4OllvI3cSEINKLG8wxLp6uOpIjfGycLFWJd5vV+jUwypd9JQ3ChfN4Q6m6zxsSxu6COhtTl3OHR9E3zJuX/jhAh8FEpJ870/qGsGhnMYZ+c8FkILlxAx4uWrbl2hHAiCHi85m7jsrGdsuGT4XqcGknA5Xd/PCmxVaWr3NDMog1scOg/A707uiMSuSN1e9KNaJS559bjocEdN0LwtBlkhMzyrSfhPS8/9mW+9qboGiH6GqoqDwg5PERQy33VR0SLsrWnY/WOmgoglD7hBUE0Wxv6Dp31BkyFgMyDJjf/cecWIwAxsuyfLMsy7cpP7ef6IvqwfFBZkUTiaHeFiVX9hpx+z9KAGOV2KGc7ioRkucLQtwjAz0h6I4LaIIkST9JkpQhSVKO+vNvXNypBL1WQ6CnKxWNf29+e31mJVVNzs1UCmpa0GkksxEKgIer+DK1zodSB44zrTZjIDZpRpPMthznRmM6rQZfdz01zc6ryPtLGzHJwp3T/pqHRPuZJWPdxWnKBnVVhiXsfVhvfyob280SAq1Gonegp421sK+7ngbVOVA1RNG5CJdOoLDW1gRnX0kDJhkGR/kKkxONjvLKKqqbO8zXAAh5Z3WWeI52DyplHyb6KRLOkH6KzAkxE1dxQBCjoAQhBwUIVOZUahRJqE+4qPqrMs6jhQ0BLLVIO+uLLNlidfngrxDA8gxbqWdtnrBQ78oMYdPrYjNm372TZdH9C+4LiXOcP7auQIS+959ru/H7l9GzPjliVUY5g6P9CHUS4eIMan3CnuZLkkSvAA9z4UlFlL87YT5u7MizdLPGK6ZUm6xm3yYpHUjrebhRsQHsKawzk5ihvfzpNMrsK7F8RgZF+dJuMJFZ/g90AZVQ8iFRPsweEMarKw+Z1QVajcQDs/uSX93CL7tFl/3cYVFUNbWzoSkS/GPQZSxmeG9/xzVUoxWFlpx1VDS2Ocbn+HZBAF198aXZNoJD747U2YarTkO7SoL1HmhNnWgx2pI8xYjKQyf+9Vo7rXICjwXlGbDlXRh2BUSPtD1mMkL6IqEIsM7sK9gizKniJlvuU2epreecKg9aVBMqKvaL2xAnBLB4p7g9miiH9EXiNYPiu/+YE4t0oPvSmR6cMpBlmczyRhJU+ScIAhjc1/L9/T8Gfw89Pm667htSJc4WcTbpi/7ZC+uBU3RHAvoZIuDYAEwFvgS++icv6lRFqI+rJXvTHyEAAMrcSURBVJ/uGLFoZzEBni5OzVQKalqI8ne3mevxcFL5DfZ2xcdNR5adjGp4b3/c9BpHgwIrBHi6UNvsvAOYoWzSkiMtHcDqpnbSiuu7LTezRnyIF70DPWwI4PBeYmNh7fwZG+Rp2wF001t1AAUB1Fl1oNSOhRo4vbeoDhCdBSQJXLwoLq9Ar5WYkmR13UEJgmi1N/JbWikHTdHEmRSHupABQm7Z2QohfQXJM3RAUBJUKl1DsyRUkZH6KNmAqpHL0aCzFQxtXRNAn0gx/9fZIuRlJpMwYgi02vhkrhK38TMdn7+hBPZ8C0Mvc5zJyVwJFfuUQPculoiVj4rb0549+vd2fNGzPlmhvKGN1KJ628LGEaD2p525FDsjgJIkMSLGnxSrTl64rzt9gj1tZtmSI33x99Cz7pBlDnZUbCAdBhN7lTy9Yb39ANiVX2c+Z3CUuE/93B5XKEHlkmzkmXnJeLnpuGdhqrnbOCUpmH7hPny8IRdZlpnaNxg/Dz2LdhULWWHOWqZEazhY3uhoVBM3Gery0TcWmuWzZvgpmalWWYAARlcffCQ7AqhzA0MrLjqNOaNR7eC70WFr9BIQB8YOvDrEGvq3OoCyDL/dI2Sc059wPJ63QVTrB55ve3/OWtEVjLYymirZAy7eFvOWzlZBfoOTbB9boRTVnBHAkl1ivtn+MV2hNk+QxuRzu3f+yYEgIEOSpD8kSfpV/TnRF9WDv4/q5g5qWzqJVw1gOtvE/Oz/aPcPxHdDbLAXOVXdLN65eAoSmLFEjJ304F9FdwiguyzLqwFJluV8WZafAP53/wf/DYT5uHGovNFh9q67aOkwsGp/OWcPjnAIZQYorm0lws9WyqdKQK2NFSRJIiHUm7Ri2xByV52WUbGBrD5Q3qVLU6CnS5ddzIzSRvw89GYnThCzdbJsqfYfDSRJYma/ULZkV5s3NYmhXrjpNeYNIkBckCf51c3m+SIfNz0Nqoy1U1yrVm8hgEW1rQR4uuCpBEynF9cT5uNGiLeb2OSYjBTUtjK2T5A5OxGwSCnri/l1Twl1nnG41ivudsFJgCw6hEFJouJdmysqzU1lQgYVYNcBtA+HPxqo2Vje4eKaq7PFJlJWrsE/xkp62keQU0Ob7WZp32JxTO1MWmPdS8JAZ/wdjsc2vyWkpAPPc35tBduE1GrCXc7Dm/9d9KxPVli9X+Rodlf+CZhbgM6UvtEBHhTWtNjM9gGMjAmgtL6NgmoLOZwQH8T23BqzGkGrkRgfH8T6Q5VmgjUyxh9JsnQKQ7zdiA5wZ5vV3G/vQA983HQ2RaDjBqNSoNPoCfJy5Zlzkkkrrjc7e0qSxPWTYsmsaFKMo7ScPTiClRnltCaeDbKR6WwHsCHAAMROAmCoca8jAXT3F4RI/Vwr6HTxxY8ms3wdEJui9iZctBo61HVayfn0psVG7q+GsXvWCCL1t1xAd38NBZthxpOOknCAHZ+ImWRrYxiTSZhA9R5nGxOTv1nIYtUCUvk+QHYMj686JDoAPk46IsU7lefoplnG3h/F7Sky/6fgCeAc4DngFaufHpziUBUMZgOYgi3iO/p/mAAC9An2dBg/OiyS54tidu66f+6ieuAU3SGAbZIkaYBMSZJulSRpHtA9r///ZzhjUDhFta02JiZHg5zKZjoMJkbHOrHDRpAz+6pzpJ87Eb5u/GnVRQOYPSCM1MI60ops5YeXjOpFYU0rP6TYVqJVDIryI7Wo3ulGorqpnTAfN5tOQVpxPS46jYMstLsYEeNPh9FklmHptBqi/D1sTBQCvVzoNMo0d4iNpV4n0WlUNqRtdbRoPHF1sRDA8oY2sykCCB1+UphShWsqh45GdrcEMzXJjrS6KAPMZZVklDYQHhUrZlDamywyy7pCi+lKbZ7F9rw2T2yAPIMteV/eyia80fbfplsoEptMokYIotlaI8wQanKgrU7M1pglUkOhcJty/ihxW5UF+RtFh89+Z1+dDbu/ErEP9uHLZWmi0j/6BuEs6gyrnxSmOeNOmPGLNXrWJytszq4izMfNNneqm3A2qto/wofmDqPDTIcaA/NrqiX25JyhkbR2GvlpZ5H5vnlDI6lq6mDlPvEZ8PNwYWxcID/vLjKTyul9Q1mfWWku6kiSxOSkEFZmlFtm4I4X1G68QjhOHxjOjH4hvLs2y0xcTx8YjperjuVpwsBpalIIHQYTezp6QUAfIktWAhapuRnBfelw9We05gCDlC6mGZJkNmyxRn67F8FSPcN6WUkqPQLB0EpLSyPBXgqR9BS/7yCpHm83q9nwiKFiZjBvIyBGEY4JTZWw8hFhFjX0csfj1dmwfymMvNZ2nrhgi3hPgy+23FdXKBQECVbKA3V9ih5t+7wVigGMvdKgs03ETUR10w9FliH1O5F3qnZbTwHIsrwOyAP0yp93ALtO6EX14Lggs0LsacwRENlrQKMXxZL/YSSGelPe0H5Yw0EbxM8UxbF9P/+zF9YDB3T5baG4UwEsATyA24HhwOXAlf/8pZ16mJ0chptew4r0Y3N+VDdZqqW3PeJDvcipbLbp3mk0EnOHRrI+s8rGAe6iUdF4u+pEjpUVZg0IZURvf15blUlTu2PLfXJiMB0GE1tzHPPrGto6HTIN95c2kBjqdcwbj8RQsTgeLLPMK4b5uFFu1YVUu3Sq46lOo7H8DlrraNF42cRPiBkcsXEymWRyKpst8RdK1yxbjmCClZsqYN7YbMgoQK+VSEpUummNZeBrJeFSO4V1BRYCpYYZq3bvAF6KZFPNvzoaFG4XXYPAeChSiF7UCGH0AoIMFu8Umx2vYCjcKmIjVBnq7q/EvJOz/L61z4svImcmD1vfExX5YU42gSAq+/mbYMLdZsJ8ItCzPjlClmW25dYwKjbAqZyzSxzmXDXuZU9hnc390QEejI4N4OddxWbDpqG9/Bnay4/PNuWayd2UpBCiA9z5Ykue+bEXjoymsKaVzdlijTlnaCQdBhMr0iyfk7mDI6hr6WRj1t+IUXEGNadTlWcDN0+Np7HNwKJdgri66rRM7RvCyn3lGE0yQ5Xfwa7COkiag65wM/66dirs3FGRJLLcBzNGs98sbbVBQIwlL0/B7hoXvKVW+gVarZ8eovvmJzeZXfXwshDAYC+r+UKdK0SPRluwSTzU5Rit5f94CDqa4aw3nMu+N70uZJ6jbrC9f883YvPW7yzLfZmCIJNg1Sks2CrWKnu5eVcOoGVpwuE5spsEsChFKC+siegpAEmSrgN+Aj5Q7ooEFp+wC+rBccOh8ka83XSEKnsR8jZC1MgT+r35byDBbELYeIQzFejdoO8ZosBk+Gfif3rgHIfbtQ+XJKk3cCmgB1qAe4BrgUP/wrWdcvBw0TE5MZgV+8ocJFPdQU5lE5KETXyBNRJCvOkwmsi3m8mZNzQSo0lmWapFaujtpueq8TH8nl5mQ64kSeI/Z/SjqqndMasKYdLgptfY5lIpaGg14ONuqT7Lssjn6x9+bN0/gN6BnrjpNTbugSE+rlRYzVL62BFAjSRh/vW21dMkedlsfCob280SrNKGNlo7jfQJUX6nistnpUsvx5xGvZAwpWSWMDUpBK8gJUeqsURsyrQuYv7OK0TM6dTlWwigWtn362WZ83HxEM6Ax9QB3CG+LCQJilPEtQX3g+Jd4rVD+okZGdUivXA7RI8SmzdZFjleCafZZgIClKULJ78xNzoeayyHtB9hyKW2Jg/W2PAKeAQJk4gTi571yQ551S1UNrYzOs65guBIkJ0EQsQFeeHtpmO3EznmucOiyKlqtiGHV4+PJa+6hTUHhBRVq5G4fExvtufWcKBMSNJnDQjDz0PPdztEoWRwlC8xgR4s3mPpJk5KDMbXXc+SPccgnz4czB1ACwEc1sufwdF+fL4pz7xuzx4QRnVzByl5Nfh5uBAf4sXO/FpInI1k7GCOxwGHeAyANa0JREpVuDYVOxzDP1ZIQE2ieJVWVM+uGqFckKzzQj1FYSpAarCsUQoBDJbqCfK2c9yNmYhL1T78aDTL3o8Kh1aKz/3Eu53P21UcEPLQEVdZVA0glBH7FsOAc2w3tZkrxTqoPpcsiw6g9YwgiK5jS5WYr7ZHsWKo290O4N7vhTOytTvpqYFbgPFAA4Asy5n8P1Yw/C9hn7I3kiQJ2hpETFPMhBN9Wf841KL+oaMx8UqeL8zyVJfUHvwrOBwBfB8RqNwX2Kn8pFjd9sAJ5iSHU97Qzm67inl3kFvVTISve5dh6hZ3T9sPVmKoN/3DffjFbrN09YRYPF20vLUm0+b+ob38OWNgOB9vyHGY93PTa+kf7kN6ia10FKCxvdNmZq6ysZ3q5g6bEPqjhVYjkRDibUNSQ31E0LS6GVMlT2p8hVYDBmUTRVsdjXiZbdCNJpmqpg4x7wdkK1r0OMWemIoMmvAkPDrOsUuidADbW5uYPyzKaoavTBArnwjRQZAkscGpzRdEydXHMtvj10tIoNTr8w49+g5ga52wUY9SXPiKUiB8iAhDLtkFYYPEOXUFggC21orzoxX5Z8V+QVr7nu743GueFiYPzmb/Uj4RpjpjbnI8BsLYIetPGHuL7bzPiUHP+mSHbUrXfnSsk/mtw8D8KXBSs9JoJIZE+1kCya0wZ2AYrjqNuXMGQgUR7uvGp5ssna4LRkTjqtPw5RbxGXHTa5k3NJKV+8qoae5AkiTOGRrJlpxqyurFeuSi03D6wDBWZZTT0nEczQHqi4WxiJqvqeDq8THkVDWbDWumJAXjotOwQonUGNbLj10FtcjRo8HVlxmaXQ6GX2X1bfzWoOTm5W1yfG3/GDGD2FiKLMs8uzyDNldFhdBUYTlP6QAGSo0W5YIiAY3QNjjEA6mbytGa/UdPAKsyYdG1woRlwt3Oz/nzcRE4P8kuXjNjiXA5HnqZ5b7OVshZJ7p/6vpaly+k973s5Z/7xK2zCIiiFCHTtSLqXUKW4cBvQnKqxPycQmiXZdnc9pAkSUfX0Zw9OEVgNMnsL22wRGYVbBUz97ETT+yF/QuI9HPHXa89OhfnuKlCwdTjBvqvoksCKMvym7Is9wM+lWU5TpblWOvbf/EaTylM6xeCi1Zjnh85GpTVtxFmZbBij/gQL/RaiXWHKhyOzR8WSWphHRutOnd+Hi4sGB/Db2mlDpLOe2cl0WEw8dqqTPunon+EDxlK6Lw1WtqNZqIFkK1EM6gVn2NFTJAnhbWWrmaAhwsGk0yjIlE9bMZVSw31eOKut5jhGE2yOYdLDSTtE+wJsowpcxU7jAnOw+4V+YFGqxPuoOomUY1x8AyBZuX36x0uiKEkgW+UJZzdN1ps8lqU37dPhOVYd3FohbiNnQTN1UL22XusqCIWpYiNVM5acU70GMhaLf4co3y57P8VkBzjH/K3iOcef4djh8/QLkweEmc7N40BYQ7j6gMjrzm69/MPoGd9ckRqUR1+Hnrxf/0ooFNchTu7UC0M6+XPgbIGh2KRt5ue2clhLN5dYpaf67Uarhgbw+bsajMh9fNwYd7QSBbtLKK4TszNXTyqF51GmS825wFwzpBIZBl+2GGZTT57cCQtHUaW7T02Sb1T5G0UhMOu+HP6wHCCvV35cad4fU9XHRPig1h3UBDCIdH+1LV0UtRggD5TGda5iyq738emrCoOyNEYXX2FTNoeqkNv1UFeW3WIrTk1zByrRBxYx0MonfnBPk2WYqCLB40aXxJdHKX5RA6nw8WfedpNeB0NAWxvhO8vFbO+F38vpFj2yF4j1oyJd9saw8iykIsHJdnO9R34DQyt0O9My31Zf4rb3nbdj5I94jZ0IA4o2t79APjydOGSbG1Oc+pgnSRJDwPukiTNBH4Elp7ga+rB30ROZRNtnSaSI5XieN4GoSBSi7r/w9BoJOJDvMwzkN2CzkXIyA8uF0WkHvwr6E4QfBftgB44g4+bnslJwfy2t/SoZaCRfu6U1nX9n9/TVcelo3vzw45CMkpsHT4vG9ObuCBPHvx5r00m4C1T4+kV4MG9P6bazPzFBnly+dje/LCjwOG5RvQOoKndYJZsqfBw1dqYw7QZxJ/dj3XuREFrh8HsZgoWouepPK963V7mTqDB0olsqaLC6I2/h/i7Kh1VJaBFtS246jSCEBZuR1NfyK/GsSSFOela1otNmF94nNh4qXniGuXaXDyEixcIAtVWJ/7sGSykTGCRSKldP/8YB+e/I2LPt+Jx0aPhwFJxHf3nQtYqMRfT90zhvOcVKjZJGUvEvGHUKIv8M2aCbfVclmHVY4K4jnbykU5fJN7D6BudX1N9kQiHH3aFQ/fkRKJnfbKgvKGdCF/3o5v/AwIVo5GqRucRNmcPicAkw8+7HGWNt01LoK3TyKurLKrbBeNiiPRz59El6Wb3z9umJwDwwu8HAFE0mj0gjE835lLf0klMkCfT+obw+eZcc8dvTFwASaHefLox1zxn+LdQlg7laTDwAodDeq2GSQnBbM2pMa/bAyN9ya1uprXDaI6UKWtog/gZ+BmriTbYzvNtyanGz8MVTdRIi0GTNUKF1HHjpnW8uSaLC0dEc9bkCSKaQs0SBfINAbTJeqYG1pnvk2WZ/aZoBukK7J8VdC4ciJjHTE0KMdquI35sIMuw+GaRE3r+ZxaTK2sYDbDiIbEWjbnZ9tihP8TvcvzttmR65+fi/JhJlvv2L4XABEd5aeF2QYrtHUcbywQhtjeM6QrmcO3p3Tv/5MKDQCWQBtwALAceOdKDJEmaLUnSQUmSsiRJetDJ8UslSdqr/GyWJGmws+fpwT+DdPvIrLwNgvxZGyj9DyMh1Mts7NdtJJ8LHU2WGeIe/OM4RsuwHhwOZw2OoKyhjZT8o7MxjwnypKS+7bBW3nfNSMTPw4XHf0232RS56bW8dN4giutaefkPy2bCw0XHK+cPpqSulWeWZdg81x3TE/Bx1/P0sgyb5xqpuJDau5l6uerNMkwAo+LEqdMc3YbTHjXNHfh7WqSlDW2deLpo0SnGMmrmnzoLWN/aiZ+7XgQTt9RQavDE31PMxVQqnYhgMwFsJcpf2RSn/4RR48pK0wiLNbMVWivzAOjdRzElMKkEUCG4eg/oUDqV7v5CegliZkftDKrGL+rcn3+MIFbt3VwMa/Mgd70wM5AkQe78Y4Xsc/8yQTbDBomqetIcUW3PXCVmXzQaMSNYkw2D7Da5B34TVfUpDznKN9VqfnDfrkPdt38IyMIdtAcnJSob283/748GarGkogsC2CfYi1ExASzcUehAxOJDvLh8bG++324pJLm7aHn8rP4cKm/i8015gChu3TC5D0tTS9ihxCfcPj2BxnaDWS5605Q+1LZ0slDpAkqSxDUTYzlQ1njY7NJuY+/3opjTRU7cmLgAapo7yFRk40lh3sgyZFU0mZUZpfUWG/fhnRazRlmW2ZJdzZi4QKSoEUKGbfeZlz0CadIHUZa5i3lDI3lu/kA0Lm7i811pWbO/31lCjhxBfxeLdDynqpnthj5EtmcJsxY7/Ol1FjISAfs+797vYtMbQikw8ylzfIUDUj4V0vLTnhVmMypMJiEl94+FQRda7q/KEhvdYVdajGRaaiB3g6juWxNF81ygE5JXqDggd5cAZq0WElZ7g5lTALIsmxCmLzfLsnyeLMsfyUeodkiSpAXeAeYA/YGLJUmy19HmApNlWR4EPA18eNwvvgddIr24AVedhrggT6EgKk39fzH/p+KonUBBKJg8giC9xw3030IPAfwHMKNfCO56LUtTj87AIDZISLfyqh2/4FX4euh5YHYSO/Jq+WW3bUV+REwAV46N4fPNeTbkbURMANdP6sP3Owr564BFPurn4cLdMxPZklPNSqsYiUg/dyL93M0bNRXebjoa2ixdRINSKdf+TQJY19KJn4fF2KChtRMfd2tCKF5TNaCpa+nE112vEDBZ6QAqBLDRGQH0ENXsfb+Q6TeeDq0HMUGOMrnKoiwaZHeGJijVcPsOoN5dBK+DhQDKsiBlZmmoSgAV2Zq9ScyRsOEVIckadoXYPOWsE90/Y4cgeklzhLyso0l0AjNXChLYf654fNpC0LpCPyszBKNBRDcEJQqDF3sUbIGyvYLcOeseGdph11fCqesUslj//4ZjJoA+KgF0nv8JcMHIaEFCnETc3Dk9EV93PU/8us9MEGf2D2Va3xBe//OQea7vxslxhPq48uLvB5Blmf4RPpzWP5RPN+XS0NbJyJgARvT256MNuebO4dwhEQR7u/LRhlyH1z0qmIwiJy5hlvOMO2BMnLh/S7b4LKvRMQfLGwlVYmXK69vAN5JS1zhGGnebH1tY00pxXSvj+gQqxiWyxbEXaDcYufOHPexsi2CsZykvnzfIsm4GJ4lZPKDDYOLHlEKavGNxq7XI87fn1rDTlIhGNto8r4q9jV5sdh2PtOsrYc5yOGT/JdaDAfNgbBdRLi018NezEDtZfO6tse9nIbuc+h/bqJidn4m10nqNOfi7WEetXUJBxNm0VFnmlq1RtF3I5cIHHf59gCDDBVtOuWw1SeAJSZKqgAPAQUmSKiVJeqwbDx8FZMmynKPMD34PzLU+QZblzbIsqxXorUDU8bz+Hhwe+0rq6RfuI4rY6vzf/yMCeNROoCA8DgacI9QFbQ1HPL0Hfx89BPAfgIeLjun9QlieVtpl4LozqAQwt6prAghw/vBoBkf78dzyA9RZBcAD3D87iegAdx5YtNemk3jXzASSQr15YNFem8dcMqoXCSFePLd8v3nTBcINdHtujU3F38dNR5MVAVRnBI85e0pBbUuHWcIJjnETTjuAHnoz6aqRLRJQlQAGeVkkoFH+7qIy3VzJGt1EYoM8nV5zW2UeJQQzWJ0PVDuAktoBdLfo0939RRh8e6PoALbXi+wqLycSUICabmxgq7OF/HP4AiHfTF8kNk8D5omuYEcj9D1LdPNcvETlfv9SQUB7jQVjp3hM4ixw97M8756vhfvp9MfFImuPja+De4BtNd8aB5aJHMLhC478HnpwQmAyyVQ2HRsBDPJyRZKwcd61xxkDw/Fx09nEOajw9dBz36y+bM+r4Vel6CVJEk+cNQCDSeapZcLsw8NFxx3TE0nJrzUH1t8+PYHGNoO5U3jTlD4U17Xyq2Jo5arTsmBcDOsPVZJe7GhM1W1k/yU+k4O7+D+OiLaI8ndnizK72DvAAxedhkPljfi46XDXa4UEFMjyGcUQeb+ZbG3JEWvR2D6Bltm1IuFFVNXUzuUfb2fJnhK8ew8hojMfHVYqj6AEqM4Co4E/95dT1dRBcOwgIYNUFAc7cmvId1eaPAVbHK49v7qF7aEXiHXoxwXON1AdzbDxNfjhMjG7d/bbXUeA/PWsyECd/YLtOYYO+Os54dxp3UltbxJOoX3PsHUK3f+rmIuOGGr7/F3lAoLoAIYPse06doX8zaI4Fn/KyT/vRLh/jpRlOVCW5QBgNDBekqS7jvDYSMA6yLdIua8rXAP8/jeutQdHAVmW2VfSYMlGztsgirJRTood/6M4JidQELFVhlZI/f4fuKoe2KOHAP5DmDskkurmDlZbddyOhD7BwnLdOkjZGTQaiWfmJtPQ2slVn++wmfnzcNHx4vxB5FU38/AvaWYC56rT8soFg6lp7uCJX/eZz9dpNdw/uy/51S2ssuoCjo4NoKqpg6wKywc42NuVkvpW83N6ugpiVNmFdKw7yKpopLal0yb6IquiiXA/iyFBXlUz/h563PRaZFmmuK6VYG838wxeHV7mLkZpfSvebjo8XXU0tnVS29IpOoAHl4POncVN/S3BrNaQZQIb91PtHmsxXmhRuh3qzJuksXQFVdvzzhazax+ttcJIwSPIEgYflCgy95zNBFnDZIJfbxMy0wl3i67bpjcgYhiEDxZyLI9AiB4pZvESZwnCd/B3SDpdyFQzlkBzpa0rX0eL2LBFj3as5IOYi8r8Qzh/dpVPtPMLkYMYd2pV2f8/wSjLmGQZl2Moxui1GnoFeLDLSdSDCncXLVeOi2F5Whmr9zvGmlw4Mpoh0X488ks62ZVizegV6MHt0xNYnlZmJobnj4giLtiTp5Zl0NphJDnSl5n9Q/lwvXAknpoUQt8wb95YnUm7MmN8+dje+HvoefzXfccUr4OxU8y/+kQKk6PDoG+YD/nVgnTptBoi/dwpqWtFkiT8PPRmSdNBrzG4YIDcdQBsy60hyMtFuHZ6BIjPff5mWjoMXPThVlKL6njr4qEMGzsNydhhMUAB8fk2ddJeuJOX/zhITKAHvZLHATIUbae1w8if+8sZlBAryGXaIqE8UFDf2kl+dTO6XqOFwVPWKni1Hyy7W+TsdbbClnfgjcHw5xPQezxc+iO4OsrgASjYJtabkdc6OnRu/0BIzGc8bpsXuO09sR6Pu91yX0OpUC0MmOdINLP+FIWrILu5wM420eG0dwztCtlrRCxOr7HdO//kwRXAxbIsmyuDsiznAJcpxw4HZ6zd6QdDkqSpCAL4QBfHr5ckKUWSpJTKyuOcufn/FIU1rTS2Gazm/5T8P2cmS/+jUJ1Aj3oOMHK4KBbt+NhmjevBP4MeAvgPYWpSMGE+bvyYUnjkkxW4u2i5ZWo8aw5UsDn78DMvA6N8eeuSoewtqueWb3fZdBrHxQdx14xEftldzNdbLQYkyZG+3DotnsV7SliRbpkvmdZXCWtWHPkAJiQIe/L1Vq6i/cN9qGvppESRdA3v7Y9WIzkNje8uvt1WiF4rbOABCmtayK5stglp35FXw/DeYi6xqLaV+tZO4a6lzNg0ye7EBwtSl1fdQu9AMeOmbuR6B7hD5kpMsZPIrjNZwpWt0F6RSaCpmoYwq6wqNbQ5IFbcGjosVWn11tBucdRUZwL9YyySTxdPIXPa/+vhQ063vS+knbNfELMsO78QeYLTHxVyqYO/w4hrRGZXW52Ys9m/VBBQNfx4+4cQ0AfiZ1qed+dnwoJ9+uPOq/0bXxPdxFHXOb+u6myxyR1+hfOA6B6cFNBrNQR5uZrllkeLMwaGszm72uzm6Qy3TounX7gP9/201yEEXauReOfSYbjoNFz/ZYp5VviGSXEM7eXHI7+kUVbfhl6r4bl5AymoaeFNJZ7m4dP70W4w8vKKg2g0Eg+f3o+Cmha+UmIjfNz0PHx6P3bm1/LDUaynZmx+S0QOnP7yEbtKkoSNiY5GsuysjSbZPO+cputPEx7ic4kIfe6nZn6B6M7nb+a5X1PJrmzikytHctbgCMUcRbK4+IKQWQIbVy4it6qZp89JRhs3SXQNDq1kaWoJDW0GLh7VC4ZfBZX7bbqAW3OqMckwLj5YzPRdt0ZIwHd/De+Nhf8mwh8Pizm5a1bBpQvBL9r5L6CjGRbfKJyNp9upERvLYO2LIl/U2nGzpQY2vSUKUda5fTs/E9I3e+WAQZGzJ852XFPK9oqOnn1mYFfIXiPI36lnrqGXZdnhS16W5UpErunhUARY/wNGAQ7zJpIkDQI+BubKsuz0S1qW5Q9lWR4hy/KI4ODgbl98D7qGagAzIMLn/+X8H1icQK0bCN3GyOuEKVbehuN/YT2wQc+O7h+CTqthRv8QNmdXmyvZ3YHqoPfYkn02rp3OMGtAGE/PTWbtwUoeWWxrCnPr1HimJgXz9G/72WeV6XfL1Hj6h/vwyOI0apoFIVHDmrdZhTVH+XsQF+TJhkxLVbC/kmmzT5FiebvpGRTly+bsYyOAbZ1GFu0q4rQBYWbJptpdmN5PyIgqGtvIq25htGJMo8rAkiN8hUQJaNN6Eqm49BVUN9Nb6SYW1AgCGK8th9o8qsInYzTJTglg6V4RpeCdNNlypzncXZkJNLaLTRmIGRUQ3QU3P/FnlQAGxFrII4iqeE2OqJ47w6GVojKfOEdIIDqaYf3LYig6bqowaNHqRUV+1xcQECeOpX4nyGavMYKoFW4Ts4PqpqqzVXQRYydBzHjH163JEfM8I67uOvh915dCAjvkMufHe3DSIMzHzSxRPFqcPSQCo0k+bHyNq07LWxcPoaXDwN0LUx26cZF+7rxz6TDyq1u4Z2Eqsiyj02p47YIhdBpl7vtJPGZMXCAXjIjiw/U57C9tIDbIk6vHx/LjziL2FtUxKTGYyYnBvLE6k2qFkJ43PIrRsQE8v3z/0SkOqrNh3YtiBs1ZB9wOJpOM9UizJEnmddUky2iUg3XtEntchovCktFIVkWTrbIgdjJ0NrN/5zpunNzHXFDDMxDCBtoSQM8gqrwScSvcyIJxMUxMCBaFo9iJyIdW8OXWPBJDvRgVGyACk119RYdOweasKtz1Wku0TeRwmPce3HMAZj4tCNuC3+DKX53P3FnjzyfEujD3XcdMvT+fEGvg7Bds79/0uliLpz1quc/QLq4x4TTHWJm8DeJ8Z/8eRTvEbXcC4BtKhEnNKTb/p+Aw1cDDHgPYASRIkhQrSZILcBHwq/UJkiT1An4GLpdl+ZCT5+jBP4R9JfXoNJKQQeZv+X83/6fimJxAQaxx7v6iC9iDfxQ9BPAfxJTEEFo6jKTkdd8NVHXzzKls4l4nmyx7XDK6F7dMFQYv7/yVZb5fo5H47/mD8ffQc9u3u80yUb1WwysXDKa+tZPnl+83n28f1gyiC7gtp8ZMYPuFeyNJsM8qNmJcn0BSC+uOSFadYXlaKfWtnVw6ymIssmp/OX2CPc3zkDtyxe9OdSZNVxbXpDBv8/xNYEAgWo2EwWiiqLaV3gGiA6gSwF61olq+30vIisyh8FYwZK+nUvYlsf8wy501uSIMXpVuWHcAzQTQWQcwVsQmqB2/pNliI7T2RVFFt0b6z/D9xRDSF+a+I1oQ2z6A5gqxoWqrgz3fQPJ5opqYv0mQvMYSW7fQ1O8Bydb9M0Xp/k12cAkX2PSmkKeOvcX5cUOHeO2kOaekw97/N4T5ulF+jASwb5gPiaFe5tm7rhAf4s1jZw5gY1YVH23IcTg+Ji6Qh07vx8qMcvPxmCBPHjmzHxsyq/hKUSQ8fHo//Nz1PPxLGiaTzK3T4gnycuGZ3/YjyzKPnNGPlg5LvIQkSTw7byCtnUae/S3D4XWdQpZh2V3iszrn5W49xCTLaOw7gMoSbDDJaJVjjW2d7PUcC03lVBzcRlunycZZuCRgBCYk5vtnc/fMRNsXiZsijE4UN8/vtxfwS108o3SHeGy2VYRl4mykmmxaSg5w+Zjeorvo4glDLlbk3qKBtCm7mpGxAbjo7L7OPQJETMN5n3RvA5qzVqgIRt/kGFhdsE0UnMbeYkvoGkph24di3bGWi6b/LOToY5zEyhz4TUjdnTkOF+0QcnPVTOtwyP5L3PaZeuRzTz4MliSpwclPI+AkGNECWZYNwK3AH8B+YKEsy/skSbpRkiT1F/4YEAi8K0nSHkmSUv7JN9MDC9KLG0gI9RajJOb5v//9/D97HJMTKIhu/tDLhOt5w9EZKfbg6NBDAP9BjIsPxEWrMRsedBfj44N4+PR+rNhXxlPLMhwC2e1x72lJzB0SwX9XHrKZHwz0cuX1C4eSV93MY0ssc3/9wn24anwsP+0qMlu3+3m4MHdIBL/sKjZ/YCcmBNPaaSGwHi46+gR7sbeozvIe+wRhMMlsOHR08wNGk8znm/OICfQQxgkIs4RtOTXM7G/58t+cLarb6kD13qJ6y+KqSEDDgkV1vaSuDYNJtpGABni64Fa6HXyjyWgRRM2hA2jsJLxiAzu1QwjxtZIS1eZa5J+gdAAV4qfe2khAlZlB/xhR9bMOd579gnj8z9cL4paxBFY9DouuEcPhVy4V3YHGclFRT5gl5mBSPhUyz7E327rspX4HyMK4xWQUFvdxUyzZfx0t4nliJjrv/jWUCnI39NKuN1sHl4tNXI/5yymBMB83iutaHaIauou5QyJJya81z/B1hYtHRTMnOYyX/jjIH/vKHI5fPT6GOclhvLjiIJuU+IZLRvXi/9g767Aqzz8O3++huzukDZASAxW7e7bOmJtuc6Furuu37t7cjDmdztk1u7tbBAQElG6l+7y/Px44gIBizTr3dXmh57znPQ8ID8+3Pp+uTa34fHME0Wl5mOpr83a/5pyJv8aaM0kY6Woxo4cXx+Oy2XohFU8bI8a3a8LS4/GqDgYPa0OmdnZn3dlkttfzvnU4t0y0L/f4sNEJjLKK6yqASCgrv54VSlml3JlXXE6MSTBICgpDhW+3Z6XwgVIpM2P9FSJkF4aZXqorOOXWWbQ5XjnMmtOJvLM2lHy7YLTkMhSJx6uvq2yzHKB1WtUiD4g20IpSOLmArPwSLqXn087NvFGfX4MUXYV1Lwq/vh7/q/1ceSlsmik8RENeq/3cvi+FN2mXGkkmpRKOzhLzfW7XBWfKCtE2696tbtumLEPCicZV/0C0fxpYCUGahwxZljVkWTau54+RLMs3awFFluXNsix7ybLsLsvyZ5WPzZZleXbl3yfLsmwmy7J/5Z9GflHV3AlCACanhgDM4zf/V0WVEmj07VQBg54WZ6hTf93lVampiToAvIdUqYGuPp2oMjduLM90dGVSB2Hp8PTCE3XUPmsiSRJfD/elg4cFb685z6kr1VLtwe4WvNTVg9WnE2u1d73Y1QNDHc1aBs4Tgl0oKqtgdWUQ2d7dAj0tDTaer87CdPGy4kB0pqrS0NrFHDcrAz7ZGE5uceMzPT/ujOJ8Yg7Te3iq5ma+2Sq8sIa3EorVVwtKWXsmid7eNmhpKMguKOVobBYdKgPGawVCkdPbSfz7XGVg2txObL4RKbl4WBuKNjDr5kSm5mJrrFttIl/FlUMYKPOIt+1R/ZgsQ3q4EHOoorSgWiilqhJYUQqG1uLvVdU9u0rP3YSj1a+1cIc+X4iM4F8DYcUEEaA16w/jVguhmfISWDFetJX2/AgKsuDgT6J6aGgjTJZ9honWrGNzxCHK3BXC14lgs2agdvQ3Uf3r+m79/wEHvxcbbE3Rhus5vQiMHR/WFqvHDn8nU/KKy28o5nIjRrRyxFhXk2lLz9zQi7Rqv/FxMGHq36dYcd1cXtXz7lYGPL/4FBdTc5Ekia+G+2Koo8mrK85RVqFkaIADgc6mfLE5gmuFpYxu7UQzWyM+3RRBYWk5r/TwwtxAm7fXhKpmnF/o6oGPgzEvLz1TryWFiqJrsP09cfhqNalRn39OYRknr2SrWt3LKpTEZxdiZ6JHbnEZecXlWBvroFTKJF4twsTCFpp0wDRuIwpJplmlbcTeqHShoOzVWySfrq/6N+mArGPEqS0LeHXFOdq6WvDcxAliFvf8ctVlJ64ZckzZjMm6OzHSrKEmbd0MmvaHA99x9JQQl6o5M33LVJnC56fB0Dl1A7P93wjT937f1haOuXJY7EltnhVt6VWc+wdSQ6HjK/WIv+wS3Qv1eTFmXYLcRGjS/uZrVlZAzC5h/q6eTVbzgJCeV0Jmfik+9sZiD0o9X7ea/phQpQQafTtzgOZu4NFD7C8Vt1hBVNNo1DvnPWZyiCs5RWWqoKqxSJLE/wZ68/kTLTkck0nfnw7cUGxFR1OD355shb2pHlP/Pl1LpOHl7p74OZrwztpQ1UyNiZ4WU0Lc2BmRpqro+TiYEOBsyt9HryDLMgY6mvTxsWXj+RSKy8SBcEKwCxWyrBKX0dZU8P1If9LySmqpizaELMvM3hfDr3suMTLIkScCRLB3Jl4IPDzd0VUEbcCCw5cpLK3gha4eAKw5nUhZhczI1mL+PSZTtHh29hQB4KkrV9HT0qC5nTHlFUoiUnJp6WAiDmBGdlxMzaO5XV0F0ILzGyiWtdBtWiMAvBYvWi5relGV5IFOZWav6pBUViT+bmgD1yrbZ228wcC6ukWpitaT4a14GL0UnjsAb8TBqL+FMbssiyx7wjEY8htYN4etb0FZgZjj2fe1CBA7vymyYgUZ0Ol1kW3f/53Itld5/xXniPZOr77QpB51vGsJYmP1f7J2hbMmOUkiw+4/ViiMqnng6eVtg46m4qZtnA1hbazLj6P9CU/J5fVV525YSTTS1eKfyW3p4GHJG6vOM2dfTJ3nF0xqg76OBpMWnCAzvwRrI10+GeJDaFIOc/bFCDXjIS25VlTGV1sj0dRQ8MkQH5KuFfHr7kuY6Gvx4SBvzifmsKDSJkJXS4O/JrXBwUyPZxaeqDXfXIvdn4qKfP/vGx0grDmTSHGZkifbipb0iyl5FJVV0KqJGdGVcuZe1kYkXSuiqKxCtHz6DMO8OJ7eltkY6AiLlVWnErEw0KZpj0kiyXKdsfGlq+XsVLbGM2sPUzs68tfTbdA3NIWWw8W1xTmUlit5d20oy3RGYVyaLuxhatLvG1Bo0uTIuzia6op97nbZ+4Wo9vf6pNrCoorEk8Kb1G8sNB9Q/XhZsVAtNnGunWQquiY6G5za1m8rc3K+2CubDaj7XPR28dGz183XnHhCVC29GnGtGjX/EVX7kbeDiRBqekzn/+AOlECraD1ZWPdc3Hh3F6ZGhToAvMcEOpvh72TK/INxN23lrI+xbZ1ZM7UDuloajJl3lG+3Rdby66uJiZ4Wc8a3Iq+4nBeWnKa0XFynpaHg2xF+5BeX89XWi6rrJ3VwwVRfix9qVAHHt2tCbGaBStjliQAH8orL2Rsp2lidLfTp3syGf47Fq4JCfydTXuzizprTSaw/W9ucvibFZcIM+cstF+nX0o6PB/sAorXqg/Vh2BjrMK27JyBmbBYeiqOPty1eNkbIssyyEwkEOpuqMkuR6SIAdDUX1biTV7LxdzJFS0NBdHo+JeVKfO30oSCDcgMbLqXnq6qDKmQZKWozB5Qt8XWzr3489bz4aFsjACzOrRZGqKkCCkIopqrlU5JE1ezSTtWcjwodI2jWTwSW+jXato7PgzOLRYuV9xPCDDV0BYTMFPYTJ/+EoElCyv7Qj0LKvUl7iNoqFA5DXq0+6B6fJ/zAujQw+3fgW/Gx0+v1Pw/VLab+Yxu+Rs0DhZGuFt2bW7PpFv1Ha9KtmQ1v9mnGxvMp/LY35obXGuho8sfEIPr72vHFlot8sSWiVtDoYKrH/ImtySooZcays1QoZfq1tKO/rx0/7YomMjWPFvbGTGrvwtLj8Zy6cpXWLuYMC3Rk3oFYYjLy6d/Sjh7NrfluR6TKVNjCUIfFz7TFSFeTiX8er+ubei1BBBpBzzTOTByRmFpyLB4/J1OVfHtVJTWwiZmqjcnLxkh1oPG0MUTpKWwlhhiEircuLGVneDqD/O3RsmkmugFCV6reZ0toCgN/OcT6imCMpULe9Eisnt0LnAjlRcjnV/Lu2lCi0vIZOHSsCMoOfl87E27iQFHnD/ApPs2Pxv8g3U7bryzD7s+ESI7/OGh73bxeaSGsfU60fva9Tvhl35eiYjfwx9pVwT2fi8C73zd1A++sGLGvBU4ETe2664neAVbNwKzJzdcetU2IU7k/dP5/ah5hLiTlIkmVXUiXD4r5P4fHs/u2Sgk0+la9AKvw7AmmznBi/t1dmBoV6gDwHiNJElNC3LicVVivf1ZjaOlowsaXOzKilSO/7rnE6LlHG1TCa2ZrzFfDfTl55WotsQRPGyOeCXFlxclEVYuoka4Wz3VyZ09kBqeuiMNOv5Z2mOlr8c9xEcy0d7fA0lCHdWeqqwqTOriQVVDKxvPVLaVVVcbpy84y9e9TXMmqPpRVVeNGzD7Cv+eSeb13U34dE6Dy21t2Ip7QpBze6dccw8os+uKjV8gtLufFyurfqStXuZSez+jWIjtfUFJOTKZoAZVkmYKSciJS8ghyEfN4VWqhvmYlgEw65pQr5boBYFoY+oXJ7CWIFjWfSzkvAi/rGsIGJbmgW3mNZmUFsLzSGN7UufbMX9AkIeByamG9/0+1OPEHbH1TVOy6visqeBtmgFVzERDu+ECIJnR5WwSJeSmiEgjCxsG0iRCJARFwHpklrCDs/eu+V3ackIcPnNiwFLwsi/nAJh0brhCqeSAZ5GdPZn7pbSvzgrBuGOJvzzfbIm86a6ejqcHPowMY186ZOftieWt1aK3g08fBhE8GC9GYn3cJ24ePB3ljrKvFaytFK+iMnl7Ymejy7lrx2rf6NkNXS4P31l4A4PMnWmKgrcmLS86okk4OpnosntwWpQyj5hzhTM2211MLxfdwhxu0N1/Hictif6mq/oHYc2yNdbE30SUqLR89LQ0czfRULU0eVkbElhhyTulGqxJhbL7hfAqlFUqGBYrOBlqOgOTTkBXD4iOXeeGf0zS3M+L9l6cKX8/QVdWLsA8AW1+y9s9l5akEpnX3pFtzW5GouRZfK5AE2Kjdh7nl/QlKXwUbp4tugMYiy7DrY9j/NQSMh0G/1G3X3PmhCPKG/FbthQqQdFp0GASMq23AnnoBTswT8ztVbfA1OT5XzDC3fqbucyX5QuDKs2fd5+ojeruwf9Azbdz1atT8B1xIysHV0kCcYy4fEKq7j+H8XxWeNoZEp99mBVChIfaSywcgPeLm16u5ZdQB4H9Ab28bHEz1+GX3pduqAoLItn893I+fxwQQlpzDE78dqpv5rmSQnz1TQlz568gVNtUI0qZ188TeRJf311UbKk8IboKFgTY/7hRVQF0tDQb52bMjPI2s/BI0NRQM9LNj98V0kq+JYKe9uwVeNobM2nNJNduopaFg2bPBzOzpxd7IDLp8u5fAT3bQ/bu9NP9gK31/OkBcZgHzxgfxYlcP1dzf3sh0Pt4QTgcPCwb5iQpcWm4xc/fH0tnLipaO4uAxd38shjqa9PcVYg5bLqRSqqw8sCgrOBaXRYVSJshFVNVCk3LQ09LAWUtsPrHFIktdpwU0aitKJFJtutRW0UsNFfN/2kJQBlmubAGtfH3Vpl5WIwCsqfzp3E4IsBz8Aa5WK6vWoqIMtr4tWj89esKwP0TWfNs7ovVh8Cy4chCitogKn5aeuJ9TO2HtcPmgUBMMfgk0RODMifkiA99QdW+/aB0jZGb9z4OY7cmOFQIxah4qujS1xkhXU6W2eTtIksSXw3zxczTh5aVnWHgo7obtoBoKiU8G+zCtuyfLTybw7OJTtVSBRwY5MbyVIz/vjuZAdAYWhjqqVtB5B8TP9f8GenMxNY9FR65gZaTD232bcyQ2i+UnErA21uX7Uf5EpuXx7tpquxt3K0OWTmmHjpaCkXOO8P2OKErKykSSxKu3+JlsBMVlFXy19SJGupoM9BV7UFFpBYdjMmnVxAxJkjiXeA1PG0MUComw5FysjXQw0dfieNxVdlcEYHH1POSlsepkAs1sjapFIHyGARIn/53F++vD6NbUmiWT22FjZgQthghBlMLsqi88Z60HY5kfyTTPLGZUdkPg1QdsWoo28NJC1bpXn0niL4NnkENeE/O6K8ZX3+tGlJfCpldFVbHVJBj4c91qXfROYVvTdqoQramitFDMCxpaQ6/Pqh+vKBeKq7qm9c8d56eLxJPPsPpFp2J2i3nqxrR/5iZD2oXGB4tq1PxHhCXn4m1vIlqhU84/tu2fVdy2EmgVARNEFfX43Lu7MDWAOgD8T9DUUPBm32aEJuXwWw2rhtthkJ89y58NprC0ghGzD6sqXdfzZp9mtHQw4cMNYSpxFgMdTd7s24zwlFzWnklSPTalkxsHojNVs4Djg5tQWq7kr0pLiKc7uIIE324TIi2SJPHhIO866qJ62hq83N2Tva934eVunnTytMTT2ojJIW58PdyXba90okcLG9X1m86nMGXRSdytDPl5dACSJKwcZiw7S0mZkg8GiurbtrBUtoen8UJXdwx0NCktV/LzrmiMTCuFD4qusvp0Emb6WgS7iXnA/VEZtHUzV8m2R6YVYKavVccCQpl6gXjZBheX6ypdWdFg1bT637IMckW1D6Bh5edRJVPs2BqU5RB/uPo1fb4Uh5q/BkB6destZcVwfiXM7yXEWtpOhdH/iFaqo7+Lg1LHV8DKC/6dDhYe0O4F2P8t5CYJlT5ZKYJHYweRiQchC7//WzE87dy27jdFVoxQRmw16caqiCf+EF5jLQY3fI2aBxJdLQ2e7+zOjvA0Vdv27d7nz6da097dgg83hDNxwYkbWkxIksSrPb34dIgP+6IyGD//mCoIlCQRIHpaGzJj2VnSc4vp19KOPt62/LwrmuRrRfT2tiHE05IfdkaRlV/C6NZOtHMz57NNEaTkFNHZy4rp3T1ZfTpRNQ8I0NTWiH9f7Ej/lnb8vCuaZ75aBPlplDQd2KjP82B0JsN+P8zp+Kt8/kRL9LRFV8Lc/bFk5pcysb0LMRn5nLpylT4+tpSUV7D3YjqdvYRp9rawVE4ZdUZCJuXgX5xLzGF0a6dqQ3hje65YdMTl8kqG+1owZ3wr1XvQ+hkoLxZencDyE/GMO+FKtsKCGWXzUaCs+uJC70+FKvF2EVwdjc3iaGw2kzq6InV/H3p/IdrBZ3eEA9+LSv/1QXtWDBz+BeZ1Ey3lHabDgB/qb9VcMxlsfOqawW95XXjvDf61dvVt7+ciGdXvm9qt7arXvSH2woYST6cWilZT53pmlq8nbr/4+HDaP6h5RLlaUErStSIhAHPlECCLJPBjzB0pgYJQRvcbJWag82//95ma+rkvAaAkSeaSJO2QJCm68mO9LtSSJF2WJCn0UfCxGehrx2B/e37YGXVj9bpG4Odkysrng9HR1GD03KP1qv5paij4/ImWZOWX8F1l4CbWYY+fownfbItUKf2NbeuMoY4m8w8K83IPayN6trBh0ZHLFJSU42Suz9MdXFlzJkkVJLZ3t+Tlrh6sOpXI22tCa5nd2xjr8mpPL34cHcDs8a14s08zRgY54WBarS634kQCLy89jZ+jKUufbYdFpRH8JxvDORKbxceDvXG3MiS3uIwP1l+guZ0xU0KE0tyKkwnEZxfSs60/AHkZCewIS2NIgAPamgouZxZwOauQrk2tVaqd8anptHE1Vxk5V1GWHkWs0rZ2a2hFuTCBN6/hdyVXfn5S5Y+MtoEQeqkyi3frLILDqG3Vr7H1gfHrRGvWb23hGw/4sw9811QcsAqzYOgfYr5GQxPOrxDCL80HQpd3YP1LQhVv8G9CYObwL0KMoUl7ESSmnoeeH1dXKfd8DqX5tTPzNdn9qZhd7PhK/c+DEMyJ+FdU/6oUTx8zHvb9aXKIK25WBnywPuyW1YdrYmGow59PteaTIT4cj8ui94/7WXY8/obzhePaNWHW2EDOJ+Yw+a8TqpZNPW0NZo0NpKC0nPfWidbOd/s3RynDV1svVopetaCotIJvt0ehUEh8NcyXMqWSd9aEIssy07t70quFDZ9tjmBneHU7vZmBNj+ODmDBpNZ01hWdDAP+hXfWhrL7YhoJ2YWqjgdZlrlaUMqx2CzGzz/GuPnHuFZYxqyxgQys0YEwe18MfX1saeNqztJj8WgqJIa3cuRgdCZ5JeX087Ujp7CMwzGZePu2Acc2aJz9G10tiSeq2j8RohDvpHbGUsrl66ZRaNa0hLDxBt+RyMdm8+nSnby5OhR/d0cMBn6JIvUcnK4hge7WRSj2nvwT+fAvfL8jCmsjHca1q5yXC34BntkhLGh2fQQ/+4t9ZsUE2PIW/NoafgkUyqjIMGKh2Duub/vMz4C/h4p9btTi6r0FxCHszN8iiPOoIZh1aZcIOgPGCyGb67m4GcLWQuc3RFLrerJihKJnq0mgcVMHBBEA6pmJqqgaNQ8I4SnCUsvb3gTiDoCmbuMtTR5R7kgJtIoOM0Ty6Ohvd2dRalTcrwrgW8AuWZY9gV2V/26Iro+Cj40kSXw6xAcnc32mLztzQ1uHxuBuZciqqcFYGmoz+a+TXK6nHbSlowkTgl1YdPSKKnBTKCTe7d+C1NxiFhwWAZ+xrhajWjux6XyKqs3z+c7uXCssY9kJIfH+Qld3LAyqjZoBpvfw4oUu7iw9Hs+YuUcbZUKdkF3Ii0tO88bq83T0tGLxM20x0RO/9BcciuOvI1eYEuLKiCAxn/b5pggy8kr4cmhLtDQUFJdV8POuaFq7mOHfXFTozoRHUFqhZEQr8ZqqykeXplaqA0xhQR6tXa7LTMsyGldjiZPtVBLuAOQkiGpeTWlzufLQWzNbbuZSHQBqG4i2zMgttTPvDoHw0gmh5OnVB5DE4WnCeph2FnxHiOuid8K6qSJjOPQP0X4Vvg66/0+IQKybKiqEPT8WM4K7PhatoFVy6ukXhU9g0NNCJv56ks9C2BpRSTSyqft8FacXic89qJ45nceHh3p/0tHU4PMnWpJwtZDPN9/Z7IQkSYxv14RN00JwtzLkrTWh9PnpADvC0xpsC+3jY8v3I/04FpfNc4tPqZJDnjZGzOjhxfbwNLZeSMXJXJ9nQ9xYfzaZU1ey8bA2YkKwC8tOxHMhKYcmFga83rsZeyIzWHc2CYVC4vtR/njbG/Pc36dYdjy+1vt2bWrNZOcUSgwc8PVuyZrTiTy98CQhX+/B+3/b6PT1Hpp/sJWAT3Ywau5RLiTl8F7/5uya2Zl+Lasr4t9ui6RCKfNW32YUl1Ww6nQivbxtsDbSZXNoKka6mnRwt2RnRBplFTJ9fGwp9n0S65IrvOSRrdrPKpQyb68JJVLXjworbxTH59SpysX7TqeivAzXsN94qasHfz3dBh3/EWL+dtfHwgqmih4fQYvBSNvfw/rKJl7s6qGaowbEXjNxI0w9DP2/A9fOkHRGzOUZ2UHfr2H6eZh6SAhNXU9pAfwzUniRjl1Re/9Lj4CNr4r9qcvb1Y/npQqhGKum4v7XU5wj2k1tfMRBrj5OzBdt6a0m1v98TWQZYveJdajtH9Q8QFR1Y3nbG4u5Ned21WJxjyl3rAQKwkKrxWA4/odorVVz17hfO+hgoCq9+Rcw5D6t4z/FSFeLX8YEkJlfwuurzt+2YXMVdiZ6LJjUBlmWmbTwBFcL6gaVr/bywtJQh3fWhqrmD9u4mtOlqRV/HIhTVQieau+CUpb56/BlAFo1MaONiznzD8RSWq7EWFeLV3pWGzWDmP15o08zfnsykIupeQz45SAbziXXEaiRZZm03GK+3RZJ9+/3setiGjN6eDJvQnU71M7wND7eGE5vbxve7tscEC2iy04k8Fxnd/ycTAFYdOQy6XklvN67GVJlG2N0zCVaOpjQonLuZk9kBq6WBjSxMBDeWoABxbRqcl0hJy8FzYoiLmOnsp4AILtS/dCiRgVQeV0FEIRASlUACKJydzVOzObVRFtfCFIM/hWe3gLD54uMftUBJmwtLB8nBGdG/yNEI7a/L6TSO0yHQz9A0ikhaW9oBXu/FNXDvl9VZ/B3vA/aRrUPZzXZ9ZHImt9IGKOiXLRiuXUFS4+Gr3v0eej3p3ZuFjzTwZW/j8az5w5aQatwtzJk1fPBzB7XCqVSZsqik4yae7RBG4bB/g588URL9kVlMH3pWVUF7pmOrjSzNeJ//14gr7iMqV3csTHW4aMN4SiVMtN7eGKur81HG8KQZZmn2rsQ6GzKh/+Gk5BdiKGOJkuntKOjhyVvrQnl+x1R1fuoLCNdOYyOewjfjfTj5Hs9WT01mC+HtmRsW2d8HU14sm0T3uvfnN+fDGTfG12ZHOJWK4jaE5nOqtOJPNXBhSYWBmwLS+VaYRlj24i2+B3hqfRsYYO2poItF1KwN9HF38mUdaVtKJB1GKO1T3WvRUcucz4xh/cHeqMR/LyYW6uxN2w4l0y/xYmsogdjtPbyWpCmMJqXJNFKWZInxKGqUCioGDKHUA1vvtf+nTHW9cx5KhSisth6MgybB6+EwrtpMPFfaPtcwwqbFeWw6hlIOQvD/6xduSjOheXjxfzzsD+q542VFbBmihBwGbGwdrWwih0fCH/BQb/UX90rLRBVxeaD6p8NvJ7sWNEVUXMuUY2aB4Cw5FwcTPUwI1f8rD/m7Z9wF5RAq+j4KpTmifEUNXeN+xUA2siynAJQ+dG6getkYLskSackSXr2RjeUJOlZSZJOSpJ0MiMj4y4v9+7h62jKW32bsyM8jQ/Wh922KEwVrpYGzJsQRNLVImYsrz5oVWGsq8X7A1pwISmXZSeqM+YvdfUgu6CUf46Jx5zM9enb0o6/j15ReQVO7epOck4xi45cBlAZNb++6nytNtZ+Le1Y+0IH9LU1eHnpGVp/tpPO3+zhid8O8cRvh/D7aDttP9/Fr3su0dfHlt0zuzCjhxc6muLgtfVCCi8sOU1LBxN+HBWAQiFxOv4qr608h7+TKa/2FG1D0Wl5/LQzmi5NrWjjag46RpRrGqDIS2ZUpTdgem4xR2Ky6Nas8luqso3RTKNYFSCqyI4FoMy4Se1MelVQZ+ZS4+J6/p/MXIXwS0lldst3lGgL3f5eXfuH+lAqRVvmyqeEXP24NULAZeVT4r2H/CaCwb1fgfdQ8BkqfLmOzRam71Uqn5FbhSpep5miZ/564vYLkYWQmbXV/K4neruYMQx6+uZrf7S5q/vT/dqbXuvdlKY2RkxbeoaLqbl3fD9JkujjY8u2VzrxyRAfLqXnM+CXg7y56jzpeXWr/6PbOPNuv+ZsDUtlSWW1TktDwRdDW5KWW8LsfTEY6GjyRu9mnE/MYWtYKiZ6WrzWuyknLl9lR3gaGgqJ70f6I8syk/86SX5Jucp+YkQrR37eFc3IOUeITM0TP88FGSojcUMdTVo1MWd0G2feH9CCX8cG8v6AFkwOcaNvSzuMdasDktJyJV9uucjTC0/QzNaYl7t5kJ5bzDfbInG1NKC9uwVrzySSW1zOQD97kq8VsS8qQ1U5XHQqi4M6IZjHbYLCbJKvFfHttkg6eVkJcauWI4Tq58HvqahQ8vnmCF5eeoamtkZ0nvINCk0d2PZudYXQpgV0ekMof55erFrnrAOJjCuYTolRE7RXjqubbKqPqoCtIZQVwtMvaouo4jXrV/u5tc+Lr+2IBbWDtF0fi72l3zfCt/R6IjaIhFK7F0R1sj5OLxKWNW2m3PzzALGPgahuqlHzAHEhOaey+lf5M6n+HgWEEugdVQBBnI88egqNhBpCWGrujHsWAEqStFOSpAv1/LkVZYkOsiwHAn2BFyVJ6tTQhbIsz5VlOUiW5SArK6s7Xv+95OkOLjzbyY3FR6/w7KKTtRTzbocgF3PeH9iCfVEZ/H6dITOI+cM2ruZ8vz2Kgsr3CnIxp727BXP2x6rmdF7p4UlRWYXK/6uLlxVdm1rxw44o4rMK0dRQsHBSG2yMdZj453EOXcpUvUdTWyN2vNKZ1VODeadfM5rZGqGtoUBXU4NB/vb8b2ALNk8L4afRAdhXzgKWVSj5bFM4z/99mub2xix6ug162hpcSs/j6YUnsDbWYd6EILQ0FFwtKOWZv06ir6PJF0Nbql4fLTsQqJ3AyMqW0QWHL1OuVDIhWGS6yyUtMjGljWmuKuCsorxMBLru9td9v1QpeWrVyGhr6QthlJzE6sfcuwIyRFQalWrpCl+s1PNi9qb8Bm2+6RGwZLhQ5QwYBxM3CEGIhQNFv/vof8Tha8VTon2r/3ciE7/6GTB2hB4fivsUZsOGaaJ6eL2PF1TKvX8CRvaiKnAjjs8RojJN+934ukeA/3J/ul97k66WBvOfCkJfW4MJ84/X2yZ+O2hpKBjfrgl7XuvC5I6urDmTSLdv99XrATo5xJWOHpZ8uTmCpMr28gBnMwb62fPnwcuk5xUzJMABN0sDftl9CVmWGdHKETdLA77cepHSciUulgbMejKQSxn5zFh2hgqljJaGgq+H+/LVsJZEpOTR+8f9/LJ6h3hTS89Gfy5KpczR2CyGzDrE7H0xjApyYtXzwShlmPDncbILSvlxlD/ZhaV8seUirV3M6OJlxdz9scgyTOroyvG4bMJTcqloMxWprACO/Mr//g2jQpb5bIiPEITR0hOWLjG7+fW375m7P5YJwU1Y9mw77ByaCOXMqC21M9whrwo/0Q3TIXoHJy9n8+POKLr4e2H4zHqxLyzsLzoCqtSIb5WrV8TM37l/xNzx9YHY9vcgchP0+aK2ouGphcKPtNWkahGqmlw5LCqKDkH1q4IC5CQJH0L3bo0TfwHRLWHpJYSx1Kh5QMgpLCMus4CWDiYiKaJtWL8N02OIl40R6Xkl5BTephJoFSGvQmGm6BhQc1e4ZwGgLMs9ZFn2qefPeiBNkiQ7gMqP9fYoybKcXPkxHVgLtLlX6/0vkSSJd/o155MhPuyNymD474dVh6PbZVxbZwb42vHDjigiUmpn+yVJ4u2+zcgqKK0lDz+tuycZeSWqKqCHtRHDAh1ZfPQKSdeKkCSJjwf7oKGQeOGfUxSXVWBrosuyZ4NpYqHPpIUn2HOx+r9OW1NBqybmPNvJnTnjg1j+XDBLn23Hp0NaMqmDa60KXPK1IkbNOcK8A3GMb9eE5c+2w1Rfm9iMfMbPP46WhoLFT7fFykiHsgolU5ecIjW3mLnjW2FnIgLIRUeucKzEBW/pMtoKmfyScv4+eoU+Prai/RM4HpdNdIU9zTTr+pnFZYmqhY+dYZ3nBDWqfpIk2iIzo6sfc2orKnXnl1U/1qw/DPhRmMDPaiM+VgWCZcWilXP1ZPgtGBKOQ79vYdCvQsHzrwEiGz5+nZCw/2eUaJ8asVAo622u9AMbNk8o8MmykF4vzIInZtc/b3BhtVDn6/KmOIQ2REYkxO4V1b+bVQweAR6X/cnRTJ/Fz7SlrELJsN8Pcy7h2l27t4meFu/2b8H2VzrTzNaI6cvO8v66C7UEoSRJ4ouhLVHK8O7aUFW75syeXpRVKPll1yWxv3T1ICIll50R6WhqKHh/YAtiMwpUwlQhnlZ8MKAFOyPS+XZ7tRrxqNbOHHijKy919SAt6TIAY5Zd4c1V51l7JpELSTkkXyuiuKwCpVImu6CUqLQ89kam87/1F2j3xS5GV84vz5sQxJfDfNFQSEz56yQxGfnMGd8KPydTPt0YTkFJOV8MbUlmfilLj8fzRIADDqZ6LDh0GVN9Lbp26greT1Bx5HdOhkczvbsXTubVSaSigGeI03RjVOavfDvIjY8H+6BVJQrT7gVhgbDtHSEfD6JlcuQisPFGXjGB3/9ZiaOZPp8O8UEydYKnt4rga+8XMKutEFtp7FiBUglHZ4t9KPGk2LO6vFn7mqOzhfBCuxdE+2gVsXurrWv6fVtXSCYtHJaOFnvY2BX1t4bKMmx+TcwbD/ih7j3qIydRqCu2HNG469Wo+Y84GpeFLEM7dwsx/9ekfeMEjR4DvGzE+SriTrtQmrQXugeHfxYWWmrumPvVAvovUDXxPRFYf/0FkiQZSJJkVPV3oBdw4T9b4X/A+HZNWPBUa5KuFjH410McjM68+YsaoEpq3URPi7dWn6/TWhrgbEbnysx1VRWwnZsFbV3Nmb0vRlUFnNHTC2T4rvKQ5WSuz3cj/bmQlMsnG4WxvJWRDkuntMPLxpApi07y/roLjRKAAZEpm7XnEv1+PkBkah6/jAngkyE+6GppEJqYw4jZRygtV7Lo6TY4W+gjyzL/+zeMo7HZfDWsJQHOYo4vJiOfb7ZdpNTGH82KQsiIZNnxePKKy3m2U/Xs3qbQFK5IDpgWXq5zOApLFX3pLWyvO6BUHS6uP0xZeNYOACVJtH3G7qvt9ddqIoz4Swgg/D1MqH/+2ho+txcS7BEbxWzfjPMi4551SQR/BVkwbq0QTFj9DCSeEDM3jq3gzBIRaHZ+UwyXA5ycL4Riur5bv/FySb6YJbTzEwp9N+L4PNDQFgbxah6p/cnLxohVU9ujryNUg3dFpN38RbeAq6UBS59tx5QQVxYfvcKI2UdIvFrdpuNkrs/rvZuyNzKD9WeFbYqLpQEjgpxYfiKB1Jxihvjb42yuz0+7xExf16bW9Gxhwy+7o1XCVBOCmzCmjTO/741h1p5LqnZ3MwNtXuvdlHdDRHuziXUTtlxI4ZXl5xjwy0Haf7mbZu9vxf3dzQR+soNeP+znqQUnWHYigUBnM34eE8C+N7rSs4UNxWUVvLz0DCeuZPP9SH9CPK3YF5XBurPJTO3igYe1EfMPxomkVBd3ErIL2R6eypg2zmKeucvbSOVFzNDfyqQOLqqvQVmFkheXnefVwqewka4xPHdR7S+iQgFDZos20ZVPVbeV6xhRNmYFmbIxX5d8yuz+ZhhVta7qmwuv0An/iuTOsjFCxCX+aMPdB7IsDNsX9BHzhU2C4YWjEDSp9nUXNwlF4mYDoNen1Y9nRMHyCaIKN/zPusmiawliz9PUg/Fr6m9JB6E0HLkZur5zXav9DbiwRnysEr5So+YB4UhMFnpaGviZFEFmlHr+rwa+jqYAdyf5GDJTiPSFrrzze6m5bwHgl0BPSZKigZ6V/0aSJHtJkjZXXmMDHJQk6RxwHNgky/LW+7Lae0gnLyvWvtgeEz1Nxs0/xkcbwii7gcz6jTAz0OaDgS04l5ijmturyfQenmRfVwWc3sOT9LwSlaKeg6keT3d0Zc3pJE5dEXN+PVvY8FwnN5Yci2fVqUTVey2Z3I4RQU4sPR5Pp6/38NGGMI7FZtWRni8sLSc0MYePN4QT/OUuvtkWiZ+jKRte7qiSXj90KZPRc4+gq6XByueDVbYM8w/G8c+xeJ7v7M4TAUJevbRcyasrzqGjqcHQgYMAKEs4yZ8H42jjao5/pWBMeYWSrRdS0bDxQiq+JqpsNTifLFriTHSu/zFoILts6QF5ySKwqiJwogic9n1V+1rvIfBqBIxZLsRhLDxFC8OIhTAjFHp+JA5wERthblcRLI5fI2ZlNs8Uh6N+30CLQaJSuHGGUBkNeU3cP+UcbH1HKIo2pK538Hux3r7fgEKj/mtAtJaeWyoOVoYPdvv0f8Qjtz+5WxmyZmoHPKxF0uZm5u63ipaGgnf7t2D2uFbEZRQwdt6xWqJUE9u7EOBsykcbwsiufPyFLu5UyDJ/HIhFU0PBS908uJCUy+7KroIPBrSgQinzWaWSqSRJfDTIm/6+dnyzLZIJfx4nvUbiSa84HfTMmT2pPWc/6MXmaSHMGd+KL4e25I0+TXmpqwf/G9iCX8YEsOzZdpx+vyezx7dikJ89BtoabA9LpV+lwumHA70Z6GdPTlEZ760Lxc3KgBe6uJNdUMrfR6/Qr6UdblaG/HX4skopFeBMkTX/VgQzVtqGbuk1QIhgvbU6lN0X0xk2aAhS0CQxx5tyrvYX0cAChs0XQlIbXwVZFr6om1IYVfAaBtoKWmwbKypsNXHrDM8fFPYvV47An73hSydY0F+0f5/9RySC/hoEX7nA7A7ikPrEHHhyFZg61b5f7D7RvmkfAEPnVe8dBVkiwNTUhrHLQfe6merCbBH8lebDuNWiAlgfRddEN4Otr6guNpbQlUIRuaY4lxo1DwBHYrIIcjFDO6HSB9hVHQBWYWmog7O5Pmfir935zTx7CvuXgz+KLgY1d8R96fWSZTkL6F7P48lAv8q/xwL1lDUePTysjdg0LYQvt1xkwaHLhCfn8tuTgSpvvFthkJ89a04n8d32KPq1tMPGWFf1XKCzGZ0qq4Dj2zXBQEeTYDcL2riaM2tvDCNbO6GvrclL3TzYcC6ZV5afY9O0jhjpCmGG84k5vLn6PNqaCgb52WOip8UXQ1sytbM7P++OZtXJapNmB1M97E11Sb5WrGpv1VRIDPSz59lObqoAT5ZllhyL58N/w3C3MuSvp9tgayLW/MeBWD7dFEFfH1te791Udf0H6y9wLuEas8YGYulsA9qGnDu+h+Sc4Xw7ovpbZuP5FLIKSvFs7wsZiEpbZYBztaCUc8n54ieg4rpsedWBp7y2mimWlcbwSSeFiieAiYOo4h2ZBU37imCvCi1daNpH/Lme8hLY9zUc+BbsA4XnlrEDbHlTzNeEzBT3vXoZlo0Vz434S2TcCzKFKp++uTjE1SeHnnlJ+Ab6jq7fFL4m55aJQ1ubG+osPTY8qvuTlZEOy55tx7SlZ/hwQzgHL2Xx9XBfzA2079p79PGxxdpYh1FzjvDm6vPMGd8KSZLQUEh8OdSXPj/tZ/GRK0zv4YmTuT59fGxZfTqRN/s244kAB77fHsXfR6/QvbkNTub6PNfJjZ93X2Jq5xx8HEzQ1lTw65gAOnpY8tGGMPr8dICXu3kwMsgJg/x0lUiJQiHRwt64rvDTdaTnFXMgKpO/KhU7XS0NWPR0Gzp5WZGaU8zzf58iNaeYf6a0Q0dTwfRlZygpr2Bad0/iMgtYdOQKg/3tsTfVQ6mU+WRjOBraIxhccUT8bPf5gt/2xrD6dCIzengK376iD0TiZ81zMHmnsHepwqWDUPLd8xkVNj68fLkjWy6k8k6/buh6thVzw/N7CYGoFoOqX6ehBe1fAv+xQoQi/ijEH4GDPwgPUw1tMSfcYrAQVGg+uP5kT8RG0X1g7la7fbO0QLR15ibDU5vqBndFV8Us4dU4IWZl61P/F1xZAetfFGI9Y5c3vt085byYre79ReOuV6PmPyIzv4TItDwGB9jD5b+F0Jqt7/1e1gNFgLMpR2KykGVZzETfLpIEIa/AqqdFF4H3kLu2xscRtZHOA4KulgYfDvLmx1H+nE24xqBfD3Ep/daVk6qy5KUVSj7bVNcDbMZ1VUBJknijd1My8kr444CYtzHU0eSn0f4kXSvi3bUXkGUhujBvYhD+TqZMW3qGN1edV7WSOlvo8+0IPw682ZXfngxkZk8vWruYISHR2sWMmT29+P3JQA6+2Y0fRvmrgr+UnCKeWnCC99ZdINjdgpVTg1XB3297L/Hppgj6t7Tj5zEBQh4dMfe37EQCL3Rxp7+vHSgU5FgGYJR6nLFtnWnvYQmIQHH2vhg8rQ3xbVWZjUs9r/o6bDyfzOVycS3ZcbW/SDbe4mPymdqPe/QAfUs49HPtx7u8LWTTV06C6B03/0+K2ga/tRMHRP8nYdIWIdKy+TUhxNLuRej2vsioLxkpAtSxK0TAV5IPS0aI2cBRf4OBZd37V5QLYRgtPeEbeCNkGU7+KbL9DSn1qXlkMNDRZN6EIN7r35z9URn0/nE/B6LvrjJpoLMZb/ZpxvbwNJYcq1YebmprRAd3S1acTFC1bw4NcOBqYRn7ozLQ0lAwvJUj+6IySM0Rlb3Jndww1tXkx51RqvtIksSYNs5sfDmE5nZGfLQhnIBPdnDmShbZRRXsj8rgQlIOqTnFZOaXkJJTxJWsAsKSc9gelsqCQ3F8+G8YfX7cT5vPdjFz5TmuFpbyzXBfdrzSiU5eVhy+lMmAXw4QlZbHL2MCae1izvyDcWwLS+P13k3xtDbkg/UX0NFU8FZf4bu59kwSp+OvMaJvT1WV79K5g3y/I4pBfvZM714pTqNnBkPnQGYkrHu+biY7ZCblzZ9AY+cH2EUs4L3+zUVbu50vTN4lRG5WjBcCLRXXCYjpm4vAsM/n8OweeDsBXjwObyfBc/tg0M9CDKq+4O/4PHFfGx/hJ1h1TXmJsKlJOila0p1a135dYTYsGgxpYWJmsaHqhyyLttKLG0W10j7gBt9F13Hwe2Fz4z+m8a9Ro+Y/4Gis8Ops724pBGCadLxxx81jSICTKel5JaTkNG5U6Ia0GCJa0Pd9ra4C3iGPvtrDQ8aQAAfcrAx4euFJhv52mLkTgmjn1sAcRQO4WBrwfGd3ft4VzZg2zgS7V78+sMYsYFUVMMjFnL4+tszeF8PoNk5YG+kS5GLOjO6efLcjihBPS0YEOak8uH7cGcXv+2I4GpfFj6P8VXN5pvratQyVG6JCKbP2TBIfbQijvELm48HejGvbBIVCQpZlft51iR92RjHY357vRvihWSmUsPF8Mh9tCKNHc2te6yWqcYWl5SzLcOE5xQHe7Vz9ee6NyuBiah7fjvBDYWIPhja1ArrVp5OwsnGAElPRDlUT+0CRMY8/UlsSXVtfZNl3fijEXBxaicd1DOHJlaLFaslwsUEFvwhONTRB8tLEwefCaiFkYOEp2qQ8eohD3KZXROWv/TQRtBVdhUWDRAVw3Gqw8hJzPSvGi9axUX/X9uqqya6PxHsMmX1j03cQlYKMCOHTpeaxQKGQmBziRrC7BdOXnWX8/OP08bbltd5eeFgb3ZX3eLqDK/uiMvhkYzhtXc3xtBH3HdXaiZeXnuFQTCYhnlZ08rLCTF+L9WeT6d7chuGtHPl1zyVWn07kxa4eGOtq8Vxnd77ZFsma04kMDXRUvYeHtSGLnm7L8bhstoenkntGSXpBIRP+PH7T9elpaeDvZMqbfZoR4mlJCztjFAqJ0nIls/Zc4rvtkbhZGbJ0SiCeNkYsOx6v6kaY3NGNf47HcyA6k48He2NtpEtecRlfbLmIv5MpwwMdoeR/yBEbUf47HSv9z/lksE/tzLd7NzFbt+0dkQjq/IbqqQsp+cxMeJIZFYl8oLUYSixB/p/IfleJv2x9W1T4k04LERWrpvV/otoGDT9XhSwLS4eD34NXXzHbV1X5qygX2faY3WLesGbVEaqDv4yLYk/y6l3/e1SUizb2M4sh+CUIvoXWz8xoCFsHHWeI4FmNmgeIwzFZGOpo4mOQI35ft516v5f0wOFfeUY8m3BNpQJ/2yg0oNPrwoP04sa6e5KaRqMOAB9AfB1NWftCeyYtPMGE+cf5ZoQvg/0dbukeL3RxZ/WpRL7aepG1L7SvdfiY3sOTob8dZtGRK0ztIuYp3uzTjB3hafywI4ovhor2hRe6enAoJpMP1ofhZmVAqybmaGsqeKNPM7o0teaV5WcZ+vthOrhbMqyVA729bdHXbvhbKjWnmBUnE1h+IoGka0UENTHj2xF+uFgKxc6S8greX3eBFScTGRrowDfD/VSVvy2hKUxfdpZWTcz4abTwCgT4emskZ/M9eU4HDJKPgPkwZFnmhx1ROJjqCQ8uSRLZ5soAMCYjn7MJ13ivf3OIalpb2AVE66Z9gAiOrqf1ZNF/vv87GPNP9eN6ZiI7v+9LOP6HEGcxdhTG8XKFaJ1CFvLlvT4T7Zaa2pCbIg5Y8YeF2Wn3D6oPVZlRwg7CNURkutY9Lw5ig36tHZjW5MJqoZIV9EzjsuWnFoCOsVpY4THE296EDS91ZM7+GP44EMf28FSeCHDkpW4euFb+TN4uCoXEdyP96PfTAV5eeoaNL3dEU0NBL28bTPW1WHYigRBPK7Q0FPRracea00kUlJTjYmlAW1dzVpwUVX5Jkni2kxsHojN4a00oHtaGKlEBAA2FRLC7BcHuFshFtpSnZLNqcDCZ+aVkFZSoLCO0NRToa2vgYKaHg6ke5gbatfbEnKIylh6PZ+Ghy6TmFjPQz54vh7bEQEeT9WeTeHttKF2aWvHT6ADisgr4ZGM4IZ6WjGsrZv9+3hVNVkEJ8ycGib1Jz5StTjPoe/EdFvqfxUS/nsCo3QuQGgp7PgMbb5Re/Zh/MI6vt13E3EAbo3FLIOoL0cZZkAEDfhItk5o6MOB7kWDa9JroJvAdDV3eatjovSGSTomEVtx+Mc/c//saRu9K+Pclccjq81Vdu4fCbJGkyqjcpzx71v8eZcWirfTiRiFi1eXtW1vjwR9BU1d0RqhR84BxNCaLtq7maF6p8v9Tz/9dTws7Y7Q1FZyJv9qoIsFN8RkmdBf2fS2Equobg1FzU9QB4AOKk7k+q59vz7OLTzJ92VlKy5WMCHK6+Qsr0dXS4KVuHry9JpS9kRl0rTJGR1QBQzwtmX8wlkkdXNDV0sDF0oDxwU346/BlxrdzoYW9MRoKiZ9HBzBq7lHGzz/O7HGt6OQl2oLauJqzZUYI8w/EseZMIq8sP4eB9gW87U3wcTDByVwPKyMdkq8VEZNeQExGPmcSrlGhlOnoYck7/ZrTx8dWFeBlF5QyZdFJTl25yrRuHszo4aUK8nZFpPHy0jP4OZqwYFIbDHTEt+3+qAwWHr7M08FdIMwI4g6AzzC2XEjlfGIOXw/zRVuzcmOwDxCtlyX5rD+ThCSJeUmyPSFqe90voHM7OPKb8NeqaZ+gYyQObns/r10FBBHQdf9ABHLnlgoVT0kBkoaYmWk+UBgmVx08Y/aILFZpgZjl8xsN+emweKgI/sb8IyqESqWoEF5YLfz/AhtQ9EwLg/UvCXuKPl/e/JukMFtk1gMniEqBmscOPW0NZvTwYkKwC7/vvcRfR66w+nQinb2seK6zG8FuFrc9s2FtpMvHg314YclpNoWmMNjfQQg3BTiy+OhlrhWWYqqvzZAAB5Yci2dnRBqD/R0YGeTEzJXnOHnlKq1dzNHSUDBrbCCDfj3E84tPsWV6J0z060qsS5IGWgqZIBfzRq3vakEp+6Mz2BeVwbYLqRSUVtDe3YIvhrakS1Oxzy07Hs+76y7QxsWc2eNaUVqh5OV/zqCrpSG6CxQSF5JyWHDoMiNbOeFXKUAVkZLLtFAX1pm0wTv8Z+j6JJg41l6AJAn7hYxI5NVTeM/iR/65bECvFjZ8NcwXMwNt8PoBDK3FYacwW1TnqvYjv9HCiuHg96J9M3SlsHFp+5yY4bvR/1tmNOz+BMLXC+XRft+K5FZNBeQtb4h9rOu70O46j9E6wV+P+t+nOFfMMF8+IILI6+9zM64lCPXjhtpW1ai5j6TkFBGbWcDYts7ie1zfEqya3+9lPXBoayrwsTe+O0IwUF0FXPucEMxrPuDu3PcxQx0APsCY6Gux6Jk2PLPwJO+sDcXF0oDWjTzcAKKdavclft1ziS5NrWod5F7q6sGouUdZfiKBie1dAJje3ZN/zybz9tpQ1kxtj4ZCwtpYl+XPtmPCn8d5euEJvhrmy7BW4iBjrKvFKz29mN7dkxOXs9kRnsaB6EyWHo+nqKzaC8zCQBt3K0Oe7eTG6NZOKo++KmIy8nlm4QlScoqZNTZQzPZVciA6g6lLTtPC3piFT7fBsDL4i0zN48Ulp2lqY8TrfX2goAPE7CavqJSPNoTRzNaIoYE1qqb2gYBMReIpVpwsJ8TTCmtjXbBqJoxFc1PAuEZmqkkHOPST8PGrKewC4oB1agEse1J49lk3q/28jqEQcLneVLmKknyRdT8xTwjLTNwo7nEtQRyq8lJhzFLw6C4OYpteFe2hHV9tWPEz/aJQ4NMxFnM4mo0Q9jjzN1SU1JWAV/PYYW6gzbv9WzClkxvLjiew6Mhlxs47Rgs7Y4a3cmSgnz1WRrcuStXH2xYncz1WnUpUdTH097Xlz0NxHLqURX9fO1o5m2Gip8XhS1kM9negp7cNilWwLzJDtd9ZGOrw25OBDP39MP/79wI/jq5nfkxTp0FDdKVSJjazgPOJ1ziXcI0zCdcITcpBlsFUX4u+Le2Y1MEFb3thJRGbkc976y5wOCaLDh4WzBkfhEKSeH7xSSLT8vhjYhA2xrrkFpfx4j+nsTTU4c3KWcDisgqmLzuDqb4O9mNnwcJOsGGGaBO/PijT0iWux1yMF/fk5ZQ3adNzIYO7tareqyVJWCUYWAnlzPm9hFKolZd43sACen8mklL7vxZG8sfnCNGoJh2EebuFu9hzchKEl15mtDCd19QTFbngl2oresoy7Hhf7E/tXxYHrZpU2dtkRFbuUw0Ef5nRYo/MjhFqor4j67/uRuz8HyCJdahR84BxJEbM/wW7WcCJA+LnTV2NqpcAZzP+PnqFsgpltf/pneAzvLIK+KXwX1Z7g94y6gDwAUdHU4NZYwN54rdDPLf4FOtf7FDLXPhGaGkoeK6zGx+sD+N4XDZta8wStnWzoLWLGXP2xTCmjTPamgpM9bV5f0ALZiw/y4JDcUwOcQPA2liXFc8H8/ziU8xceY7wlFymdfNUZeEVCom2bhaq+8uyTFZBKem5JTiY6tWbrQdh0/DHwTh+2BGFgY4m/0xpR6sm1TMem0NTmLHsLG5WQpnPuNL/Ki23mEkLjqOnrcGCSa2F/1bTvhC1lb/XbyE9T5PZ41qpZgcBoYQpKbh8ahupuR34cFCl0ItbV/Exehu0eqr6evfuIote1WJQc3PRMxVzeYufgAV9xd8bI6Aiy0IkZvNMEey1ewG6vSeqb1kxou2zOBcmrBftXbIsDn2nFojAr/sH9W9yyWdE1VBDC8avVSkh3hBlhTjgNelQLXqj5rHH2kiXad09ebaTG2tOJ/HP8St8vDGczzZH0NHDkqGBDvRqYSt+5hqBQiExxN+BWXsukZ5bjLWxLn6OphjpanIgOoP+vnYoFEIs6vhlYTtjrKtFqyZm7AhP47Xe1fNrfk6mvNzNgx93RlNUVsGbfZrhZlVDQdPMBc4tQy4tICFP4lyiCPLOJ17jQlIu+ZWiVfraGvg4mDCtmyddmlrh62iq6kTIKSxj/qE4Zu+NQUdLwadDfBjbxpnMghKeXnKG45ez+Wa4L12bWiPLMm+sPE/i1SKWP9tOpab69dZIotLy+evpNpg5WomZ3i2vC6Xg9i/V+vrsiUxn2j+xeGu8y2K9Lxhy+hlosUYIvtSkzRQwcYJ1U2FOJ+j9qWjzrtoPTBxg4E8iSXRph1ACjd0DoSuu+w/REte2nSpm6gytaz9fWijaPi+sFlW3np/U3nNKC4QwVep5GLm44eAvYiOsfV4kosatEVYVt0rYWrGObu/VrZ6qUfMAcCQmC1N9LZrrZEBuIri+cr+X9MDi72TK/INxXEzJo6WjyZ3fUENTJKfWTRVVwGb97/yejxnqAPAhwERfiz8mBjFk1iEm/3WSVVODq82Ab8LIICd+3hXNrL0xtQJAgBe7evDUghOsPZPIqNZC1nuwvz2bQ1P4fHME7laGqtZRY10tFk5qw//+DePPQ3GsPJnA1C4ePNXepc5hUJIkLA11sLyBjUVopaVEeEouvb1t+GiQj0oBFOCfY/G8uy6UQGcz/pzYWhVE5peUM2nBCXKKylj+XHD1QHHT/sgbZlByYR3j2s5UCdOo0DUBO3/KY/ZjbdSN7s0rDz423mDiDJFbaweAGprCc2/9CxC5pe7MnY23UO9cPATmdRVZ9DZT6jc1LsmD0FVwbI4QXDF3E69tEiyev3JYmD9XlMHEf8HeX/x9w3Q4u0Rkv3t8WH/wF7tPZNn1zGDCusZ7ZEVuhmvx4oCnRs116GppMLatM2PbOhOdlse6s0msO5PM9GVnMdLRpL+vHePaNcHH4ea/yIcEOPDL7kv8ey6ZySFuaGoo6OBuyf6oDJUseBtXc3ZGpKuCxP4t7fhwQzjRaXkqARkQe5aelgbfbo9kW1gaXZta0dHTiqsFpdgl6vIkMqO/WMKxIlFt1NZU0NzOmCcCHGjpaIKfoyke1oaqgA9EwurE5WyWHotnU2gKJeVKBvnZ896A5lgb6XLycjYvLDlNXnE5P432V1UyFxy6zNawVN7t11zVdno4JpM/D8UxIbgJnSvb5WkzBeL2iWqWU1uViubS4/G8uzaUZrbGfDdxHFrlXWDREFg4QFQLr7dvadoHXjgibBQ2zRQt7YNn1Q7izJqIwK31ZJFAyoyGgnQxQ2fiCAbWDVcochJFu2bKebHfdJhRe88pKxJWEInHRStqfXPIygox03jgu2p7m9sJ3vLThReifSB0UB+q1Tx4yLLM4Zgs2rlaoFDN/91GouMxIcDZFIAzCVfvTgAI0HKkSNLv/RKa9lNXAW8R6W6aAT8oBAUFySdPnrzfy7jrHIzOZOKC43RtasXc8UGqGbmb8fveGL7aepF/X+pQS0BBlmUG/XqIvOIydr7aWVUxKygpZ+ScI1zOLGDl8+3reGlFpOTyzbZIdl9Mx8pIh74+tvRobkOwu8UNS/v5JeVsOp/MmtNJHIvLxtpIh48He9PHp7r1UpZlftsbwzfbIunS1Irfn2ylCjBLy5U8u/gkB6Iz+WNiEF2bVh98SsuVRH4Zgm55LjZvnVZVC2uSt+EddE7O5vd2e5jet4aF2+bX4fRieDOu9rxfRRn8FizaJF84Wv+cXF6aUPE7+SfISmHWbmgrAs7SAkg+LRTyZGWl8fFUMcCsqSNm+w79ALs/E4Hj6H9EK2hxLqyYIDL4nd8S4g7Xb2wV5aL14cB3QlF0/FqR2W8s83sLk/iXzzTei+v+89Dv7g/z3qRUyhyNy2LVqUS2hKZSVFbByCBH3uzT7KaepYN/PUhZhczm6UIg4Z9j8byzNpSdr3bGw9qQcwnXGDzrEL+MCWCgnz3pucW0/WIX07p58kpPrzr3S88r5p9j8fx9NJ7M/BI0FBLt9JNZUj6Tfxz/h9xyGH6OpnjZGFXPAdegQilzJCaLnRFp7IxII/FqEYY6mgwJsGd0a2d8HEwoLVey8HAcX2+NxMFMjznjW9HMVuyF28JSeWHJabo1s2ZupddhbnEZfX7Yj66WBpumhdROjBVdE5U7ZQXy8wf45UgW3++IoktTK2aNDVTNNYs28MGQlwKjlwi10OuRZdHqub2yeyDkNZG80m5cZ0i9JBwXiaSyImH1cL13aXkpLH9SdDA8MVvMH15PYTasngwxu8Rccd9vhKDWrSLLwnYiegc8f+DmKqYPBuq96TEjPquQTt/s4aNB3kxM+kgkcmdeVAchDSDLMm0+30VHD0t+GOV/92585m+RFBuzTHSCqamPer8pH5qTnxro6GnJ+/2b8+GGcOYfjGNKJ7dGvW5cO2d+23uJPw7E8fOY6tkZSZJ4sasHz/99ii0XUhnoZw8Ir7A/n2rNkFmHmLTwOKuntsfRrPpw0dzOmD+fas2x2CzmHYhjxckEFh25gpm+Fj4OJrSwM8bRXB9rIx3S80pIzC4kPruQA9GZ5JeU42ZpwMyeXkxo74KJXnWgJssyn26KYP7BOAb72/PtCD9VQCnLMm+tPs/eyAy+GNqyVvAH8N32SEqLAvif1mIoiAfdupWwjXnujJEqGGuXTC0Pb68+cHyuqKbVPPhoaIm2qoX9RJDW5/O6X1wjG+j3DXR8RQgxXNoB2bFiTkahJVpDWwwWmUHndtW/HK5eEbLoMbvBe6h4H11jyEmCpaMgLVyofdYn+HItHlY9IzLx/k9C369rm0nfjMSTkHBUCMU8PMGfmvuMQiHR3t2S9u6WfDiojF93X+LPg3Hsj8pkzvhWKgGU+hjs78DHG8OJycjH3cqQEE/hX3k4JhMPa0O87Y0x0NbgxOVsBvrZY22sSxsXc7aFpdYbAFob6TKjhxcvdvUgp6gMM31tNCpK4LPXGOteAm3rV8NMvFrIihMJrDiZSGpuMTqaCjp6WDKtuyf9m5lgkHkeOe1fLh2KJDIqHJuSIka5P8cbY3uq9qr1Z5OYueIcLR1M+H6kH5IkqdpBU3OLWT21fd0WWT1TGLEQ5vcidt54fkh5nqGBTnw1zLd20qzK5mHxUPhnlBCJCXiy9r0kSVQVXTuJSuC2t4VSaIdpovJXM4l1Mwqzxd534DtRqZu4oe5Mc0UZrJoE0dvFeuoL/q5eFi3xOYliL6vZTXGrnF9e7RX4cAR/ah5DjsRmAtDe1RT274JmA9XB3w2QJIkAJ1POJly7uzf2HQX7vxFVQK8+6v+DW0B9+nvImNjehSOxWXy97SLB7haNasEy0tXiiQAHlp1IILe4rFZ1rFcLG9wsDZi7P5YBvnYq8QEbY10WTGrNyNlHmDD/OHPGt6rVigWo5v6Ky4T58r6oDI7EZHEsNpvSimqDTm0NBY5mevTytmFcuyYEOJnWURYsr1Dy9ppQVp5K5Kn2LnwwoEWtCufPuy6x5kwSr/b0Ykwb51qvPXQpkzn7Y5nqPxguLoaorcKHrwbpecV8E2HOCA1NrNIPATUyRS4dhXjKhVV1M98uHcSszdFZIphrObz+L7KxPfT4n/hzM0JXwcZXRFWw//dCuU+SIPNS5RxgjjB+r09ZL2aPsI1QlgsxiIbWcyMOfA86JnVl3dWoaSTGulq80685g/zsef7vU4yYc4QVzwXj30AQ2L25NR9vDOdAVAbuVoY4mulhaajD2YRrTAgGTQ0FLeyNCU/OVb2mk5cV32yLJCu/pMEKo5aGorrVXKErTNLjD9e57sTlbGbtucS+KGF639nLiv8NbEGXptYiWMuORf6zM2THIgEegJlkhoXGVQZlhCMlGoJnD/46fJkPN4TR2sWcPyYGqVrxv98RxdawVN7r37xu+3kVDoEcdn+F9tFfM8ulJX2Gf1F/F4ehNTy1QXQBrH9BJHr6fFW3mmbVFJ7aKCoP+74SFcHDvwqxFZ+hYOvXcLtnbrKYSTy5AMoKoPkgEbjpXycyVlEuqnpVVhD1CUalhYvgr6JECFpd37p6K8TtF3ujc7DollCj5gHlcEwWloY6eJSEid/ZXr3u95IeeAKczdgensbVglKhcnw30NCCkJnw78siSdWQF6maOqgDwIcMSZL4cqgvfX7az/RlZ9jwcscbeu9VMSTAgUVHrrAjLE2l4gkiq/98Z3feWH2ejedTVFVAgGa2otI3ZdFJ+v9ykDd6N+XpDq51Di26Whr08rall7cQH1EqZdLzSkjPK8baSBdrI50btquWlFcwfelZtoalMr27JzN6eNYKENeeSeSHnVEMC3Tk5W4etV57taCUV1cIoZiXh3aEOR4iSLouAPxtTww5FTqUuQSjGbVNmDBXoakDAePh2GzhUXX9HF3vzyE9QnhZwe0FXSCqfrs/EXLtjm1Eq1WVb1fKefh7qGh/mrQJ7Pxqv1aWhSrpro+EcujoJY2f96tJyjmI3CQ+T527Y/qt5vHFx8GE9S92YMAvB5m54iybpoWgq1VXIKaJhQFNLPQ5EJ3JUx1ckSQJfycTQhNzVNe0sDNm1alElEoZhUKiXeXM8rG47MZ7R7UcIWbQsmPB3I2E7EK+2BLB5tBUrIx0eLmbJyODHGt1NBTEHUexdBSlpWW8XTqNJL2mjOzellFt3SHnMtLyCchLhrPD+mk+jO9K9+Z2/Do2QPV5/ro7ml92X2JUkBPPdHRtcGlbQlOYGurHGstO9E2bixQ/QCSf6kPPDMathT2fiupeyjmh7mvqXPfaJu2FcNTlQ8IDtOqPviW4dxV7TXmxOKQWXxMqw1HbRAKq5XAx62fTou59lRVCYCF8najG1WfhkHAClgwXVcdJW+tWD2+F6J2izdTMVXyuisYJDalR818jy6KFPNjdAunSelBogluX+72sB56qBOHZhGu1rMnuGL8xogq47yvw7KWuAjYStV7tQ4iZgTY/jPQnNrOATzZGNOo1AU6mOJjqseF8cp3nhrVyxMfBmM82RVBQqZRXRZCLOdte6UQnT0s+3RTB6HlHuZSef8P3UigkbE108XU0xdZE94bB34WkHEbOPsLWsFQ+GNCCV3p61Qr+jsZm8eaqUNq5mfPF0Ja1npNlmbfWnCe7oJSfRweIQNi9m1DAKy9RXZeSU8Q/x+MZHuiIns9A4bGXFVN7IR2mi0zSge/qLlJLVwRcrp1FELj5jVr3vyl5qbDlTfilFYT/K+b6Jm2pDv7C1sHC/qChI9q/rg/+iq6JmZid/xPtpJN33l7wB2JgWscE2t6iH5caNQ1gYajDV8N8icko4LvtkQ1eF+JpyZHYLErLRXdACztjYjMLKK60jGlhb0xBaQUJVwsB8HU0QV9bQyW13ij8nwRJQcWpxXy3PZLu3+1jz8UMXunhxf7Xu/JqTy9V8BedlseiRfOQFg4gq0TBO+bf0Xvk86x8eyxPtvdEU0OBbObKpjZ/sUUKoVf6fLbb/s7s4e6q4O+3vZf4dnsUQwMc+Py6/akmp+OvMmP5WQKdzWjx3CIkC3f4ZzQknW74c9HQFGIso/8R+9WcTkKsqiFcOsDY5fBaNDwxV9jIxO4VCqQ73heB5IU1wi+01USYdhqGzm0g+FPCv9OEimj3D+qolwKifX3RIBGsPr3tzoK/i5th2RhRwX1qU111UjVqHiBiMgpIzyuhvbuF8BF2DhZz/2puiK+jCQoJztztNtCqKmDSKbi06+7e+xFGHQA+pLT3sOT5zu4sPR7PzvC0m14vSRID/ew5GJ1JdkFprec0FBIfDfIhNbeYX/dcqvNaayNd5k0I4pvhvkQk59Lj+308+cdRtoelolTenohQcVkFn2wMZ9CvB0m6VsRvTwby9HXZ8/OJ15j810mczPWYMy6ojpjDP8fj2RaWxuu9m1a3wrp1hfIiSDimuu7X3ZeQZZmXu3tUDwlf3FR7QUY2otXz3LK6wSGI1qgnVwrrhuNz4I8eopWzOLfutSBma86vELM83zcX84H+Y2HaGej6tjjclRULpbuVE8XB5+mt4mNNks/C3M6irbXXZzB8wa3N+9Uk4YRo5Wr3vJhJUqPmLtHJy4on2zrzx8E4TlTaOdS5xtOKwtIKTsdfBaCZnTEVSpnoNJFQam4nBFaq2kC1NBS0djHnSOwtBIAmDpS4diPnyEJ+2x1Jf1879rzWhek9PFVzeREpuTz5x1Hm/PwJY2Pe4KqeMzljNzNr2igG+zuo9pmzCdd48o9jvLjyInPM3yCl/cd45h5Dc9loUFYwZ18MX2+NZLC/Pd+M8KulLFqT+KxCpvx1EhtjsY/qGpmJip2+uaj6p4Xd+HNq1h+e3Su8/ZaOguXjxaxdQxhag98oEdzNjIJXL8LbifBBlhC6mn4W+n9Xv2IxiMrfplfh7N8iWRUys+41UduFHYS5mwj+qpJZt0PYWlgxHmx8xAyigcXNX6NGzX1kf2UrebBVGaSHiaqTmptioKNJU1tjzlT+Drir+I0VVjn7vhQdU2puijoAfIh5tacX7lYGfLs9ksaoufZvaUe5UmZvZHqd51o1MWNYoCN/HIjlUnpeneclSWJEkBO7X+vC672bcjmzkGcXn6LDV7v5bnsk5xKuNSoYzC8pZ8XJBAb9epD5B+MY08aZXa92qdPilZFXwpRFJzHV12LJ5HZ1vAQvZxbwycZwQjwtmdyxhhiOS0fRjhGzGxCGzstPJDC6tbPI/Js6g23LugEgVFcB939T/+I1daDPFzB6KRRkimrgN+5ibm/FBCHMsnQM/OADX7vCmimi2tjxFXjpBAz6uVqpM/kszOsGJ+cLm4dJW4UARE1OLxbGzxVl8NRmkYW/3dYGZQVsfg2M7NSmymruCe/0a469iR6fbAyvdz9q526BJMHxOBEgqgK+FNEG6mVjhIZCIqzGHGCwuwWX0vNJzytu1BpkWeb33BDMldlsanWaH4Y2q2Uvs/VCKi/+9i/jkz7hW605yC6dcJixG++m1WIjKTlFvLL8LENmHSIqLY8PB7ZgzYsdses1XQgzJRxl47wP+GLLRQb42vHdDYK/nMIyJi08TrlSZsGk1tWzjMb2wvJFU09YP2TWTbzVwsIdpuwWnnjR2+HXNnDoZzGjdyMUCjC2E+3ejdk7CrNFS+epBWLf6vJW3WviDlQGbC3EDKKRzc3vWx+yDEd/FzPNDkEiKNZrYH5SjZoHiDVnEvG2N8Yla594QD131mgCnIUQzO0WDxpEU1vsWYknhIK6mpuingF8iNHSUDC1iwevrTzH3siMm/ZUe9sbY6avxaFLWQwNrOvN9Ha/ZuyMSOOdtRdY/my7etuZrIx0eLGrB891cmPzhVRWn0pk1p5L/LL7EjbGOrRxtcDN0gA3KwMczfQoKVOSW1xObnEZR2OzVPLxbpYGLJzUmi5N6665vELJS/+c5lphGWtf6FDrAAdixvCN1efR0lDwzXC/2i2musZi5uXSTujxIV9tvYiOpoJp3WtU1poNhL1fCMXNmtYJRjZCRe/obyJIasggvVk/oTaVeBzC14uW09wUUJaBhrYwcW8zRazDqW1tIQZZhlMLYcsboG8BY1fWHR6X5Upvm89FRXPY/DvPih+bDSlnxb3Us39q7gEGOppM7+HJG6vOsz08jd6VM8FVGOtq4WphQFiyCPiamOujr61BRIpIOOlqaeBpbciF5Oq5wOCqOcDY7FrzyQ2x7EQCvyS6Mc7Gh2ZhP0DMAvAdhRzwJItOZaN99Ce2aR5AU6GAkLfR6viqODggklNz98Uw70AcFbLMi13dmdrFA0Od6l+Taa5DuKK9gG7J83i7fQ8mDwhoMPgrKa/g2cUnScguYvEzbXC3uq5yb+Yigp4FfWHJMHhmJxhaNfzJaeoI4+OWI0RL+Y734dxS6PetaP+8U9LCRRtmbjIM/Fm0iV5P6gXhFWjmImYUbzdgy0+HdS8I1WSvvmIe+nY7G9So+Q+JSMnlQlIuHw5sAdG/iaSyZV2lYjX14+9kyj/H4onNzMfD+i6fRQLGiTGevV+Js5N6FvCGqAPAh5xBfvZ8tz2S3/fF3DQArJJxPxyTqTJgromloQ5v923GW2tCWXj4MpM6NCxooKmhYJCfPYP87LlaUMrui+nsjEjjbMJVNp5PrrcCb6SjyZAAB4a3ciTQua4SaBVfbrnIsbhsvh/pV8eDEGDJsSscj8vm62G+dYJDADx7wq6POBsWzrawNF7t6YWVUQ0VwZbDRXB1YZWo+tUkZKYwX1//oqjKNeRjpVAIWwfndg19iepSkAlb3xIiMO7dYOgfdQM7ZYU43J2YJ1oaBv0sqpJ3QlYM7PpEBK0+w+7sXmrU3IChAQ78sjuav49eqRMAgpjzOxN/DRD7UTNbI8JTqit+Pg4m7I1MV+1P3vbGGOpociQ266YBYHxWIZ9uDKetuzXmT++Hy/uER9SpBUjH5zBelqjQ0kJqNQkpZIbKoLysQsmy4/H8uDOarIJS+vva8VafZjiZVwvFyLLMjvA03l13AeOSCWzTCuW5/Nkgdal3LUqlzBurznMsLpufRvvT1q2BBI6Vl5jbW9hftIOOXlK/0EtNzFyE51X4OtjxP2FT495NVAcdWt34tQ0RsRHWPgfahqLboNKsvhbXEkR1UMcIxq25/aRU9A4hLlOSJ4LX1pPVBzU1Dw2rTiWipSExyNsC9u6tnDtWf/82lsAqQ/j4a3c/ANTUEVXAza9B3D61MM9NUAeADznamgqe6ejKp5siOB1/lcCGJMgrae9hwabQFGIzC+pmpIGRQU5sC0vlow3hXC0s45XrFDnrw8xAm2GtHFXqosVlFcRnF5J0tQhdLQ2MdDUx1tXC2linXoXAmszZF8MfB+OYENyk3iqlUPW7SIinJSOC6j4PiHaMXR9xaOtSrI06MznkukDWwh0cW8O55XUDQH1zGPSLEF3Z8rr4+52iVMKZReKwVloAXd6BTq/VVbkrzBbtULF7RAWy5yd3/oulvFQEsxraMOAH9S8qNfcUTQ0F/Xzs+PNQXB3LGRAB3sbzKVwrLMVUX5vmdsb8ey5ZFfD52Asl0LTcEmxNdNHUUNDG1ZyjN5kDLCmv4KWlp1EoJL4e7otCQ0MERe7dWH/kAqc2zqWzowbdnnwDybi63TwiJZdXV5wjIiWXNq7mzO/XvI6VxfnEa3y2KYJjcdl4WBvy2+TBaMZcFbYLFzdC84F11vPdjkjWn03m9d5NGezvUOf5WjgGwcjFoqV8dkcYMlt0GdwISQLvJ0RS58QfQuBlXjdo2l/YJzi3u3niSJZF98LpRULsxaEVjFoiWkavp+gq/D0MSgvFrLLJTT6n+ijJE4mo43PA2rvSc7D5rd9HjZr7RFmFknVnkujR3AbzzBNQVqie/7tF3CwNMdLV5OTlq4wIcrr5C26VwAnC6mrf1+oA8CaoZwAfAca0ccZET4u5+2Jvem1HD2HAfOhSZr3PKxQSc8YHMaKVIz/vimb6srMUlt5kzuQ6dLU08LIxomsza5VXobOF/k2Dv7n7Y/hiy0X6+9rx/oC6ynSyLPPuugtIUEcRtBbWLSjSs8Pj2mFm9vKq3ybDd5QY3k69UPe55gNFJfD0ItGuebvIMkRugXldYMN0IXLw/EHo8mbd4C/lHMzpDFcOifarXp/eebCmVIpMe/wR6P+tmDtSo+Ye08vbhrIKmT0X684ae1dW9C8kiapfC3tj8orLSbxaBKAScwpNqm4D7ehhSWxGAaeu1C8uA/D99ijOJ+bwzXC/WhYPESm5vL4xgegmY+n07He1gr81pxMZ9OtBMvJKmD0ukOXPtqsV/OUVl/HmqvMM+vUQ0en5fDLYmy3TQ/CyMYK2U8GmpVAELqk9Mz13fwyz9sQwpo0TL3RppFqvVy94bp+o7i0bA9veFbO/N0NLTySLpp+Dru+JgO6vAfC1mxCLOb1IdABcixdm7dlxkH5RtEn9HCCujdoGwS+Jyl99wV9pgVAsvRonKpT1qYbeCFmGiA0wq60wnW87VcwzqoM/NQ8Zey6mk1VQyvBWjmIWV1MXXEPu97IeKhQKiU5eVuy6mEbF3Z4DhMoq4Axxloo7cPfv/wihDgAfAQx0NHkiwIE9kekUlVbc8Fpnc31sjHU4faVhFSZtTQVfD/fljT5N2XA+mUG/HmLVqUSVXPu9YPmJeD7ffJH+Le34aZQ/Whp1vzX3RKazPyqDV3s1rXXIux4Z2F3hTyeNCwz3a6At1nuoEIs5v6z+57u+KyoIm2aKA9KtIMvC02puZ1g6WvhvPTFXCCbUJ5V+Yr4Qe5ErRNtpfbM3t4osw9Y3RZtrjw+FObQaNf8BAU5mWBpqsyuibgDo62CKJKFSgfNzNAXgVOV+5ONggo6mopb1w8jWTjiY6vHayvP1JqOuZBXw56E4RgU50cendtvpnH0xaGsqmPVkYK09ZX9UBq+vOk9rF3O2v9KJPj52tRJKx+Oy6fPjAVaeSuC5Tm7sfb0L44Ndqu+hoSkq6nkpsOcL1etm74sR+5ivHZ8M9rlp90QtzN3gmR3Qegoc+VXMBtanSFwfOkbQ+XV4NUxUE72HQOJJYY78SyD82BJ+8oOf/eG3trDrY9EC+8RcmHkRen9Wf7t7eYnohkg8DkPn3fphNy9VzAwuHyfmBZ/ZAX2/bLi1Xo2aB5iVpxKxNNShs6elOBe4dhJJGDW3RD8fOzLzSxtUjL5jAieCoQ3s//re3P8RQR0APiJ0a2ZNSbnypq1SwoBZqDDd7LoXunjw16Q2KGWZ11aeo81nO/nw3zBOx1+lvEJ5V9YtyzIrTiTw9ppQOnlZ8cMofzTrCf7KKpR8ujECNysDJgTfWHJ8b2QGa/JboEcxGknH67/IwAI8esL5lfVn2hUaQjDFxkccXs7+07hPKP6YmOdZMkz49w2eBS+dFLLs1x8GK8ph02tCct2lIzy7Dxxvc4anJkql8Aw8PldUBzrMuPN7qlHTSBQKiS5NrdkbmV5nnzDR16KpjRHHL1crgRrpaqr2LV0tDdq6WbAvqjp4NNTR5JsRvsRlFvDF5ot13u/b7VFoKhTM7FVbiCE9t5hNoSmMCHLE3EBb9XhqTjEvLjmNp7Uhc8a3qvVcWYWSL7dcZNTcI2hqSKx8vj1v92tep5UVEHNyAePEvG5BFrP3xfBlpTLoTw3sYzdFU0dU60cshIxI+C1YqBKXl970pYAIBFsMEq3rr4bD1MNiDxo8Cwb/BkN+hyfmwMunRULKbxRoN5BMU1aIucCY3UL91HvIrX0uV47A7x0gZo9oZ392b/2zhWrUPARk5pew52I6QwMd0LwWJyri6vbP26JLUyt0NBVsvZB6b95ASxfaT4O4/eJMpqZe1AHgI0IbV3P0tDTYU4/Fw/X4OZlyOauQa4U3P1R08rJi16udWTqlHZ2bWrPk2BWG/nYYv4+289SC48zZF8PJy9m3VR28mJrLqLlHeWP1eYJczJk9LrCO118Vi49cITazgPf6N6+3OliT3/ZeIsEoAFlSiJaohgicAPmpELm5/uf1zWH8WjFPs26qaMsqya97XXEunPoL5veGP3tBZrQQN3jppDgg1jeLk58O/4wQh8f202DsihsrADaWgixx30M/QdDTd2eOUI2aW6R7M2tyi8tVlb2aBLmYcfqKSCJpKCTaXjfj19nLipiMAhKyC1WPtXe35JmOriw+eqWWjc2pK1fZcC6ZySGuWBvXrir9ffQK5UqZicEutR7/ZGM4pRVK5o4PwqhGYJdTVMbTC08we18Mo4Kc2DwthFZNbqJy2foZqChl05q/+HLLRQb62fPj7QZ/NfF+Al48Dk37wO5PYU6ICKhuBUkSSsYB4yr/PCm8SP1GiznoGyHLQowqbK3YQwKevLX3Dlsr7HH0TEXg12HanYtZqVFzH1l3JolypVzZ/lnZFaQOAG8LAx1NujS1YsuFlLtvB1FF0CShtN6QrZcatQjMo4KulgYdPCzYG5lx02v9K9uuziXm0Nnr5kGHJEkEu1sQ7G7B1QJvDsVkciQmi6OxWar301RItLA3xtfRhKa2xjS3NcLTxghjXc1abVDpucWEJeey+2I6/xyPx0hXk8+faMmo1k4NyqlnF5Ty484oQjwt6VqPbURNjsdlc+LyVT4c6IMU5nfjANCrtzAOPTEfWgyu/xp9c6F4t+1d0ZZ19HewDwCHQCjIEC1amVFQXiykoHt+Ig6F2gYNv2/Udlj/gpgdGvSLCETvBpcPwppnhdpo/+9FAKgO/tTcB0K8rNDSkNh9Mb2OAmZrF3P+PhrPxdQ8fBxMaOdmwc6IdFJzirE10aWzlxWfAPujM3iybXW1//XeTdkflcFTC07wRIADYck5RKXlY2GgzbOd3Gq9R0l5Bf8cj6drU2tcLKt/FvdFZbApNIWZPb1wtqiufCVkFzJp4QkuZxbw9XBfRjZSnCBBxxMDhTlEbWF06x58OsTnzoO/KoztYOQiiNwqVO0W9BGzy+2nga3P3XmPhtj/TWVy6mURvDUWWYYjs2D7u+DUDsYsFXuoGjUPMbIss+pUIn6OJmIGeNt2sGoGZjfuRlLTMP1a2rEtLI0zCVdp1eQe7BHaBhD8omh3TzotzmxqaqEOAB8h2riaszMinasFpZjVaGu6npaOJkgSnLqc3agAsCZmBtoM8LVngK8QFMnIK+FswjXOxF/ldPxV1p9NJq84XnW9toYCE30tTPS0yCkqIyOvBACFBGPbOjOzZ9MbrhXgp51R5JeU8/6AFjedqfl97yUsDLQZ1doZCjrCsTlQVlR/n75CQ8zb7f5UGDFbetR/Uw0t6Pe1CBJjdsHlQ0Je3tAaLDzAJQR8hgoVvRutryRPKIGerGwtvVsqeFkxsPNDiPgXzFxh8g6w87vz+6pRc5sY6mjSzs2C7eFpvNW3Wa2f29Yu4pf9kZgsVQAIcPBSJsNbOeJuZYCTuR4bziXXCgB1tTT4YZQ/M5afZd3ZJDp6WDI00JH+Le1qVfIAtoWlkZlfWqtdXJZlPtsUjqulAc92rg4YswtKGT77MMVlShY/05Zg98bZGxyIzuCFJaf5HwEM1jlK/8HN4G4FfzVp2ke0iO/7Sih+nl8u1O2CXwKPHnc3yVNaCJtfh7N/g98Y6PFx41+rrIBt7wjP0RaDxXyhetZPzSNAWHIuF1Pz+GSwt/g9fvkQtHv+fi/roaZbM2u0NRRsDk29NwEgiHnqQz/D/m9hTCPHeB4j1AHgI0QTC5HpTrxadMOgykhXizYu5mwMTeGVnl63JlRwHVZGOvRsYUPPFjaAOGSl5BRzMTWX+KxCUnKLyS0q41phGXraGnjbm+Bjb0wLe+M6h7b6uJSez9/H4hnTxllk3m7AxdRc9kRmMLOnF3raGuDSCQ7/AgnHGpYDDpgAe7+Ek39Cn89vvBiXDrdvuHz5kKjO5SZBuxeh+wd3fjgqzoU9n4tMvYaOEK4JfvHG1Uc1av4j+rW04+01oYQl56rUPQHsTfVobmfM1rBUpnRyo4WdMQ6mIuAb3soRSZJ4qr0rn2wM59ClTDpUKheDEInZMj0EpSyjo9mwqvDyE/E4munRybM6wXU+UVQMvxzastZrP9sUQXZBKWtf6FBrnQ2hVMr8vi+G77ZH4mVjROeO49HauEuozrl3vdUvU+PQMYRenwiPq1MLxXzvkuGiCtH2edHWeadiFBlRsHIipEcIw/nObwm/08Ygy2JeMHSl2N96fdr416pR84Cz6lQi2hoKBvk5QNR6UJaBV9/7vayHGiNdLUI8Ldl6IZX3+je/o3Nog+gaC1ucvV8Ixfd73TnxkHFfdmhJkkZIkhQmSZJSkqSgG1zXR5KkSEmSLkmS9NZ/ucaHEbtKU/SUnKKbXjvY34HYjALCknNveu2tIEkS9qZ6dGtmw1MdXHm7b3O+GOrL7+Na8f1If57p6EpbN4tGBX8VSpl314air6XBKz29bnr93P2x6GlpML4q6+/cDiQNiN3X8IuMbKDZADj3j1C8u9vIMhydDYsGiYDvme0i0LyT4E+WIXw9zGojsu0B42DaGej8hjr4uwuo96e7Q18fW7Q0JNadSarz3ABfO05duUrytSIUConB/vYciM4gPa8YgCfbOmNvosvX2yKR5dozIloaihsGfwnZhRy6lMXIICcUNdrK155JQltTQd+W1VYHsRn5rD2TyMRgl0YFf9kFpUxaeIJvtkXS39eeVVPbY9WyJ0gKYbdyr9E3h5BXYfp5UWHT0IaNM+AHH6FGmn/zEYB6CV0Fc7uI2eRxq4WpvMYt5IcP/iCCv27vif1NHfypeURIzytm5ckE+vjYYqKvBeeWitER5+D7vbSHnr4t7Ui6VsT5xJybX3y7tH0OtI3gwLf37j0eUu7XLn0BGArsb+gCSZI0gFlAX6AFMEaSpFs0IHq8sDMRGeDU3OKbXlt1OFt/tu7h7EFh3oFYjsVl879B3lga6tzw2rTcYv49m8yo1k6Y6ldWP3WNwamNMFa/Ea0mCqPjiA13aeWVlBaKrPjWN8Ww+JQ9Yj13QmE2rJgg/hhYwuRdMPAnEciquVuo96e7gKm+Np29rNlwPrnOoH+/yiBsc2gKAEMDHVDKsP5MMiDaPWf08OJcwjW2haXd0vuuOJmAJCHEGiopq1Cy4VwyPZvbYKJXnXz6dc8ltDUVPNf55n59p+Ov0v/nAxyJyeLTIT78PNofQx1NUZ2zbArJZ29pnXeEprZQ8HxuP0zcCI6tYd+X8H1zWDJSiFLlJN74HvkZYv554QBhQm/bEp4/AB7db20tMXtg9yfCWifktdv/nNSoeQD5fnsUpRVKkYTOSxWquL6j1EmOu0DP5jZoKiQ2X0i5d2+iZwZtpkDYOqGsrEbFffkOlmU5Qpblm/1PtAEuybIcK8tyKbAMaECpQw2AhYE2WhoSydduHgCaGWjT2cuKf88l3xszzjvkQlIO322PpF9LW4YFOtz0+iXH4qmQZSZ1cKn9hFtXcTArvIHfjGsXMHUW8zV3i6uXhSLo+RXCoHnUEhGQ3gmXdglZ+Mgtwttvyt67Yxuhphbq/enu0dfHlrTcEiJSa3cauFoa4G1vzMbz4he/h7URAc6mrDiZoKr4DQ10wN3KgO+2RzZ6j6pQCrGGTp5W2JtWt0QeiM4gq6CUIQHVe0lcZgHrziQxrm0TrIxunGBafPQKo+YIa4g1L7RnXLsmtVuW7AMg+Yyozv+XSJLw5hu7TKgOt5sKqaGwYRr84A2/toYN04WI1c6PRLv73q9E0Pedl7CgyUsVLelPbQRj+1t7/2vxsOppEQAP+kUtOqXmkSIsOYflJxOYGOyCq6WBqHLLStFyreaOMdHXor2HaAO9vtPjrhL8omiRP/DdvXuPh5AHOYXhACTU+Hdi5WP1IknSs5IknZQk6WRGxm22wTzkKBQS1ka6pDWiAggwNNCRtNwS/jl25R6v7NbIzC/h+b9PYW6gzWdDWt60N7y4rIIlR6/QvZm1ag5ShXs3QIbYvQ3fQKEQggrxRyDuwB2vn6jtMKezOByNXSEMmu8kW1hRLsRj/h4qZNWn7BazQLfSoqXmbtPo/elx3ps6eor5vfrUifu1tONswjXiMgsAGN3aiej0fPZGVSoLayh4rVdTotPzmbs/tlHvt/5sEik5xYxpU1vF89+zyZjoadUSvVp05DKaCkUtQZj6WH4invfXXaCjhyUbXwqpv1XU3h8K0iE3uVHrvCdYeoo5wVfD4YWj0OszYfYevh5OLoDDP4tZmL2fQ36aqNZNPQwvnYCQmbdu01BWDMvHg7IcRi8RlVA1ah4RZFnmk43hmOpp8XJ3T5HcObsUHILEz5qau0I/H1uuZBUSnnJ3x5FqYWApVNFDV0F2436XPA7cswBQkqSdkiRdqOdPY7Pk9Z36G0wRyLI8V5blIFmWg6ys7oKf2kOKpZEOmfmNm2Xr421LJy8rPtscQUxGPf5294Gs/BKmLDpJZn4J8yYE3VQhFGD16USyCkqZHFLPQc4+AHRMRNvGjQicCIa24oB0u5koWRYZpn9GiBmBZ/eB1x36BBXnCLGHQz9Cq6eEp5ad753dU81/uj89znuTjbEugc6mbDpft8VnRCtHNBUSi4+IBNQTAY40sdDnqy0XVRW/Pj62DA1w4KutF1lwKO6GWeKcojK+3hqJn6MJvVrYqh4vKq1ge3ga/VraqXxGK5QyG8+n0LWZFdZGDc/jHo3N4r11FwjxtGTehCAxA1Qf9gHiY/KZG349/hMkSagLt39J+Ji+eRneTYYPsuCDq/Beugj6ur0rfAJvt2q35XVIOSuM5W/mK6jmrnKz+WNJkppJknREkqQSSZLUfbm3wfbwNI7GZvNqTy/RNp4aCulh4D/mfi/tkaKXty0aCoktoffIFL6K4JdAoQkHf7y37/MQcc8CQFmWe8iy7FPPn/WNvEUiUDON6wjcx/Tqw4GVoTZZ+Tc3eAdRMfxmuC96Whq8uOQ0eyLTKa9QNni9LMtcLSglIbuQuMwCotPyuJSeR25x2V1Z+47wNHr/uJ+wpFx+HBWAb6Vf4Y2oUMr8cSAOP0cT2rrWIyWsoQlunUQF8EaBnZauyIJfOSSsHm6VinIhn77rY2g5QlgxmLve+n1qkpMIf/aFywdg0K9i1u9Olf7UAOr96b+kv6894Sm5xF6XZLI21qVfSztWnkqgoKQcbU0Fr/duysXUPNacFvNrkiTx+dCW9Gxhw0cbwnlrdSgl5RV13iM0MYcBvxwgM7+EDwZ61xJ/2RmRRmFpBYP8qtsbj8VmkZFXIlT9GiC3uIxpS8/gbK7Pr2MDb+zvZ+MjhGBSzjX2y3J/UChA88btro3izBI4vQg6vgrN+t35/dQ0mkbOH2cD0wC18sVtUFJeweebI/C0NmRMG2fx4LlloNASs65q7hrmBtq0dTVn84WUe9sGamwHgePh7D83n49+THiQe8hOAJ6SJLkCScBoYOz9XdKDj4WBzi0pKtkY6/L9SOGtNWnBCSwMtBnga4e9qR5XC8u4WlBKZn4JSdeKSLxaRH5Jeb33MdLRxMFMD1dLA3wcTPBxMKGlgwnmjajgXSss5fPNEaw4mUhzO2P+nuxHM9vGzcvtjEgjLrOAX8cGNNwq6tZVCLxkx944U93qKWH2vvNDcOvW+LbN4lxYNQku7RTGyT0+vvMB8YQTsGysMJh/ctW9k5dXc7uo96dG0r+lHZ9sDGfT+RTRSlWDie2b8O+5ZNaeSWJcuyb0b2nHPMdYvt8RxUA/e3S1NNDV0mDOuFb8sDOKX3Zf4lJGPs93dsfV0gBnc31WnEzg4w3hWBhqs/y5YFo1Mav1HuvPJmNrrEubGgmi9WeTMdDWoHtz6wbX/cOOKDLyS/hjYlAt4Zh60dYXlgwpZ2/56/PQkRoqZgddQoT1jJr/GtX8MYAkSVXzx+FVF8iynA6kS5LU//4s8eHmr8OXuZJVyKKn24jET0U5hK4Qnpz698iz7jFmsL89b64OZWdEuspS7J7QYbqw0Tn8C/T96t69z0PCfQkAJUl6AvgFsAI2SZJ0Vpbl3pIk2QN/yLLcT5blckmSXgK2ARrAn7Ish92P9T5MWBhqk11QilIp18qC34iuzaw58W4P9kams+5sEktPJFBarkRbQ4GZgRbmBjo4munTzs0CRzM9TPS00NSQ0FQoUMoyabnFJF0tIulaEWHJuWy5UF3KtzbSoamtEc3tjLEy1MFEXwsdTQWSJHEhKYdjsVmEJomA9YUu7kzv4XlDifeayLLM3P2xOJnr0cfbtuELXTuJj5cP3DgA1NQWMuZrpohhb79RN19EVgwsHyfUpQb+JILIO+X8Clj/khBkeGojWDW983uqaTTq/enuYmuiS2sXMzacT+albh61EjWBzmb4OBjz1+HLjG3jjEIh8Vbf5oyZd5Q5+2KZ3kMEjAqFxMxeTWlma8xrK88xZdFJQHQvyjJ0aWrF9yP96yScrhWWsi8qnafau6BRuR+WlivZciGFXt626GrVv9dEpOTy1+HLPNnWuVGdCADY+QmhJll+dMVQinOEArGuKQz/Uz2HfH+ob/647e3cSJKkZ4FnAZydne98ZY8AGXkl/LLrEl2bWtGpamY4ZhcUZICfuv3zXjA00JF5B+L4bFM4nb2sVK36dx1TZ/AdLYLAkJlg2HAC8HHgvuzesiyvBdbW83gy0K/GvzcDm//DpT302JroUq6Uycgvwca48V5z2poKennb0svblqLSCipkGQNtjdsy58wpLCMsOYcLyTlEpuYTmZbLkqNXKCit3bqlraHAz8mEl7p50tvbBm/7m/tw1WRfVAanrlzlk8HeN27PsvAAQxsh8HKzAM1nOBz9XSjnmTiAS8f6r1Mq4eR82PGBEE8Yt/rOq3RFV2Hr28JnyCUERi5SZxvvA+r96e7zRIAj76wN5UhsFu3dq43dJUlickc3Ziw/y/pzSTwR4EiwuwUDfO34cVcUze2M6FUjudPf145OXpZcSs8nLrOAuMwCbE10GdPaud6E15z9sZRVyAyrYQlxIDqD3OJyBvja1bm+itn7YjDQ1uT1Xs0a/0na+Yuf3bxU0W70qCHLsP5FuHpFJKYe88PTfeSW9BFuhCzLc4G5AEFBQQ+eHPh/jFIpM3PlOUorlLzbv0ZX7bmloGcOHj3v3+IeYbQ0FLzXvzlPLTjBoiOX69dzuFt0fEX4Ph/5FXp+fO/e5yFAnb57xKhSwbycWXBLAWBN9LQbV4FriCpp3/Ye1Qe9CqVMdkEpxWUVlJRXUK6UcbEwaDADfzPKKpR8uimCJhb6jGp9k8ylJImA6vKBm2fnFQqh3PnXAOGnNWIBePWufl6WIeGYkFOP3QPu3WHwr7cun349MXtg3VRhxNzpdej85q2r8qlR84AyNNCBH3dGMWvPpVoBIMAgP3v+PBTHV1si6e1ti762Jt8M9yMhu5Bpy86w/Nlg/JxMVdcb6WoR4GxGgLMZNyIlp4g/D8YxxN++Vkv5+rPJmOprEeJZvyBPem4xm86nMCHYpWHRl/qw9xcfk0+D8SPYeXfoJ9FK3+tTaNL+fq/mcUY9f3yPmHcglv1RGXz2hA8e1pWqtkXX4OJmkTzWvPlIi5rbo0tTa7o0teKnXdE8EeCAxU28n28bSw8xx3liPnSY8Vgn2R9kGwg1t4FrVQCYVXCfV1IbDYWElZEOTub6eFgb0czW+LaDP4BFR65wKT2f9/u3aFy7gFsXIX2eHn7TSzG0ggn/io3in5Ewqx2sngJb3oJfAuHP3pB4Avp/Jyp/dxL85STCqmdg8RDQMYIpu0Qbqjr4U/MIoaulwZQQNw5dyuJM/NVazykUEv8b2ILU3GK+2SbsF/W0NfhjYmusjHR45q8TJGQX3vJ7frMtElmGmb2qW6gLSsrZEZ5G/xqKoNdT5Sk6IbjJrb2hnT9o6YtkzqPG+ZWw83/i4BT80v1ezeOOav5YkiRtxPzxv/d5TQ89Z+Kv8s024T08tk2NpHL4OqgoUXv//Qe81785haUV/Lgz+t6+UchMKM2HY3Pu7fs84KgDwEcMe1NdtDQkLmfd+oHpYSEzv4Qfd0TR2cvqhiIOtfDoLj5G72jc9UY2MGmrMDc2tIKEo3BiHhg7wJDfYWYktJ58+7M+xbmw5wv4JQgubhQVv2f3VcvJq1HziDG2rTPGupr8cSCuznOtmpgzIbgJCw9f5uTlbACsjHRY8FQbSsuVTPzzOJGpeY1+r3n7Y1lzOonJIa44meurHt8RnkZRWQWD/etX/ywpr2DJsXi6NrXGxdKg3msaREtXCE5Fbf3vDeHvFbIMB76HNZOhSQex9z2q840PCbIslwNV88cRwApZlsMkSXpekqTnASRJspUkKRF4FXhPkqRESZIap6z2GJJTVMbLS89gY6zLF0N9q0dfZFmo3Vo2Vf9u/g/wsDZiXFtnlhy7ckv7/S1j0wKaDYBjs8VZ7DFFHQA+YmhqKHAy068juf4o8dmmCIrKKnh/QIvGzyga24O1t1DqbCza+hA4ASZugBmh8H6mmH3xH3v7psdlRUKB6ic/2PelaC996QR0fUe8nxo1jygGOpqMaevMlgspXM6s26HwZp9m2Jvo8fqq8+RVWst4WBsy/6nW5BSVMfDXg/y+N+amVjVz98fw2eYI+re0q1X9A1h5KgEHUz2CmtTfPrrnYgaZ+SWMv9XqXxVevSEnoXGdBg865aVCjGrXR2I2etwaEeSque/IsrxZlmUvWZbdZVn+rPKx2bIsz678e6osy46yLBvLsmxa+ffH96R7A2RZ5p01oaTkFPPzmIDair8xuyDpFLR7Xp34+I+Y0cMLQx1NPt0Ufm9tIUJmQvE1OPHHvXuPBxx1APgIEuBsxpGYLMpucFB6WFl9KpG1Z5J4satHdY9+Y/HsAfFHoeQ2M0t38gtAliH8X1Hx2/6emBeashtG/iWUqdSoeQx4poMreloafLKxboBkoKPJdyP9iM8u5I1V51W//Fu7mLPtlU50bWrFV1sv0vW7vaw6lUjytSLVa/OKyzh0KZMXlpzm880X6etjy/ej/FTKnwCHL2Vy6FIW44ObNKiQvPVCCqb6WnT0sKz3+ZtSNS8cueX2Xv+gUJgNfw+Fs39D57dg2B/q4E/NI8myEwlsCk1hZi+v2hYysiy6dEycwH/c/VvgY4aZgTYzenhxIDqTNaeT7t0bOQSCRw84MgtKH6yRqf8KdQD4CNKzhTW5xeWcvHz15hc/RByNzeK9dRdo62rOtOv8xBqFRw9QlglT+P+S3BRYOhpWjAc9U5i4EcavBYdW/+061Ki5z1gb6zKjhxe7LqazKyKtzvPt3Cx4q08ztlxI5add1XMgloY6zB7Xil/HBqCvpclrK8/R/svddPhyN31+3I/vR9t58o9j7AhP4+2+zfjtycBadjJKpcwXWy7iYKrHU+1d6l1babmSXRHp9Ghug9aNVIVvhJGt+Lm+sEYoBT9sKJUQthbmdRViV0PnQde31dUPNY8k0Wl5fLQhjI4eljzf6TqLqEu7IOmkqBSpxV/+U8YHN6G1ixkzV55jzr6Ye1cJ7PQGFGYKW4jHELUK6CNIiKcV2hoKdkWkEexucb+Xc1c4dCmTZ/46gaOZPr+MDaiV2W80zsFCyjlsHTQfeNfXWC+XDwnfrNIC6PUZtH1e7Z2l5rHmqQ4uLD+ZwEcbwungYVlHDGpyiCsRKbn8uDOaorIK3urTDEmSkCSJAb729PWxIyIllxOXszkel01haQW9vW0JbGKGv5NpvabtK08lEJqUw/cj/RoUnzoUk0leSTl9fW7gKdoYWk8Wir7h68Bn6J3d679CliFys6h4pIWKmaeJG8H5tuzl1Kh54Ckuq+DlpWcw0Nbk+5F+tbsCZBn2fg4mzuD/5P1b5GOKloaCxc+05bWV5/hiy0UuZxXy8WDv20/MNYRzW6EQf+hnCHrmsetyUJ9EH0EMdDRp527BrovpvDegxc1f8ICzPyqDKYtO4mJhwN+T22JldJvywBpa0GIwnF8OJfm3P8fXGGRZ9JZvfQvMXGHSFrDyunfvp0bNQ4KWhoKPBnnz5B/HmLs/tk41X5Ikvhnhh562BnP2xZJbVManQ1qqkj4aCgkfBxN8HEyY1MH1pu8XlpzDB+vDaOdmzpAGxF8AtoamYqijSUfP22z/rMJ3lJjz3f2JSDQ9qIq+pQWQGgrJZ+H8Mkg+A+buournMwwUd2YHpEbNg8wXmyO4mJrHgqdaY329ZdalnWL2b+BP6urffUJXS4OfRwfQxEKfWXtiSLxayKwnAzHWvcv7aec34K+BcGYxtJlyd+/9gKMOAB9Reja35v31YZxNuIZ/DQ+th4kKpczS4/F8vCEcNysDlkxue+feMH5j4NQC0eYUOP7uLPR6Kspg00w4/Rd49YGhc0H31kzu1ah5lOngYUn/lnb8uucSPZrb0MK+tkChhkLi0yE+mOprVf7yL+Ln0QGYGdzaYexSeh5PLzyBmb42v4wJbHD2r7C0nK1hqXRrZl2rdfS2UGhA9w9E2/fpRdD6mTu7380oLYTsGMiMhqxLdWecZSVUlEJ5SeWfIsiIgsxI8RyAuRsMngW+o9UdCmoeeXaGp/HXkSs83cGVrs2uUxKXZdj7haj++Y29PwtUAwiLoNd7N6OJuQHvrA2l748HGNvWmRGtHOsG7beLSwg4tYODP0LgxMcq4JfuqcrOfSIoKEg+efLk/V7GfSWvuIyu3+7FVF+b9S92wEDn7v1SLywtJyotn4spuVzJLkRbQ4GBjgZ62prYm+jibW+CjbFO4xU66+HUlWw+/Dec0KQcOnhYMGtsIKb6d+EHU5bh19agbwHPbLvz+11P0VXR8hm3X8wOdH1PmMuruRs89INI6r2pmsz8Evr9dABDHU3+fbkjhg3sUYuPXuHTjeEY6Gjydt9mDG/l2Ki95UJSDhP/PI5CIfH3M21pamvU4LXzD8bxycZwVk9tX1sI4naRZfizD1yNg2ln777Cb3acmFsJWwvXrtR+TlOv7vWaOqCpKw43mrqiK8HeX0jb2/mDsd3dXd/jh3pvekhIzSmm70/7sTPRY+2L7esmfKK2wz8jRPWv1VP3ZY1q6nIsNosfd0ZzJDYLDYVE16bWjGnjJEaeGuMFfSOid8KSYTDwZ2g18e4s+MGi3v1JHQA+whyOyWTcH8fo29KOX8cE3FFAlnStiH/PJrPhXDIRqbkqmysNhUSFsu73kKWhNt72Jvg5muDvbIqvoymWN6ne5RSWcSQ2k02hqWw4l4ytsS7v9G/OQF+7O1p7HQ79BDs+gOcOgJ3v3btvTiIsHioOfYN+URvH3n3Uh6xHjKOxWYydd5RBfvb8MMq/wZ/ziJRc3lt3gVNXrtLGxZynO7oQ7G5ZZ95PlmVOx19l/sE4tl5IxdZYlyVT2uF6A0+/0nIlnb/Zg5O5PiueC757n1z8UfizN7SdCn2/vDv3TDoNB3+AiA0gKcCzpxCdsfAAS0/Rwqm2k7kfqPemhwClUubJP45xNuEaG6d1xN3qujEQWYZ53YQwyEunHqtq0MNCXGYBy08ksOpUIpn5JRjpaNKlmTU9W9jQpanV7bWIyrIQviq6Kv7fH70uiHr3p0fus1RTTXt3S97o04wvt1wk0NmMZzrefF6mJoWl5Ww8n8Kqk4kcrzRnDnQ2ZXp3T5rbGdPM1ggnM31koKisgsKScuKzC7mQlENYci6hSTn8uieDqvjQykgHB1M9HMz0sDPWRSmL1xWXVRCbkU9oUg5KGfS1NXihizsvdvW4q5VLFYEThbnxro9h3Kq7c8+0MPh7OJTmC4VPl453575q1DzCtHOzYEYPL77fEUWwuwWjWtdvidLczpiVzwWz8lQCX22N5Pm/T6OhkPB3MsXLxojisgqKSitIuFpIWHIuxrqaTOnkxjMdXbE2unGr0LozSaTkFPPF0JZ395NzbieCv2O/g433nbWcJ5+BXZ8IXzIdEwh5VYjNGNvfvfWqUfOIs+TYFY7EZvHl0JZ1gz8QiZXk06ISpA7+HkhcLQ14q28zZvbyYl9kBtvDU9kVkc6Gc8loKiR6trDhpW4eeNvfwtiNJAlF0GVjIHQl+I+5d5/AA4S6AviII8syzy0+xe6L6fz1dBs6NMLf6lJ6HgsPX2b9mWTySspxszJgaIADg/wccLa4texyYWk5F5JyOZtwlZj0ApKuFZF0rYiUnCI0FQp0tTTQ01Zga6xLe3dLOnpa4udoeucl/ZtRVQWcuBFcQ+7sXnH7YdmToG0AT64CW5+7s0Y116POsj+CVChlJvx5jJOXr7LiuWD8bjKzXFah5Ez8NQ5EZ7A/KoOka0XoaWugp6WBiZ4WA/3sGRbo2KjkUVmFkh7f78NQR5ONL3e8u50GABXlsGS4sJ4JmiRmA/VuocU0Iwr2fArh68XrOkwXanW6xjd/rZr/EvXe9ICTklNEz+/34+9kyuJn2tT9WS/IhN/agaEtPLvnwRVvUlOHCqXMmfirbL2QyvITCeSVlNPb24Zp3T0bHwjKMswOETPSLx5/1ESw1C2gjyu5xWUM/e0wl9Lz6eRlxaggJ3q0qC12kHStiI3nktlwPpkLSbnoaCro39KOMW2dCWpidvcPRvebsiL4pVXlLOCO25P/VSl9vg0W7iL4M3W6+2tVU8VD/02o3pvqJz2vmGG/HyavuJzlzwbfcF7vbvLd9kh+2X2JP58Kolszm3vzJiX5sOdzUQnUtxB2ML4jG/bWqyiDK4eFWvG5pWKmL/hFaP+SWkzqwUW9Nz3AyLLMlEWnOHgpg+0zOtdNZMuymN2P3ALP7lUncR9icgrL+PNQHH8eiiOvuJw+3rZ89oRP4wQEw9bByolCCdl35D1f63+IOgB8nCkuq+D3vTGsOJlASk4xpvpaWBnqkFdcTm5xGYWlFQD4OZow0M+eIQEON53Ze+iJ2AjLnxSy7U/MuTWz47w0WP+CkIv26AnD5t1aZl/N7aA+ZD3CxGcVMnz2YWRg5XPBuNxgbu9ucDwum9FzjzA00JFvR/jd0/cCIOUcbHxVmEu7hEDTfmLP0DcHHWPISRDm01FbofiaEGsJeho6vgqGVvd+fWruBPXe9ACzOTSFF5ac5u2+zXius3vdC86vgDVToPv/RHu1moeenKIy/jwYx+x9MVga6vDHxCCa292kc0KphDkhokDw4vFHaRZQHQCqEaXyA9EZrD+bTHFZBUa6mhjpamFjrEOvFrb3/ND1wLHva9jzGQS/BL0+vXkQKMtCeW/rW1CcI17TevKtBY9qbpeH/ous3ptuTFRaHqPmHEFfW5OVzwdjb1qPouVdIKeojH4/HUBLQ2LjtJAGFUjvOkolnF4o5o+LrtZ9Xs9MWMc06w/u3URbuZqHAfXe9ICSU1hGjx/2YW2kw/oXO6B5vZl4brJo/bRsCk9vfdRa/x57ziVc49nFJ8krLufHUf708ra98QuqCgNDfgf/R8YGRB0AqlFTB1mGLW/A8bkiKz/wJ9HOWR8p50S755VDYNNS+PvZtPhv1/t4oz5kPQaEJuYwZt5RdLUUfDPcr65P1x0iyzIvLT3DtguprP5/e3ceXlV17nH8+4YQgmEwQJitjEYZFBFxoFqsqIAKVVTQKpWqCE603l7HVr1qrVrnXqs4tgoOKKJcRXBocUBE5klAuYAQQJkHDQFC3vvHPlwjJJCQnLP3yfl9nidPcs7enPVbDC9nnb32WkNP3O89h3FRVATbN0P+Bti2CbZtgLrNoX7bqvSpcypRbYqom9+Yw6hpebx1dTc6NNtjCrV7cI/uN5/BkE9L/79fktp3WwoY/MI05qzczB9Oz+Wq7q1Lv63JHYafHOynes3UqnIvqFYBFdmLGfS6P3jj9d6twX2B7foEn76n1wzejOVNh6/fg/VfB/fwnPUIdB6oTwpF4qBj87qMHnoiw16ZyaB/TGVQtxbc2vuIvT+5PwA7Cou4Zcxc3pmzmht7Hh7O4A+CvUFrZmvauEgcTVmynpe/WMHgk1vtPfgDmP58cBtH7wc0+KvCGtXJ5NUrT+DG0XP464RFrNlSwB192pc8CDSDU26BlwfA7FcqtnpzxGkAKGIGxw0OBn5TnoSpzwar7u1WrQa06AbHXhbs7ac3bSJxldu4Nm9e3Y17313I85OWMW3ZRh7u34k2DUtYur2MNufvZOjI6Xz2v+v5XY+2DPlFq0pMLCJRsnNXEX96ax7Ns2vy+x6H7X3Cqpkw/hZo+YtgZV2p0jKrV+OR/p1oWLsGT3+ylGbZNRl8cimD/sN6QtOj4eP7gzUiquiWIBoAiuxWuzH0uAN+cRPkr4fCguAru6U2VxZJsMzq1bijT3s6H5rNHWPnc8YjH3NR158xrEfbci1QtXtz+Bten8PyDfk8dMFRnNu5eRyTi0jYXpz8DV999z3DLzmGmhl7zNbZsgpevhCyGkC/Z4Ir8lLlmRk39zqC1ZsLuGfcQpoeXJOzjixhL1UzOOXWYHrwrJHBFj5VkAaAInuqngl1m4WdQkSAPkc1pVvr+jz64deMnLKcMTNXcmbHJnTPzaFb2wbUySz5Ho0dhUWMm7ua5yctZXbeZuplZTDisuM4rlX9BPdARBJp3ffbefiDrzj5sBxOb7fH9i478oPB3/at8NsJUKty7zGWaEtLMx44/yi+21LA9a/OpmHtTLq2rLf3iW16QPNj4ZMHg8Vg0qveqvgaAIqISKTVr1WDO/t2YOAJLfjvf33NuHmreXXaCtLTjMMa1aZ+rQzqZWVwUEY6qzdvY/n6fPI2bmPHriJa52Rx1686cO7Rzcq0ObyIJLf7xy+kYOcubj+73U/v8yoqgjeHBAu6Xfiy9vtLUZnVq/HUJV3o98RnXPHCNN646kRa5+xxe8HuewFfPAdmvABdrwgnbBzpf0MREUkKbRrW4pEBR1O4q4gZyzfx70VrWLh6Cxvzd7J8Qz5bCwppXCeT3Ma1Oa19I05s3YCT2jQgLS3pF2kUkTKYuXwjo6blceXJrfZ+Uz/xnuD+/tPvhtxe4QSUSMjOyuAfg7pyzt8nMej5qfzPtT+nbs09ZpO0OgUO7QYf3RfcC5i5n30Ek0woA0AzOx+4AzgC6OruJa49bGbLgK3ALqDQ3bskKqOIpCbVp+hLr5ZG15b1Sp66IyIpqajIuWPsfBrWrsG1p7b96cHZr8DHf4WjLwn2/ZWU97P6B/HUwC70Hz6ZG16fzZMXH/PTK8ZmwYcFT58Ckx6BU28LLWs8hHXn6zzgXODjMpx7irt30psrEUkQ1ScRkSTz2vQVzM7bzC29j6BW8eneX38Ab10d7PV75kPBG3sR4JhDs7mx5+FMmP8d//xs2d4nNOsMHS+AyY/DphUJzxdPoQwA3X2Buy8Ko20RkX1RfRIRSS6b8ndw3/hFHNsim76diq3suHI6jBoIDY+AASOr7JL+cuAuP6klpx7ekD+PW8CcvE17n7D7yt+HdyY0V7xFfe1bB94zs+lmNnhfJ5rZYDObZmbT1q5dm6B4IpLCylSfVJtEROLrvvGL2LxtJ//Vp8OP0/jWLYaR5wfbPfx6NGSWsBm8pDyzYGXQnFo1uOalmWwp2PnTEw4+BI6/CuaOCj5QqCLiNgA0sw/MbF4JX33L8TLd3L0z0Au42sxOLu1Ed3/K3bu4e5ecnJwK5xeRqiuR9Um1SUQkfqZ/s5GXv1jOoBNb0K5pbKGOrd/CiHMAg0vGQO1G+3wNSW3ZWRn87aKjWblpGzeNnoO7//SEn/8esnJgwh9hz2NJKm6LwLh7j0p4jVWx72vMbAzQlbLdlyMiUirVJxGR5Fe4q4g/vjmPxnUy+d1phwVPFmyGEefBD+vh0rehfutwQ0pSOObQevznGbnc++5CXvz8Gwae0OLHg5l1oPvN8M71sPBtOOLs0HJWlshOATWzLDOrvftn4HSCxRlEREKl+iQiEr5/fLaMBau3cPvZ7YKFX3Zug5cGwNqF0P/FYBEPkTIafFIrTsnN4e63FzBv5eafHuz8G8g5HN6/DQp3hBOwEoUyADSzc8wsDzgBeMfMJsSeb2pm42KnNQI+NbPZwBfAO+4+Poy8IpI6VJ9ERKJv9eZtPPz+V5ySm0PPDo1h10547VJYPhnOHQ5tTg07oiSZtDTjwQs6US8rg2temsHW4vcDVkuHM/4MG5YEW4okuVD2AXT3McCYEp5fBfSO/bwEOCrB0UQkxak+iYhE311vf0lhkQcLv7gHWz18NT7Y6qFDv7DjSZKql5XBYxcezYCnJnPLmHk8NqDTjwsLtekBR10InzwIh58JTTuFmrUiIjsFVERERERkT+9/+R3j5n7Ltb9sw8/q1YQJt8CcV+GXf4RjLws7niS5ri3rcf1ph/E/s1fxytQ99v/r+ZdgQZg3r0rqqaAaAIqIiIhIUvhuSwE3vD6bdk3qcMXJreCj+2DKE3D81XDSH8KOJ1XEVd3bcFLbBtwxdj4Lv93y44Ga2XD2o7BmflJPBdUAUEREREQir6jIuX7ULAp2FvHYhUdTY9JDMPEv0OliOP1u2D1VT6SC0tKMhy7oRJ2a1Rk6Ygab8otd7cvt+eNU0FWzQstYERoAioiIiEjkDf94CZMWr+f2s9vRZtFw+PfdwRvxPo9Bmt7SSuXKqV2Dv/+6Mys3bmPoiBns3FX048Eknwqqfy0iIiIiEmmzVmziwfcWcWbHJvTfPho+vBOO7A99H4e0amHHkyrq2Bb1+Mu5HZm8ZD1/enPej5vEF58KOvGecEMeAA0ARURERCSythbs5LqXZ9KoTib3NJuEfXgHdDgPfvWEBn8Sd/2Oac7Vp7TmlakreOaTpT8eyO0JnQfCpw/DrJfCC3gAQtkGQkRERERkf3YVOTeNnkvexnxGHbOAuhPvgvbnwjnDNfiThPmP03JZuu4H7nl3AYfWP4jT2zcODvR+EDYth7HXQu3G0PqX4QYtI10BFBEREZHIKSpybn5jDu/MXc1NTWfTZd5dcMwgOPfpYGNukQRJSzMePL8TRzary7BXZjFlyfrgQHoGXPACNMiFVwfCt3PDDVpGGgCKiIiISKS4O7eNnceoaXlcl/05g9ffD6fdBWc9rMGfhKJmRjWeHtiFpgdncslzX/De/G+DA5l14devQY3aMPJ82JwXbtAy0ABQRERERCLD3bn7nQWM+Hw5V2Z9xO93PB1cZel2nbZ6kFA1rJPJa0NOpF2TOgwZMZ1RuzeKr9sMLn4ddvwAI86DH9aFG3Q/NAAUERERkUhwdx6YsJBnP13KpdU/4KYaY7BB70C7PmFHEwGgXlYGIy8/jp+3zeGG0XN4YuL/BquDNmoP/V+EDUtg+MmwYmrYUUulAaCIiIiIhG7N1gKueHoij09cwkXVPuD2w1djQz6C5seEHU3kJ7JqpPPMwC70Oaop941fyI2j57A5fye06g6XTYC0dHi+F0wZDru3jogQTaIWERERkVCNm7mMW9+YzQ87i/hjzbf57Tm9sI79NOVTIisjPY1H+neieXZNhn+8hH8tXMOfzmpHn6M6YVd+BGOGwrs3wPLJ0OdvwT2CEaErgCIiIiISivWrv2HYIy9w1avzOaTwG8a1/4jL/3AfaUeep8GfRF5amnFDz8MZe003mmUfxLBXZjHwuS9Y9kMGDHgJetwBX74Fjx8Pnz8B278POzIA5hG8LFlRXbp08WnTpoUdQ0QqV9K/E1BtEqmSVJvKyQt3MvmLybz86QImbGhEEcawxvMZ2vcXpLfslrAcIpVpV5Ezcso3/HX8Irbt3EX33Bz6dW7OL7OWUGPiXcGVwMyDoesV0PVKqJWTiFgl1idNARURERFJEmbWE3gUqAY84+737nHcYsd7A/nApe4+I+FBiyvaxZaVC5k36wumL17FG2ubsLSoEXXI5qJma7m450m0ads31IgiFVUtzRh4QgvOaN+Y5yYtZcyMlXywYA0HH1Sds498gJNab6DDNy/S5KMHsEmPQcuT4NAT4dBu0LRzsKdggmgAKCIiIpIEzKwa8DhwGpAHTDWzse7+ZbHTegFtY1/HAU/EvlecOxQVQuF2vHA727cXsH17Advy8yn4YTMFP2xh09atrN2Sz7qNW1m35QdWfA/zCnJY4k2AhkBDjq2zkWs7FtK7+2lk1s6ulGgiUdGoTiY39zqC/zw9l08Xr2P0jJWMmraCFwuLgF9Rr2Y/2mes5bBlX9Fg4UwaMJEG6duon9OYg+rUJ7NuDpkHNw6+ameTXiMLMmpBRlbsqxakVewuPg0ARURERJJDV2Cxuy8BMLNXgL5A8QFgX+AFD+7x+dzMDjazJu6+usKtr1kAT5wAwMRdnRi084YSTqoV+2pIOrtolFFAhwbb6dd4Gx3bHUHHw9qSnZW4Kx0iYUmvlkb33IZ0z23Ith27+HL1Fuav2sy8lZuZtzKLl77PYVvh8cHJhcCKvV+jq01mVI27fvrktTOgfusKZauS9wCa2Vrgm3L+sgZAtHdtDChn5UmGjJAcORORcZ2794xzG3G1n9oU5T9nZSu/qOYCZTtQpWVLWG0ys/OAnu5+eezxJcBx7n5NsXPeBu51909jjz8EbnT3aXu81mBgcOxhLrAoAV3YLew/Z7Wv9lOl/RLrU5W8Auju5b6r0symuXuXeOSpTMpZeZIhIyRHzmTIGAX7qk1R/j1UtvKLai5QtgMVkWwlLeiw5yf5ZTkHd38KeKoyQpVX2L+Xal/tp3L7oG0gRERERJJFHnBIscfNgVUHcI6IpDANAEVERESSw1SgrZm1NLMMYAAwdo9zxgIDLXA8sLlS7v8TkSqjSk4BPUChTIM4AMpZeZIhIyRHzmTIGHVR/j1UtvKLai5QtgMVejZ3LzSza4AJBNtAPOfu881sSOz4k8A4gi0gFhNsAzEorLz7EPbvpdpX+6ncftVcBEZERERERET2pimgIiIiIiIiKUIDQBERERERkRShAWAJzOwPZuZm1iDsLCUxs7+a2UIzm2NmY8zs4LAz7WZmPc1skZktNrObws5TEjM7xMz+bWYLzGy+mQ0LO1NpzKyamc2M7esUSbFNhl+P/Z1cYGYnhJ0p2UWxBkWt7kS11kS9vkS1pkS5jpjZ72N/lvPM7GUzyww7U7Ixs/Njv4dFZlbq8vdmtszM5prZLDObVtp5cWw/LnXFzOqZ2ftm9nXse3Yp51Vq//fXn9hCQY/Fjs8xs84VbbOc7Xc3s82x/s4ys9squf3nzGyNmc0r5Xi8+7+/9uPa/33RAHAPZnYIcBqwPOws+/A+0MHdjwS+Am4OOQ8QvLEAHgd6Ae2AC82sXbipSlQI/Ie7HwEcD1wd0ZwAw4AFYYfYj0eB8e5+OHAU0c8baRGuQZGpOxGvNVGvL1GtKZGsI2bWDLgO6OLuHQgWXhkQbqqkNA84F/i4DOee4u6dKnmftP22H+e6chPwobu3BT6MPS5NpfS/jP3pBbSNfQ0GnqhImwfQPsAnsf52cvc7K6v9mH8Ae22CXkzc+l/G9iG+/S+VBoB7exi4gRI2TY0Kd3/P3QtjDz8n2OMnCroCi919ibvvAF4B+oacaS/uvtrdZ8R+3krwRqNZuKn2ZmbNgTOBZ8LOUhozqwOcDDwL4O473H1TqKGSXyRrUMTqTmRrTZTrS1RrShLUkXSgppmlAwehPfXKzd0XuPuiiLcfz7rSF/hn7Od/Ar+qpNfdl7L0py/wggc+Bw42syYJbD+u3P1jYMM+Toln/8vSfmg0ACzGzPoAK919dthZyuG3wLthh4hpBqwo9jiPiLzxKY2ZtQCOBqaEHKUkjxAMBIpCzrEvrYC1wPOxaWXPmFlW2KGSVRLVoLDrTlLUmgjWl0eIZk2JbB1x95XAAwRX5FcT7Kn3XripqjQH3jOz6WY2OMFtx7OuNNq9F2Pse8NSzqvM/pelP/Hsc1lf+wQzm21m75pZ+0pqu6yi8H9JKP1PuX0AzewDoHEJh24FbgFOT2yiku0rp7u/FTvnVoLpRiMTmW0frITnInUVozgzqwWMBn7n7lvCzlOcmZ0FrHH36WbWPeQ4+5IOdAaudfcpZvYowdSWP4UbK7qiXIOSqO5EvtZErb5EvKZEto7E7tXqC7QENgGvmdnF7j4i1GARVJb6UQbd3H2VmTUE3jezhbGrKIlov0J1ZT+1vawOuP8lRSrhuT37E89aWpbXngEc6u7fm1lv4E2C6ZiJEvb/JaH1P+UGgO7eo6TnzawjQYGfbWYQTG+aYWZd3f3bBEYESs+5m5n9BjgLONWjs5ljHnBIscfNiehUGTOrTvDmbKS7vxF2nhJ0A/rECkImUMfMRrj7xSHn2lMekOfuu69wvM6+721IeVGuQUlUdyJdayJaX6JcU6JcR3oAS919LYCZvQGcCGgAuIf91Y8yvsaq2Pc1ZjaGYBphmQZAldB+herKvto3s+/MrIm7r45NMVxTymsccP9LUJb+xLOW7ve1i3845u7jzOzvZtbA3ddVUoYKZ4ynMPuvKaAx7j7X3Ru6ewt3b0Hwl6JzGIO//TGznsCNQB93zw87TzFTgbZm1tLMMghulB8bcqa9WPDu+llggbs/FHaekrj7ze7ePPZ3cQDwr4i8UfuJ2L+PFWaWG3vqVODLECMlrajXoIjVncjWmqjWlyjXlIjXkeXA8WZ2UOzP9lQiskBNVWNmWWZWe/fPBLMhSlw9MU7iWVfGAr+J/fwbYK8rknHof1n6MxYYaIHjCaY4r65Am+Vq38wax/5dYWZdCcYl6yup/bKIZ//3K8z+p9wVwCriv4EaBNMDAD539yHhRgJ3LzSza4AJBCulPefu80OOVZJuwCXAXDObFXvuFncfF16kpHYtMDJW4JcAg0LOI/ERmboT8Vqj+nJgIllHYlNSXyeYqlUIzASeCjdV8jGzc4C/ATnAO2Y2y93PMLOmwDPu3htoBIyJ1Zd04CV3H5+o9uNcV+4FRpnZZQQfKpwfyxW3/pfWHzMbEjv+JDAO6A0sBvKpxH93ZWz/PGComRUC24ABlTm7xMxeBroDDcwsD7gdqF6s/bj1v4ztx7X/+8wWndmDIiIiIiIiEk+aAioiIiIiIpIiNAAUERERERFJERoAioiIiIiIpAgNAEVERERERFKEBoAiIiIiIiIpQgNAiSQzu87MFpjZyHL+umvMbLGZuZk1iFc+EUldFahPI81skZnNM7PnYhvGi4hUigrUpmfNbLaZzTGz182sVrwySjRoGwiJJDNbCPRy96Xl/HVHAxuBiUAXd18Xh3giksIqUJ96A+/GHr4EfOzuT1R2PhFJTRWoTXXcfUvs54eANe5+bzwySjToCqBEjpk9CbQCxprZjWb2mZnNjH3PjZ1TzcweMLO5sU+srgVw95nuvizE+CJShVWwPo3zGOALoHl4PRGRqqSCtWn34M+AmoCuDlVxugIokWRmy4AuwA4g390LzawHMNTd+5nZUKAH0D92rJ67b9jz1+sKoIhUtkqoT9WBKcAwd/8khC6ISBVUkdpkZs8DvYEvgTPdPT+cXkgipIcdQGQ/6gL/NLO2BJ9I7b5npgfwpLsXAhR/cyUikiAHWp/+TjD9U4M/EYmHctcmdx9kZtWAvwH9gecTG1kSSVNAJeruAv7t7h2As4HM2POGpiiISLjKXZ/M7HYgB7g+IQlFJBUd0Hsnd98FvAr0i3tCCZUGgBJ1dYGVsZ8vLfb8e8AQM0sHMLN6Cc4lIlKu+mRmlwNnABe6e1ECc4pIailzbbJAm9hjIxgwLkxgVgmBBoASdfcDfzGzSUC1Ys8/AywH5pjZbOAi+P8lkPMIFleYY2bPJDqwiKSMctUn4EmgETDZzGaZ2W0JTSsiqaI8tckIpovOBeYCTYA7E5xXEkyLwIiIiIiIiKQIXQEUERERERFJERoAioiIiIiIpAgNAEVERERERFKEBoAiIiIiIiIpQgNAERERERGRFKEBoIiIiIiISIrQAFBERERERCRF/B+Y5R5O1GPb/wAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"fig = plot_factor_distributions(\n",
" states={\"baseline\": initial_data, \"subsidy\": data_after_policies}, \n",
@@ -256,7 +234,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.8"
+ "version": "3.7.4"
}
},
"nbformat": 4,
diff --git a/docs/source/how_to_guides/how_to_visualize_transition_equations.ipynb b/docs/source/how_to_guides/how_to_visualize_transition_equations.ipynb
index e02d3837..740092e6 100644
--- a/docs/source/how_to_guides/how_to_visualize_transition_equations.ipynb
+++ b/docs/source/how_to_guides/how_to_visualize_transition_equations.ipynb
@@ -130,7 +130,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAGoCAYAAAAemnx2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABqzklEQVR4nO3dd3hUZfbA8e8hEHqAEAihBBIIvQmRZlcQ0FXsa+91ZS2Lruy6P/uuir2zin1tYEVEiggqIk0kobeEmpAKIQmkn98fc9GISZhkktxJ5nyeZ565c+eWM8lhOHnvfd9XVBVjjDHGGF80cDsAY4wxxtR9VlAYY4wxxmdWUBhjjDHGZ1ZQGGOMMcZnVlAYY4wxxmcBVVCMGzdOAXvYw9dHlVj+2aOaHlVmOWiPanqUKaAKivT0dLdDMAHM8s+4zXLQ1KSAKiiMMcYYUzOsoDCmDEXFJW6HYIwxdYoVFMaUkpCWw31frOWEKQvJzS9yOxxjjKkzGrodgDFuU1V+3JrB64sTWLgpjeCgBpw1qCO5BUU0b2z/RIwxxhv2bWkCVn5RMTNXJ/H64kQ27s0mrEVj7hzdk0uHR9KuZWO3wzPGmDrFCgoTcLIOFvLe8h289eN2UrPz6d2hJU9cMJCzB3ekccMgt8Mzxpg6yQoKEzD27D/EG4sT+WD5Tg4WFHNCTBhPXjiIE2LCEBG3wzPGmDrNCgpT721JyWbqdwl8sXoPCpw9qCM3nBBN344hbodmjDH1hhUUpt6K27WflxZuZd76FJo2CuLyEV25/oQoOrdp5nZoxhhT71hBYeqdZQkZvLhwKz9sSadV00bcdmoPrj4uitDmwW6HZowx9ZYVFKZeONz18/kFW1i+PZOwFsFMHt+by0d0pYV1/TR1SGZuAZ+u2s3pfTsQ2dZa00zdUaVvWhG5RlXfrO5gjKksVeWHLek8+81mVu3cT4eQJjxwVl8uHhZJk0bWY8PUDarKTwkZfLB8F3PX7qWguISGDYSrj4tyOzRjvFbVP90eBHwuKERkHPAcEARMU9XHjnj/MuAe52UOcIuqxjnvbQeygWKgSFVjfY3H1B1HFhIdWzXh4XP6c1FsZ+v6aeqMzNwCPv55Fx8s30Viei4hTRpy6fBILh7Whd4d7KZhU7eUW1CISHx5bwHhvp5YRIKAl4AxwG5ghYjMVNX1pTZLBE5S1X0iMh54FRhe6v1TVNWmzwswS7am8/T8zazcsY+OrZrw73P7c8FQKyRM3aCqrNyxj/8t3cHXazytEcd2a8NfT+3BGQMirGXN1FkVtVCEA2OBfUesF2BJNZx7GLBVVRMARORDYALwa0GhqqXPsxToXA3nNXXUzzsyeWreZpZsy6BDiLVImLolO6+Qz3/Zw/+W7mRTSjYtndaIS4dH0jO8pdvhGeOzigqKWUALVV195Bsisqgazt0J2FXq9W5+3/pwpOuAr0u9VmCeiCjwX1V9taydRORG4EaAyMhInwI27lifdIAn523i242phLUI5r4/9eXS4XXjHgnLP7M5JZt3ftrOZ6v2kFtQTP9OITx23gDOHtyRZsE1f8Ow5aCpLeVms6peV8F7l1bDucsamlDL3FDkFDwFxfGlVh+nqkki0h6YLyIbVfX7MmJ9Fc+lEmJjY8s8vvFPOzJyeWreZmbGJRHSpCF3j+3FNcd1q5Uv4epi+ReYiopLmL8+hbd/2s7ShEyCGzbgrIEduXxEJIO7tK7VkVktB01tcfObeTfQpdTrzkDSkRuJyEBgGjBeVTMOr1fVJOc5VUQ+w3MJ5Q8Fhal7UrPzeGHBVj5YvpNGQQ34y8nduenE7rRq1sjt0IypUGZuAR+u2Mn/ftpBUlYenVo35Z5xvfnzsV1sHBRT77lZUKwAYkQkCtgDXAz8ruVDRCKBT4ErVHVzqfXNgQaqmu0snw48VGuRmxqRk1/Ea98n8NoPCeQXlXDJsC7cdmoM7UOauB2aMRXauPcAby7ezuer95BfVMKo7m154Ox+nNYnnKAGNk+MCQyuFRSqWiQiE4G5eLqNvqGq60TkZuf9qcB9QFvgZaeJ8HD30HDgM2ddQ+B9VZ3jwscw1aCouIQPV+zi2W+2kJ6TzxkDOnD32N5EhTV3OzRjylVSoizclMobPyby49YMmjRqwPlDO3PVyG706mA3WZrA4+rFaFWdDcw+Yt3UUsvXA9eXsV8CMKjGAzQ1SlX5dmMq/5m9gW1puQzrFsprVw7lmMg2bodmTLkOFRTz8ardvLk4kYT0XDqENOGecb25ZFgXWjezyxomcFU0DkU25dwkCaCqNuqKqbINyQd45Kv1/Lg1g+iw5rx6xVDG9A23acSN30o9kMfbP23nvWU72X+wkEGdW/HcxYM5Y0AEjYIauB2eMa6rqJdHSwAReQjYC7yLp2fGZYC155kqScvO5+n5m/hoxS5CmjbigbP6ctmIrvaFbPzWlpRsXv0+gS9WJ1FYUsLpfcO5/oRoYru2sQLYmFK8ueQxVlVLjw/xiogsA6bUUEymHsovKuatH7fzwrdbySss5prjorjt1BjruWH8kqqyPDGT/36fwLcbU2nSqAF/PrYL1x0fRTe7t8eYMnlTUBQ7c2p8iOcSyCV45s8wxivfbkzhoS/Xsz3jIKf2bs+9Z/ahe7sWbodlzB+UlCjz1qcw9bttrN61n9Dmwdw5uidXjOxq3T6NOQpvCopL8Uzg9ZzzejFHdO80piwJaTk8PGs9CzelEd2uOW9dcywn92rvdljG/EFBUQmfr97D1O+2kZCWS2RoMx4+pz8XDOlM02D/H5HVGH9w1IJCVbfjmWPDGK8cLCjihW+3Mu2HBBo3DOJfZ/bhypHdCG5o90kY/3KwoIgPlu9i2g8JJGfl0a9jCC9ccgzj+3egod3XY0ylHLWgEJHOwAvAcXgueSwGblfV3TUcm6ljVJU5a/fy0Kz1JGflcf6QztwzvhftW9rAVMa/ZB0q5J0l23njx0T2HSxkeFQoj50/kBNjwuxGSxOwsg4Wsjk1m017s2nVtBFnDepYqf29ueTxJvA+cKHz+nJn3ZhKncnUa9vTc7lv5jq+35xGnwjPX3mx3ULdDsuY38nIyef1xYm8+9MOsvOLOLV3e249pTtDu1qumsBRUFTCtrQcNu49wMbkbDbu9RQRew/k/brNCTFhNVJQtFPVN0u9fktE7qjUWUy9lVdYzNTvtvHyom0EBzXg/rP6csWIrtZcbPxKanYer36XwHvLdpJXVMwZ/SP4yynd6dexlduhGVOj0nPy2ZB8gPVJB9i4N5sNyQfYmppDUYlnmKngoAZ0b9+Ckd3b0qtDS88jvCURrSrfsuxNQZEuIpcDHzivLwEyKtjeBIgft6bzr8/Xkpiey1mDOvJ/Z/axeTeMX0k5kMcri7bxwfKdFJUoEwZ15C+ndKdHextKx9QvJSXKzsyDrEs6wLqkLNY7RURqdv6v23QIaUKfiJac0rs9fSJC6NOhJd3CmlfbOEDeFBTXAi8Cz+C5h2KJs84EqIycfB75agOf/bKHbm2b8e51wzghpp3bYRnzq71ZeUz9bhvvL99JcYly3jGduPWUHjaGhKkXiopL2JaWy9o9WaxNymLdngOsTz5ATn4RAA0bCDHhLTkhph19IlrSNyKEPhEhtKnhrs/e9PLYCZxdo1GYOkFV+fjn3fx79gZy84u47dQe/OWUHjRpZN3qjH843CLx/vKdlJQo5w/pzMRTe9AltJnboRlTJcUlyra0HOJ3Z7Fm937W7PG0PuQVlgDQtFEQfSJact6QTvTrGEK/jq2ICW9B44a1/71c0Vwef1fVKSLyAmXM6aGqt9VoZMavbE/P5Z+frWHJtgyO7daG/5w7gJhwazY2/iE1O4+pixJ4b9kOiq2QMHWUqueyRdzuLOJ27Sd+937WJR3gYIFnLMnmwUH069iKS4ZFMqBTKwZ0akV0uxYENfCPnkkVtVBscJ5X1kYgxj8VFZfw+uJEnp6/meCgBvz73P5ccmwkDfwkgU1gy8wt4L/fbePtn7ZTWOy5tPHXU2OIbGuFhPF/+3ILWL17P6t37mf1rv3E7d7P/oOFAAQ3bEC/jiFcFNuFgZ1bMbBzK6LC/Kd4KEtFk4N9KSJBQH9VvbsWYzJ+YkPyAf7+cTxr9mQxpm84j5zTn3C76dL4gQN5hUz7PoHXFydysLCYcwZ34rbTYoiyeySMnyoqLmHj3mxW7dzHLzv388vOfWzPOAiACPRs35KxfTswqEtrBnZuRa8OLevcpIkV3kOhqsUiMrS2gjH+oaCohJcWbuWlhVtp3awRL106hDMGdLABf4zrDhYU8daS7fz3uwSyDhVy5oAI7hwTY702jN/JzC1g1Y59/LxzH6t27CN+dxaHCj2XLtq1bMwxXVrz52MjGdylNQM6t6JFY2/6SPg3bz7BLyIyE5gB5B5eqaqf1lhUxjVr92Rx14w4Nu7N5pzBHbn/rH41fmewMUdTUFTChyt28sK3W0nLzueUXu2YdHov+neycSSM+1SVhPRcVm7PZOV2TxGRkOb577JhA6Ffp1ZcPKwLQyLbcExkazq1blov/0DzpqAIxTPuxKml1ilgBUU9UlBUwgvfbuHlRdto2zyYaVfGMrpvuNthmQBXUqJ8EbeHp+dvZlfmIYZFhfLKZUNsFFbjqqLiEtYlHWDF9kyWJ2aycsc+MnMLAGjTrBFDIttwwdDOxHYNZUCnVgEzwZw33UavqamTi8g4PLOYBgHTVPWxI94X5/0zgIPA1aq6ypt9jffWJWUxabqnVeK8IZ24/0/9aNWskdthmQCmqizalMbjczaycW82/TqG8NY1/TmpZ7t6+Zed8W95hcXE7drP8sRMlm/P5Ocd+37tedG1bTNO6dWeY7u1IbZbKN3bNQ/YHPVmcrCewCtAuKr2F5GBwNmq+ogvJ3Zu+HwJz5wgu4EVIjJTVdeX2mw8EOM8hjtxDPdyX3MURcUlvLJoG88t2EIba5UwfmL1rv08OnsDyxIz6dq2GS9ccgxnDoiwnkWm1uQVFrNq5z6WJmSyNCGD1bv2U1BUggj0Cm/JBUM7MywqlGHdQm104FK8ueTxGnA38F8AVY0XkfcBnwoKYBiwVVUTAETkQzzTpJcuCiYA76iqAktFpLWIRADdvNjXVGBbWg5/mx5H3K79nDWoIw+dbfdKGHdtT8/libmb+GpNMmEtgnl4Qj8uHhZZ5+50N3VPflExq3fu56eEDJZsy2D1zv0UFJfQQKBfx1ZcOaIrw6Pbcmy3NrRuZt+T5fGmoGimqsuPaMIpqoZzdwJ2lXq9G08rxNG26eTlvgCIyI3AjQCRkZG+RVwPlJQo7y7dwaNfb6BJoyBevPQY/jSwcjPKGe9Z/h1dRk4+L3y7lf8t3UFwwwbcdloMN54YXS/uevcHloN/VFyirNmTxZJt6fy0LYMV2zPJK/S0QPTv2IqrRnVlZPe2xHYLJaSJXf71lreTg3XHGS1TRC4Akqvh3GW1Xx45Imd523izr2el6qvAqwCxsbFlbhMo9mblcffHcfywJZ2Te7VjyvkDrbmuhln+lS+vsJg3f9zOywu3crCwmItiu3Dn6BjLyWpmOfhbL4wft6azeEs6SxMyOJDn+bu4V3hLLj42klHd2zI8qq3dP+YDbwqKW/EkY28R2QMkApdVw7l3A11Kve4MJHm5TbAX+5pSZq9J5h+frqGgqIRHzunPZcMjA/bGIeOukhLly/gkpszZxJ79hxjdpz2Tx/e2sSRMtcrMLeDHren8sCWNxVvSScrKA6BT66aM7x/BqB5tGdU9jHYtG7scaf3hTS+PBGC0iDQHGqhqdjWdewUQIyJRwB7gYuDSI7aZCUx07pEYDmSparKIpHmxrwFy8ot4YOY6Pv55N4M6t+KZPw8mul0Lt8MyAWrl9kwe/moDcbv2069jCE9cOJBR3cPcDsvUA4XFJfyycz/fb07j+y1prNmThSqENGnIqO5h/OWUME6ICSMytJn9MVVDvOnl0Ra4HzgeUBFZDDykqhm+nFhVi0RkIjAXT9fPN1R1nYjc7Lw/FZiNp8voVjzdRq+paF9f4qmPVu/az+0f/sKuzINMPKUHt4+OsRvcjCt2ZR7ksTkb+So+mfCQxjx14SDOPaaT9dwwPtmz/xDfbUrju82p/Lg1g5z8IoIaCMd0ac0dp/XkhJ5hDOzUiob2vVcrvLnk8SHwPXC+8/oy4CNgtK8nV9XZeIqG0uumllpWPJdcvNrXeJSUKFO/38bT8zYTHtKED28cybAoGwjI1L6c/CJeXriVaYsTaSBw+2kx3HRSNM2C7YZLU3kFRSWs3JHJok1pLNqUyuaUHAA6tmrCWYMiOKlnO0Z2D6NVU7sPwg1ejZSpqg+Xev2IiJxTQ/EYH6UcyOPOj1azZFsGZw6M4D/nDrB/XKbWlZQon/6yh8fnbCQtO59zj+nE38f1IqJVU7dDM3VMWnY+CzelsnBjKj9sSScnv4hGQcKwqFAuHNqFk3u1o0f7FnYZww94U1AsFJGLgenO6wuAr2ouJFNV325M4a4Z8RwqKGbK+QO5MLaz/SMztW7Vzn08OHMdcbuzGNylNf+9YihDItu4HZapI1SV9ckHWLAhlQUbU4nbtR+ADiGeVoiTe7XnuB5h1q3YD3nzG7kJ+BvwrvM6CMgVkb/huSoRUlPBGe8UFJUwZc5Gpi1OpE9ECC9eegzd7cZLU8tSD+Tx2JyNfLpqD+1bNubpiwZxzmC7T8IcXX5RMUsTMvlmfQrfbEghOSsPERjYuTWTxvTk1D7t6RsRYn8g+TlvenlYXy4/tivzIBPfX0Xc7iyuGtmVf5zRhyaNAmMiGuMfCopKeGtJIs8v2EpBUQk3n9Sdiaf2sL8gTYWyDhWycGMq89en8N3mNHLyi2jaKIjjY8K4c3RPTund3rp01jH2L74Om7M2mbs/jgdg6uVDGNc/wuWITKD5YUsaD8xcx7a0XE7t3Z7/+1NfosKaux2W8VN7s/KYv34vc9elsDQhg6ISpV3Lxpw1KIIxfcMZ1T3M/iCqw6ygqIPyi4p5dPZG3lqynUFdWvPiJcfQJbSZ22GZALJn/yEembWer9fupWvbZrxxdSyn9raJ5cwfbU/PZc66vcxZu5fVzv0Q0e2ac8OJ0YzpG87gzq3tslg9YQVFHVP6Ese1x0UxeXxvghtaH2tTOwqKSpi2OIEXFmxFUSaN6ckNJ0bbX5Xmd7akZPP12r3MXpPMxr2esRAHdGrF3WN7MbZfuI2KWk95VVA404WHl95eVXfWVFCmbN9uTOHOj+I840zYJQ5Ty37cms7/fbGWhLRcxvYL5//+1JfObaxlzHh6ZmxKyWZ2fDKz1+5la2oOIjA0sg3/OrMP4/p3sFwJAN6MlPlXPCNlpgAlzmoFBtZgXKaUouISnvlmMy8t3EbfiBBeuXwIXdvadWpTO1IP5PHIVxuYGZdE17bNePOaYzmlV3u3wzJ+YHNKNrPik/kqPoltabk0EDi2WyhXTujH2H4dCLeJ3gKKNy0UtwO9fB1q21RNek4+t33wC0u2ZXDxsV144Ox+1rxsakVxifK/pTt4cu4m8otLuGN0DDef1N3yL8AlpucyKy6JL+OT2JziaYkYHhXK1cdFMa5fB+uZEcC8KSh2AVk1HYj5o1927uMv760iM7eAKRcM5KLYLkffyZhqsGZ3Fv/8bA1r9mRxQkwYD0/oTzfrvRGwkvYfYlZ8EjPjkli75wAAw7qF8uDZ/Rg/oAPtW1pLhPGuoEgAFonIV0D+4ZWq+nSNRRXgVJX3l+/kgZnr6NCqCZ/cMor+nVq5HZYJANl5hTw1bzPv/LSdti0a88Ilx/CngRE2oFAA2pdbwOy1yXyxOonliZkADOrcin+d2YczB0bYMOrmD7wpKHY6j2DnYWpQXmEx932xlukrd3NSz3Y8d/FgWjezH7upeXPW7uWBmetIyc7jihFduWtsL0Ka2DwwgSSvsJhvNqTw+S97WLQpjaISpXu75vxtTE/OHtTRWqlMhbwZKfPB2gjEeJoVb/7fz8TvzuKvp/bgjtE9CbL+2aaGJWcd4r4v1jF/fQq9O7TklcuHcIzNvREwSkqUpQkZfPbLHr5eu5ec/CLCQxpzzXHdmDC4E/062pDXxjvlFhQi8qyq3iEiX+Lp1fE7qnp2jUYWYJYlZPCX91aRX1TCf68Yyth+HdwOydRzJSXK/5btYMqcTRSVlPCP8b259vgoGgXZuCaB5KFZ63lryXZaNG7I+P4dOPeYTgyPbmt/zJhKq6iF4vBkYE/WRiCBSlV5d+kOHvpyPZGhzXj1yqE26IupcZtTspn8STyrdu7nhJgw/n3OACLb2jgBgej8IZ0Z2rUNY/qGWw8e45NyCwpV/dl5/q72wgks+UXF3P/FOj5csYvTerfnmYsH2zVrU6Pyi4p5eeE2Xl60lRaNG/L0RYM495hO1qQdwAZ0bsWAznbTt/GdK0Nvi0go8BHQDdgOXKSq+47YpgvwDtABz4Bar6rqc857DwA3AGnO5v9U1dm1EXt1ScvO5+b//czPO/Yx8ZQe/G1MTxvP3tSoVTv3cc/H8WxJzWHC4I7c96e+tG1hYwYYY6qHW3N5TAYWqOpjIjLZeX3PEdsUAZNUdZWItAR+FpH5qrreef8ZVa2Tl2PW7snihndWsu9gAS9eegx/GtjR7ZBMPXawoIin5m3mjR8T6RDShDevPpZTettIl8aY6uVWQTEBONlZfhtYxBEFhaomA8nOcraIbAA6Aeupw76KT2bSjNWENgvm45ttfAlTs5ZsS2fyJ2vYmXmQy0dEcs+43rS0y2rGmBpQpdu5ReRVH88b7hQMhwuHCv9cEpFuwDHAslKrJ4pIvIi8ISLl9nETkRtFZKWIrExLSytvsxqnqjz7zWZufX8VfSNC+GLi8VZMBAC38i87r5B7P1vDpa8to4HAhzeO4JFzBlgxEYD85TvQ1H+i+oceoZ43PPc5lPkWEKeqnSs8sMg3eO5/ONK9wNuq2rrUtvtUtcyiQERaAN8B/1bVT5114UA6nu6sDwMRqnptRfEAxMbG6sqVK4+2WbXLKyzmrhlxzIpP5rwhnXj0vAE0bmh3U9dhVbrZpbby74ctaUz+ZA1JWYe47rgoJp3ei6bBlm/1SJVvtnLrO9DUO2XmYEWXPNKAHUfsqM7ro16AVdXR5UYikiIiEaqaLCIRQGo52zUCPgHeO1xMOMdOKbXNa8Cso8XjltTsPG54eyXxe7KYPL43N50YbXfUmxqRnVfIf2Zv4IPlu4hu15yPbx7F0K42QJUxpnZUVFAkAKep6s4j3xCRXT6edyZwFfCY8/xFGecQ4HVgw5HzhhwuRpyX5wJrfYynRmxIPsB1b61g38FCpl5ug1WZmrN4Szr3fBJPctYhbjwxmr+N6WljChhjalVFBcWzQBs883gcaYqP530MmC4i1znHvxBARDoC01T1DOA44ApgjYisdvY73D10iogMxtNish24ycd4qt3CjalMfH8VLZs0YsbNI+1+CVMjcvOL+M/sDby3bCfRYc2ZYa0SxhiXVDSw1UsVvPeCLydV1QzgtDLWJwFnOMuLKec6jape4cv5a9rbS7bz4Jfr6NsxhGlXHkuHVja1r6l+SxMyuPvjOHbvO8T1x0dx19he1iphjHHNUbuNisiteO5h2O+8bgNcoqov13BsdU5xifLIV+t588ftjO4TzvOXDKZZsFs9c019lVdYzJNzN/H6j4l0adOM6TeN5Nhu5d1DbYwxtcOb/+1uKN1aoar7ROQGwAqKUg4WFHH7h6uZvz6Fa4+L4t4z+9jkOqbardmdxZ3TV7M1NYfLR0Tyj/F9aN7YilZjjPu8+SZqICKiTv9SEQkCgms2rLolLTuf699ewZo9WTx4dj+uGtXN7ZBMPVNUXMJLC7fxwrdbCGvRmHeuHcaJPdu5HZYxxvzKm4JiLp4bKKfiuQnyZmBOjUZVh2xNzeHqN5eTkVPAq1fEMrpvuNshmXomIS2HO6fHEbdrP+cM7siDZ/enVTMboMoY41+8KSjuwdOL4hY8N0nOA6bVZFB1xYrtmVz/9koaBQkf3jiCQV1aux2SqUdUlf8t28m/v1pPk0ZBvHTpEM4cGOF2WMYYU6ajFhSqWgK84jyMY/aaZO74aDWdWzflrWuGEdm2mdshmXokNTuPez6OZ+GmNE7s2Y4nLhhIeIj1FjLG+C9vennEAI8CfYFfv9FUNboG4/Jrb/2YyIOz1nNMl9a8ftWxtGlut5SY6jN/fQr3fBJPbn4RD57djytHdrXRVY0xfs+bSx5vAvcDzwCnANfgw1jydZmq8vicTUz9bhtj+obzwiXHWL9/U20OFhTx8KwNfLB8J30jQnju4sHEhLd0OyxjjPGKNwVFU1Vd4PT02AE8ICI/4CkyAkZhcQn3fBzPp7/s4bLhkTw0ob91CzXVZu2eLG778BcS03O56aRoJo3pRXDDKk0GbIwxrvCmoMgTkQbAFhGZCOzBi8nB6pPc/CL+8t4qvtucxqQxPZl4ag9rgjbVoqREefWHBJ6at4m2zRvz3vXDGdU9zO2wjDGm0rwpKO4AmgG34Zkq/BQ8E3oFhMzcAq55awVrdu/nsfMGcPGwSLdDMvVIiSrz1u1lTN9w/nPuAFo3s/txjDF1U7kFhYi868yZMUpVVwA5eO6fCBh79h/iiteXsWffIaZePpTTbbZQU80aBjXgneuG0zw4yFq9jDF1WkUtFENFpCtwrYi8wxE3YqpqZo1G5rItKdlc+cZycvKLeOfaYQyPbut2SKaeamFDZxtj6oGKvsmm4hkRMxr4md8XFOqsr5dW79rP1W8up1FQAz66cSR9O4a4HZIxxhjj1yqavvx54HkReUVVb6nFmFy1eEs6N767krAWjXn3umF0bdvc7ZCMMcYYv+fNSJkBU0zMWZvMbR+sJrpdc965dhjtbWRCY4wxxit28dYxY+Uu7vkknsFdWvPm1cNs8iVjjDGmEqygAN5YnMhDs9ZzQkwY/71iKM2C7cdijDHGVIYrQ/GJSKiIzBeRLc5zm3K22y4ia0RktYisrOz+3vh5RyYPzVrPuH4dmHZVrBUTxhhjTBW4NbbvZGCBqsYAC5zX5TlFVQeramwV96/Q0K6hvHLZEF689BgaN7R5OYwxxpiqcKugmAC87Sy/DZxTy/v/zvgBETQMsnkTjDHGmKpy63/RcFVNBnCey5sbRIF5IvKziNxYhf0RkRtFZKWIrExLS6um8I3xjuWfcZvloKktNVZQiMg3IrK2jMeEShzmOFUdAowHbhWREysbh6q+qqqxqhrbrl27yu5ujE8s/4zbLAdNbRFVrf2TimwCTlbVZBGJABapaq+j7PMAkKOqT1Zlf+cYacCOMt4KA9Ir/UHqPvvcVZOuquMqu1MF+ecGf/7dW2wVq1L+gas56A8/N29YnN4pMwfd6tIwE8+MpY85z18cuYGINAcaqGq2s3w68JC3+5dFVcssz0Vk5RE3fQYE+9y1q7z8c4M//+4ttprjVg7WlZ+bxekbt+6heAwYIyJbgDHOa0Sko4jMdrYJBxaLSBywHPhKVedUtL8xxhhj3OFKC4WqZgCnlbE+CTjDWU4ABlVmf2OMMca4w/pKerzqdgAusc8duPz5Z2Cx1T915edmcfrAlZsyjTHGGFO/WAuFMcYYY3xmBYUxxhhjfGYFhUNELhSRdSJSIiJ+1x2nOonIOBHZJCJbRaTK86DUNSLyhoikishat2Opbb5OyFdDMVWYh+LxvPN+vIgMqcl4KhnbySKS5fycVovIfbUVW13gj/l2xHn9NvcqGad/5aGq2sNzH0kfoBewCIh1O54a/JxBwDYgGggG4oC+bsdVS5/9RGAIsNbtWFz47FOAyc7yZODxcrbbDoTVQjxHzUM8Pb6+BgQYASyrpZ+VN7GdDMxy+/fqrw9/y7cq/H5dyb0qxOlXeWgtFA5V3aCqm9yOoxYMA7aqaoKqFgAf4plsrd5T1e+BTLfjcEm1TqhXDbzJwwnAO+qxFGjtjIzrD7GZivlbvpXmz7lX2Tj9ihUUgacTsKvU693OOlO/+TohX3XzJg/dylVvzztSROJE5GsR6VcLcdUl/pZvpflz7lUlBr/JQ7eG3naFiHwDdCjjrXtV1avhu+sBKWOd9R2uByrK70oc5jhVTRKR9sB8EdnotOxUN2/y0K1c9ea8q4CuqpojImcAnwMxNR2YP6lj+VaaP+deZWPwqzwMqIJCVUe7HYMf2A10KfW6M5DkUiymGlWU3yKSIiIR+tuEeqnlHCPJeU4Vkc/wNLvWxBe8N3noVq4e9byqeqDU8mwReVlEwlS1LkwsVS3qWL6V5s+5V6kY/C0P7ZJH4FkBxIhIlIgEAxfjmWzN1G+HJ9SDCibkE5GWh5fxTMhXUz1ivMnDmcCVzh33I4Csw83oNeyosYlIBxERZ3kYnu/SjFqIra7wt3wrzZ9zr1Jx+l0eun1XqL88gHPxVIT5QAow1+2YavCzngFsxnMH8b1ux1OLn/sDIBkodH7X17kdUy1+9rbAAmCL8xzqrO8IzHaWo/HcSR4HrKvp3CgrD4GbgZudZQFect5fQy32vvIitonOzygOWAqMcvt37E8Pf8y3upJ7dTkPbehtY4wxxvjMLnkYY4wxxmdWUBhjjDHGZ1ZQGGOMMcZnVlAYY4wxxmdWUBhjjDHGZ1ZQuEREbhORDSLyXhX2nejMPqciElbONrEi8rzvkVYqrrPLmhHvKPvklLM+IGdErS0+5t97zu9mrXhmcG1UxjaWf6ZcPubf685Q0/Ei8rGItChjG8s/F1i3UZeIyEZgvKomVmHfY4B9/DYzquuj84lIQ1UtqsJ+Oara4oh1QXj6Xo/BM17ECuASVV1fLcEaX/Pv8EyMAO8D36vqK9UZX2VZ/tUtPuZfiDojRIrI00Cqqj5W3TFWMibLP6yFwhUiMhXPoC4zReROERkmIktE5BfnuZezXZCIPCkia5xq/K8AqvqLqm4/yjlOFpFZzvIDzl+Si0QkQURuK2efHBF5SkRWicgCEWnnrO8uInPEM4HPDyLS21n/log8LSILgcdF5GoRedF5r6tzjHjnOdJZHyUiP4nIChF5uJzw69wse3VJNeTfbHUAy/EMCXzkOSz/TJmqIf8OFxMCNKWMOTYs/1zi5qhagfwAtgNhznII0NBZHg184izfAnxS6r3Q8o5RxvFPBmY5yw8AS4DGQBieoVkblbGPApc5y/cBLzrLC4AYZ3k48K2z/BYwCwhyXl9dap8vgauc5WuBz53lmcCVzvKtQE4ZcVwATCv1+orDx7WHX+VfIzyTE51g+WeP2sw/4E08IxovBJpZ/vnHI6AmB/NjrYC3RSQGT1IfviY9GpiqTlOaqmb6cI6vVDUfyBeRVCAcT3NaaSXAR87y/4BPxXN9chQww/MHAeD5h3nYDFUtLuN8I4HznOV3gSnO8nHA+aXWP17Gvv4w018gqWr+vYzncscPXpzD8s+Up9L5p6rXiOfSwAvAn/EUGBWx/KsFVlD4h4eBhap6roh0w3NvBHgSq7oSKb/UcjHe/e4Vz2Wx/ao6uJxtcr08v5azXBZ/mOkvkFQ6/0TkfqAdcJOX57D8M+Wp0vefqhaLyEfA3Ry9oLD8qwV2D4V/aAXscZavLrV+HnCziDQEEJHQGo6jAZ7mNoBLgcXquV6ZKCIXOjGIiAzy4lhL8MyOB3AZsNhZ/vGI9WWxGVFrV6XyT0SuB8biuVGspBrjsPwLTF7nn/P77+G8FuAsYGM1xWH55yMrKPzDFOBREfkRCCq1fhqwE4gXkTg8SX64y9VuPJVrvIhMq6Y4coF+IvIzcCrwkLP+MuA6J4Z1eHeD0G3ANSISj+ca4O3O+tuBW0VkBZ4vkj9wmjgnAnOBDcB0VV1XtY9kvFCp/AOm4mky/klEVovIfdUUh+VfYKpM/gmeyyNr8MwCGsFveeIryz8fWbdR8yspowuTMbXF8s+4yfLPd9ZCYYwxxhifWQuFMcYYY3xmLRTGGGOM8ZkVFMYYY4zxmRUUxhhjjPGZFRTGGGOM8ZkVFMYYY4zxmRUUxhhjjPGZFRTGGGOM8ZkVFMYYY4zxmRUUxhhjjPFZQBUU48aNUzxTx9rDHr48qsTyzx7V9Kgyy0F7VNOjTAFVUKSnp7sdgglgln/GbZaDpiYFVEFhjDHGmJphBYUxR9i97yBPz9+MTZxnjDHea+h2AMb4C1XloxW7eOSrDagq5wzuSHS7Fm6HZYwxdYIVFMYAyVmHmPzJGr7bnMbI6LZMuWAgXUKbuR2WMcbUGVZQmICmqny6ag8PfLmOomLlwbP7ccWIrjRoIG6HZowxdYoVFCZgpWbnce9na5m/PoXYrm148sJBdAtr7nZYxhhTJ1lBYQLSl3FJ/N8XazlYUMy9Z/Th2uOjCLJWCWOMqTIrKExAycjJ574v1vHVmmQGdWnNUxcOokd7u/HSGGN85Uq3UREJFZH5IrLFeW5TxjZdRGShiGwQkXUicnup9x4QkT0istp5nFG7n8DURXPW7mXss98zb/1e7h7bi09uHmnFhDHGVBO3WigmAwtU9TERmey8vueIbYqASaq6SkRaAj+LyHxVXe+8/4yqPlmLMZs6KutgIffPXMvnq5Po1zGE/10/nN4dQtwOyxhj6pUqFRQico2qvunDeScAJzvLbwOLOKKgUNVkINlZzhaRDUAnYD3GeGnhxlTu+SSezNwCbj8thomn9qBRkI3nZvxbflExwUENELH7ekzdUdVv1gd9PG+4UzAcLhzaV7SxiHQDjgGWlVo9UUTiReSNsi6ZlNr3RhFZKSIr09LSfAzb1BUH8gr5+8dxXPPWCto0C+bzW4/jzjE9a72YsPwzlVFcosxYuYtTn/yOBRtSq+WYloOmtpTbQiEi8eW9BYQf7cAi8g3QoYy37vUutF+P0wL4BLhDVQ84q18BHsYz69nDwFPAtWXtr6qvAq8CxMbG2ljKAWDxlnT+/nEcew/k8ZeTu3P76BgaNwxyJRbLP+MNVWXe+hSenLuJLak5DOrcijbNg6vr2JaDplZUdMkjHBgL7DtivQBLjnZgVR1d3nsikiIiEaqaLCIRQJmluIg0wlNMvKeqn5Y6dkqpbV4DZh0tHlP/5eYX8ejXG/jf0p1Et2vOJ7eM4pjIchuvjPELS7alM2XOJlbv2k90u+a8ctkQxvXvYJc7TJ1TUUExC2ihqquPfENEFvl43pnAVcBjzvMXZZxDgNeBDar69BHvRRy+ZAKcC6z1MR5Txy1NyODuj+PYve8Q1x8fxV1je9GkkTutEsZ4Y+2eLB6fs5EftqQT0aoJU84fyHlDOtHQ7vExdVS5BYWqXlfBe5f6eN7HgOkich2wE7gQQEQ6AtNU9QzgOOAKYI2IrHb2+6eqzgamiMhgPJc8tgM3+RiPqaMOFRQzZe5G3vxxO13bNmP6TSM5tluo22EZU67E9FyemreJWfHJtG7WiHvP6MMVI7taAWzqPFe6japqBnBaGeuTgDOc5cV4Lq+Utf8VNRqgqRN+3rGPu2fEkZCey1Uju3LP+N40C7ax2ox/SjmQx3MLtvDRil0EBzXgr6f24IYTowlp0sjt0IypFvbta+qcvMJinvlmM699n0BEq6a8d/1wjusR5nZYxpQp62AhU7/fxps/JlJcolw+PJKJp8bQrmVjt0MzplpZQWHqlPjd+5k0PY4tqTlcMqwL/zyjDy3tLzzjhw4VFPPWku28smgr2flFTBjUkb+N6UVk22Zuh2ZMjbCCwtQJBUUlvPDtFl5etI12LRrz1jXHcnKvCocvMcYVhcUlzFi5m+cWbCblQD6n9GrH3WN707ejjc5q6reKxqHIxnPTY5lU1f51mFqxPukAk2bEsSH5AOcN6cT9Z/WjVVNrlTD+paREmb02mafmbSYxPZehXdvwwiVDGBZlNwmbwFBRL4+WACLyELAXeBfPTZKXAS1rJToT0AqLS3hl0TaeX7CF1s2Cee3KWMb0PeqYasbUKlXlhy3pTJm7kbV7DtArvCWvXRnL6D7tbSwJE1C8ueQxVlWHl3r9iogsA6bUUEzGsDklm0nT41izJ4uzBnXkobP7VdvIgcZUl1927mPKnE38lJBB5zZNeerCQZxzTCeCGlghYQKPNwVFsYhcBnyI5xLIJUBxjUZlAlZxiTLthwSemr+ZFo0b8tKlQzhzYITbYRnzO1tTs3li7ibmrkuhbfNgHjirL5cMj3RtiHdj/IE3BcWlwHPOA2Cxs86YapWQlsNdM+JYtXM/Y/uF88g5A6xrnfEre/Yf4rlvNvPxz7tpFtyQv43pyXXHR9G8sd3fbsxR/xWo6nY8040bUyNKSpS3lmxnytyNNG4YxLN/HsyEwR3t+rPxG5m5Bby8cCvvLN0BCtccF8Wtp/Qg1C7DGfOroxYUItIZeAHPUNiKp4XidlXdXcOxmQCwM+Mgd38cx7LETE7t3Z5HzxtAeEgTt8MyBvBMOPf64kRe/T6BgwVFnD+kM3eM6Umn1k3dDs0Yv+NNO92bwPs4820AlzvrxtRUUKb+U1XeW7aT/8zeQAMRplwwkAuHdrZWCeMXCopK+GD5Tl74dgvpOQWM7RfOXaf3IibcOrgZUx5vCop2qvpmqddvicgdNRSPCQBJ+w9xzyfx/LAlneN7hPH4BQPtLz7jF4pLlJlxe3hq3mZ27zvE8KhQXr2yN0Mi27gdmjF+z5uCIl1ELgc+cF5fAmTUXEimvlJVZvy8m4e/XE+xKo+c05/Lhkdaq4Rxnary7cZUnpi7iY17s+nXMYR/nzuAE2PCLD+N8ZI3BcW1wIvAM3juoVjirDPGaykH8vjHp2v4dmMqw6NCeeKCQTangfELK7Zn8vjXG1m5Yx/d2jbjhUuO4cwBETSwsSRMgMo6VEjWwcJKf0d708tjJ3B2VQMzgU1V+WJ1EvfPXEd+UTH3/akvV4/qZl/WxnUbkg/wxNxNfLsxlfYtG/PIOf3587FdaBTUwO3QjKlVWYcKWZGYydKEDJYmZrAu6QAn92zHm9cMq9RxKprL4++qOkVEXqCMOT1U9bbKh20CSXpOPvd+toa561IYEtmaJy8cRHS7Fm6HZQLcrsyDPD1/M5+v3kPLxg35+7heXDMqiqbBNiiVCQxZBwtZvt0pIBIyWJ98AFUIbtiAIZGtuf20GI7vEVbp41bUQrHBeV5ZpYhNQJu9Jpl/fb6WnPwi/jG+N9efEG3DERtXpWXn8+K3W3h/+U6CGgg3n9Sdm0/sTqtmNtGcqd/2HyxgeWImSxM8RcSGvb8vIO44rScjokMZ1KU1TRpVvbCuaHKwL0UkCOivqndX+QxlEJFQ4COgG7AduEhV95Wx3XYgG89Q30WqGluZ/U3t25dbwH0z1/FlXBIDO7fiqQsHWVc746oDeYVM+z6BaYsTyS8q4c/HduG2U2Po0MrGOzH1077cgl9bIJYlZP5aQDRu2IChXdtw5+ieDI/yvYA4UoX3UKhqsYgMrbaz/WYysEBVHxORyc7re8rZ9hRVTfdhf1NL5q9P4R+frmH/wQImjenJLSd3p6FdjzYuySss5n9Ld/DSwq3sO1jImQMjuOv0XkSFNXc7NGOq1b7cApYl/nYJY+PebACaNGrAkMg2/G10T0Z0b8vAzq1qdL4Zb3p5/CIiM4EZQO7hlar6qQ/nnQCc7Cy/DSyicgWBr/ubapR1qJAHv1zHp6v20CcihHeuHUbfjiFuh2UCVFFxCZ+u2sMz32wmOSuPE2LC+PvY3gzo3Mrt0IypFpm5BSxPzPj1EkbpAiK2ayiTxkTUSgFxJG8KilA8406cWmqdAr4UFOGqmgygqski0r6c7RSYJyIK/FdVX63k/ojIjcCNAJGRkT6EbMqyaFMqkz9ZQ1pOPred2oOJp8YQ3NBaJQ6z/Ks9qsrcdXt5Yu4mtqXlMqhLa566cBCjqnBzWX1iOVj3ZeTkszwx89dWiMMFRNNGQQzt2oa7To9gRHRbBnZu7er3r6j+oQNH9RxY5BugQxlv3Qu8raqtS227T1X/MBSdiHRU1SSnYJgP/FVVvxeR/d7sf6TY2FhdudLuMa0O2XmF/Gf2Bj5YvouY9i146qJBDOzc2u2wakuV7i61/Ks5S7am8/jcTcTt2k+P9i246/RejO0XXl8Hparyh7IcrBsycvJ/dwljc0oO4CkgYru1YUR0W0ZEhzKgk2sFRJk56M3kYD2BV/C0CvQXkYHA2ar6SEX7qeroCo6ZIiIRTutCBJBazjGSnOdUEfkMGAZ8D3i1v6kZS7amc/fH8SRnHeKmk6K5c3TPar2xxxhvrdmdxZS5G/lhSzodWzVhygUDOX9IZ+tRZOqU9Jx8liVksizx9wVEs2BPC8SEwZ0YEd2WAZ1a+XULsDeXPF4D7gb+C6Cq8SLyPlBhQXEUM4GrgMec5y+O3EBEmgMNVDXbWT4deMjb/U31O1hQxGNfb+Sdn3YQFdacGTePYmhXm+PA1L6EtByemr+Zr+KTadOsEf86sw+Xj+hqha2pE9Ky81mW6OmBsTQhgy2pvxUQsd1CmTC4EyO7ewqIujTQmjcFRTNVXX5E02GRj+d9DJguItcBO3FmMhWRjsA0VT0DCAc+c87bEHhfVedUtL+pOSu2Z3LXjDh2ZBzkmuO68fexvW0gIFPrUg7k8ew3W5i+cheNGzbgtlN7cMOJ0bRsYmNJGP+Vmp1XqgUik61OAdHcKSDOG9KZ4dGhda6AOJK3k4N1xxktU0QuAJJ9OamqZgCnlbE+CTjDWU4ABlVmf1P98gqLeXLuJl7/MZHObZry4Y0jGBHd1u2wTIDJOljIK99t480fEylR5fLhkUw8NYZ2LRu7HZoxf3C4gDh8D8S2NE8HyebBQRwbFcr5Qzozsntb+ncMqVdd670pKG4FXgV6i8geIBG4rEajMn7hl537mDQjjoS0XC4fEck/xveheWNvUsaY6nGooJg3lyQyddE2svOLOHdwJ+4c05MuoTaxnPEfqQfyWJp4eCCp3wqIFo0bEtutDRfGdmF4lKcFoj4VEEfyZnKwBGB06Xsaaj4s46b8omKe/WYL//1uGx1CmvC/64ZzfExgd70ztauwuITpK3fx3DdbSM3O57Te7blrbC/6RNj4JsZ9KQfynNaHTJYlZJCQ7ikgWjZuyLFRoVwU24UR0W3pV89aII7Gm14ebYH7geMBFZHFwEPOZQdTz6zdk8Wk6XFsSsnmotjO/OtPfQmx69OmlpSUKLPWJPP0vE1szzhIbNc2vHTZEI7tFup2aCaA7c3K+7UHxtKETBJLFRDDokK5ZFgkw6ND6RsRWAXEkbxpv/4QT1fN853Xl+GZR6PcbqGm7iksLuHFb7fy0sKthDYP5o2rYzm1d7jbYZkAoap8tzmNKXM2sT75AL07tOSNq2M5pVf7+jqWhPFjRy8gujAyOoy+HUOsi3IpXo2UqaoPl3r9iIicU0PxGBds3HuASdPjWJd0gHOP6cT9Z/WldbNgt8MyAWLVzn1MmbORpQmZdAltyjN/HsSEQZ1oYF/UppYk7T/0u26c2zMOAhDSxFNAXDY8kuFRba2AOApvCoqFInIxMN15fQHwVc2FZGpLUXEJ//0+gWe/2UxIk0ZMvXwo4/qXNbipMdVvS0o2T8zdxLz1KYS1CObBs/txybBIvx64x9QPSfsP/ToT59LEDHb8roBoy+UjujIiui19IqyAqAxvCoqbgL8B7zqvg4BcEfkboKpqd0nVQVtTc7hrRhyrd+3nzAERPDShH21bWBc8U/N27zvIs99s4dNVu2kW3JBJY3py7fFR1oPI1JjDBcThSxg7M38rIIZHt+XKkd0YHhVqBYSPvOnl0bI2AjG1o7hEeWNxIk/M20Sz4CBeuOQYzhrU0e2wTADIzC3gpYVbefenHSBw3fFR3HJyD0Kb2+U1U7127zv460ycyxIz2JV5CIDWzRoxrFsoV4/qxojotvTu0NIurVUj+5MggGxPz+WuGXGs3LGPMX3D+fe5/WnfsonbYZl6Lie/iNd/SOS1HxI4WFDE+UM6c8eYnnRq3dTt0Ew9UbqAWJqQwe59vxUQw6NCufa4KIZHWQFR06ygCAAlJcr/lu3g0dkbaRgkPH3RIM49ppPdPW9qVH5RMe8v28mL324lI7eAsf3CuXtsL3q0t0ZP45tdmQd/Gwci8bcCok2zRgyLCuW646MYEd2WXuFWQNQmKyjquV2ZB7nnk3iWbMvgpJ7tePz8gXRoZa0SpuYUlyif/7KHp+dvZs/+Q4yMbss943szuEtrt0MzdZCqsnvfIX5yWh+WJWSyZ7+ngAhtHszwqFCuPz6K4VZAuM6rgkJEgvBM1vXr9qq6s6aCMr5TVT5csYtHZq1HRHjsvAH8+dgu1iphaoyq8s2GVJ6cu4lNKdn07xTCo+cN4ISYMMs74zVVZVdm6ZsoM0jKygN+KyBuOimaEdFt6dGuhRUQfsSbkTL/imekzBSgxFmtwMAajMv4IDnrEPd8sobvN6cxqntbplwwkM5tbO4DU3OWJ2by+JyN/LxjH1FhzXnp0iGM79/BvuzNUakqOzMP/m4yrdIFxIjoUG6ObsvwqLb0DG9hxakf86aF4naglw217f9UlU9W7eHBL9dRVKw8PKEflw3val/qpsasTzrAE3M3snBTGuEhjfnPuQO4MLZznZ6C2dQsVWVHxsFfi4dliZkkOwVE2+bBDI8O5Zbotp4WiPZWQNQl3hQUu4Csmg7E+CY1O49/frqGbzakMqxbKE9cOJCubZu7HZapp3ZmHOTp+Zv4Ii6Jlo0bMnl8b64a2Y2mwUFuh2b8jKqyPeMgy0qNA7H3gKeACGvRmOHRoYyICmVk97Z0b2cFRF3mTUGRACwSka+A/MMrVfXpGovKeE1VmRmXxP0z13GooJh/ndmHa4+LslYJUyNSs/N48dutvL9sJw2DhJtP6s7NJ3anVTObQM54HC4gSt8DkXLA81/H4QJipNMC0b1dcysg6hFvCoqdziPYeRg/kZGTz/99sZbZa/YyqEtrnr5oEN3btXA7LFMPHcgr5NXvEnh9cSIFxSVcfGwXbjsthvAQ6zEU6FSVhPTcX++BWJb4WwHRrmVjRkS3ZXhUqBUQAcCbkTIfrO6TikgonhlLuwHbgYtUdd8R2/RytjksGrhPVZ8VkQeAG4A0571/qurs6o7Tn81Zu5d/fb6GA4eK+Pu4Xtx4QnRAT5trakZeYTHv/LSdlxdtY//BQs4a1JG/jelJVJhdTgtUhwuIw5cvliZkkJbtKSDat2zM8Oi2TgtEKFFhVkAEknILChF5VlXvEJEv8fTq+B1VPduH804GFqjqYyIy2Xl9zxHH3wQMdmIJAvYAn5Xa5BlVfdKHGOqk/QcLeGDmOj5fnUT/TiG8d/1genWwgYJM9SoqLuHjn3fz7Ddb2HsgjxN7tuPvY3vRv1Mrt0MztUxV2ZaW+7ubKEsXEKO6e3pgWAFhKmqhODwZWE38pz0BONlZfhtYxBEFxRFOA7ap6o4aiKXO+HZjCpM/WUNmbgF3ju7JX07pbnfTm2qlqny9di9PzttEQloug7u05pk/D2Zk97Zuh2ZqiaeAyCk1lHUm6TmeAiI8pDEjo9sysrvnMoYVEKa0cgsKVf3Zef6uBs4brqrJzvGTRaT9Uba/GPjgiHUTReRKYCUw6chLJoeJyI3AjQCRkZG+Re2SA3mFPPzlemb8vJte4S154+pj7S/FOqIu5d+PW9OZMmcjcbuziGnfglevGMqYvuH2H0Ydd7QcVFW2pub8bijr9JwCADqENOGEmLBf74Ho2raZ5YMpl6j+4WpG9RxY5BugQxlv3Qu8raqtS227T1XblHOcYCAJ6KeqKc66cCAdz6WYh4EIVb32aDHFxsbqypUrK/tRXPX95jTu+SSelAN53HxSd24fHUPjhtY1z2VV+kb11/yL372fKXM2sXhrOh1bNeGOMT05f0hnm8bZf1X5F1NWDj745Tre/HE7ABGtmjDCuf9heJQVEKZcZSZFjc3loaqjy41EJEVEIpzWiQggtYJDjQdWHS4mnGP/uiwirwGzqiNmf5KbX8R/Zm/gvWU76d6uOZ/+5TibC8FUq4S0HJ6at5mv1iTTplkj/nVmHy4f0ZUmjaxgDSR/GtiRPh1CGBHdli6hTa2AMFXm1uRgM4GrgMec5y8q2PYSjrjccbgYcV6eC6ytiSDd8tO2DO7+OI49+w9xwwlRTDq9l33Jm2qzNyuP5xZsZvrK3TRu2IDbTovhhhOiaNnExpIIREO7tmFo1zIbiI2plIp6eQQB1wOdgTmq+mOp9/6lqo/4cN7HgOkich2eMS4udI7bEZimqmc4r5sBY4Cbjth/iogMxnPJY3sZ79dJhwqKeXzORt5asp1ubZsx46aRxHYLdTssU0/sP1jAK99t460ft1OiyhUjujLx1B6EtWjsdmjGmHqgohaK/wLNgOXA8yLynar+zXnvPKDKBYUzL8hpZaxPAs4o9fog8Ifby1X1iqqe21/9vCOTu2bEk5iey9WjuvH3cb1oFmyzyxvfHSwo4s0ftzP1u23k5Bdx7uBO3DmmJ11CbcI4Y0z1qeh/rGGqOhBARF4EXhaRT/FcgrCLbNUkr7CYp+dv5rUfEujYqinv3zCcUd3D3A7L1AOFxSV8uGIXzy/YQlp2PqP7tOeusb3o3SHE7dCMMfVQRQXFr8Nsq2oRcKOI3Ad8C9j4ztUgbtd+Js2IY2tqDpcM68K9Z/alRWNrlTC+KSlRvoxP4un5m9mRcZBh3UKZevkQhna1y2fGmJpT0f9eK0VknKrOObxCVR8SkSTglZoPrf4qKCrh+QVbeOW7bbRr0Zi3rx3GST3buR2WqeNUlUWb05gyZxMbkg/QJyKEN68+lpN7tbM7940xNa6iga0uL2f9NGBajUVUz61LymLS9Dg27s3m/CGdue+svrRqanfXG9/8vGMfj8/ZyPLETCJDm/HcxYM5a2BHm3XWGFNrjtq+LiK3Au+p6n7ndRvgElV9uYZjq1cKi0t4ZdE2nl+whTbNg5l2ZSyj+4a7HZap4zanZPPE3E3MX59CWIvGPDShHxcfG0lwQxuS3RhTu7y5YH+Dqr50+IWq7hORGwArKLy0OSWbSdPjWLMni7MHdeTBs/vRprnNBG+qbve+gzwzfwuf/rKbFsENmTSmJ9ceH0VzuwfHGOMSb759GoiIqDNGtzM+hf1v6IXiEuXV7xN4Zv5mWjRpyCuXDWH8gAi3wzJ1WHpOPi8t3Mp7S3eCwA0nRHPLSd2tQDXGuM6bgmIunkGopuIZSOpmYE7Fu5iEtBzumhHHqp37GdevA4+c298GEDJVlp1XyLQfEpn2QwKHCou5KLYLt50WQ8fWTd0OzRhjAO8KinvwjER5C57xJ+ZhN2WWq6REeXPJdqbM2UiTRkE8d/Fgzh7U0e6yN1WSX1TMe0t38uLCrWTmFnDGgA78bUwverS3ntvGGP9y1IJCVUvwdBO1rqJHsTPjIHd9HMfyxExO692eR88bQPuQJm6HZeqg4hLls1/28Mz8zezZf4jjerTl72N7M8gmiDPG+ClvennEAI8CfYFf/3dU1egajKtOKSlR3lu2g0e/3kiQCE9cMJALhna2VglTaarK/PUpPDlvE5tTchjQqRWPnz+Q42Ns9FRjjH/z5pLHm8D9wDPAKcA12NDbv9q97yCTP1nD4q3pnBATxuPnD7Tr2qZKliVk8PicjazauZ/osOa8fNkQxvfvYIWpMaZO8KagaKqqC5yeHjuAB0TkBzxFRsBSVT5asYtHvtpAiSr/Prc/lw6LtC9/U2nrkrJ4Yu4mFm1Ko0NIEx49bwAXDu1MwyAbS8IYU3d4U1DkiUgDYIuITAT2AO1rNiz/tjcrj8mfxrNoUxojokN54oJBNnOjqZKi4hKuf3slBwuK+cf43lw1qhtNGgW5HZYxxlSaNwXFHXimMb8NeBjPZY+rajAmv6WqfL56D/d/sY6C4hLuP6svV43sZsMbmyprGNSAVy4fSlRYcxuC3RhTp5VbUIjIu6p6BTBKVVcAOXjunwhIadn53PvZGuatT2Fo1zY8eeEgosKaux2WqQcGW88NY0w9UFELxVAR6QpcKyLvcMSNmKqaWaOR+ZFZ8Un83+dryS0o5p9n9Oa646MJslYJY4wx5lcVFRRT8YyIGQ38zO8LCnXWV4mIXAg8APQBhqnqynK2Gwc8BwQB01T1MWd9KPAR0A3YDlykqvuqGk95MnML+L8v1vJVfDKDOrfiqYsG0aN9y+o+jTHGGFPnlXsbuao+r6p9gDdUNVpVo0o9fB2DYi1wHvB9eRs4c4a8BIzHMwbGJSLS13l7MrBAVWOABc7rajVv3V5Of+Y75q3by91je/HJLaOsmDDGGGPK4c1ImbdU90lVdQNwtC6Ww4CtqprgbPshMAFY7zyf7Gz3NrAIzxDhPss6WMiDX67j01/20CcihHevG06fiJDqOLQxxhhTb/nzXMedgF2lXu8GhjvL4aqaDKCqySJSbjdWEbkRuBEgMjKywhMu3JTK5E/iSc8p4LbTYph4Sg+CG9pYAKbqKpN/xtQEy0FTW2qsoBCRb4AOZbx1r6p+4c0hylinlY1DVV8FXgWIjY0tc//svEIembWBj1buomd4C6ZdeSwDOreq7KmM+QNv8s+YmmQ5aGpLjRUUqjrax0PsBrqUet0ZSHKWU0QkwmmdiABSq3qSTXuzufatFSRnHeLmk7pz55gYGje0gYWMMcaYyvDn9vwVQIyIRIlIMHAxMNN5bya/Da51FeBNi0eZOrVpSnS75nx8yygmj+9txYQxxhhTBa4UFCJyrojsBkYCX4nIXGd9RxGZDaCqRcBEYC6wAZiuquucQzwGjBGRLcAY53WVtGjckHevG86QyDZV/0DGGGNMgHPlpkxV/Qz4rIz1ScAZpV7PBmaXsV0GcFpNxmiMMcYY7/nzJQ9jjDHG1BGiGjg3/YpIGrCjjLfCgPRaDscf2OeumnRVHVfZnSrIPzf48+/eYqtYlfIPXM1Bf/i5ecPi9E6ZORhQBUV5RGSlqsa6HUdts88duPz5Z2Cx1T915edmcfrGLnkYY4wxxmdWUBhjjDHGZ1ZQeLzqdgAusc8duPz5Z2Cx1T915edmcfrA7qEwxhhjjM+shcIYY4wxPrOCwhhjjDE+s4LCISIXisg6ESkREb/rjlOdRGSciGwSka0iMtnteGqLiLwhIqkistbtWGqbiISKyHwR2eI8lznWvIhsF5E1IrJaRFbWcEwV5qF4PO+8Hy8iQ2oynkrGdrKIZDk/p9Uicl9txVYX+GO+HXFev829SsbpX3moqvbw3EfSB+gFLAJi3Y6nBj9nELANiAaCgTigr9tx1dJnPxEYAqx1OxYXPvsUYLKzPBl4vJzttgNhtRDPUfMQzzD8XwMCjACW1dLPypvYTgZmuf179deHv+VbFX6/ruReFeL0qzy0FgqHqm5Q1U1ux1ELhgFbVTVBVQuAD4EJLsdUK1T1eyDT7ThcMgF421l+GzjHvVAA7/JwAvCOeiwFWotIhJ/EZirmb/lWmj/nXmXj9CtWUASeTsCuUq93O+tM/RauqskAznP7crZTYJ6I/CwiN9ZgPN7koVu56u15R4pInIh8LSL9aiGuusTf8q00f869qsTgN3noymyjbhGRb4AOZbx1r6p+UdvxuETKWGd9h+uBivK7Eoc5TlWTRKQ9MF9ENjotO9XNmzx0K1e9Oe8qoKuq5ojIGcDnQExNB+ZP6li+lebPuVfZGPwqDwOqoFDV0W7H4Ad2A11Kve4MJLkUi6lGFeW3iKSISISqJjtNt6nlHCPJeU4Vkc/wNLvWxBe8N3noVq4e9byqeqDU8mwReVlEwlS1LkwsVS3qWL6V5s+5V6kY/C0P7ZJH4FkBxIhIlIgEAxcDM12OydS8mcBVzvJVwB9a5ESkuYi0PLwMnA7UVI8Yb/JwJnClc8f9CCDrcDN6DTtqbCLSQUTEWR6G57s0oxZiqyv8Ld9K8+fcq1ScfpeHbt8V6i8P4Fw8FWE+kALMdTumGvysZwCb8dxBfK/b8dTi5/4ASAYKnd/1dW7HVIufvS2wANjiPIc66zsCs53laDx3kscB62o6N8rKQ+Bm4GZnWYCXnPfXUIu9r7yIbaLzM4oDlgKj3P4d+9PDH/OtruReXc5DG3rbGGOMMT6zSx7GGGOM8ZkVFMYYY4zxmRUUxhhjjPGZFRTGGGOM8ZkVFMYYY4zxmRUULhGR20Rkg4i8V4V9Jzqzz6mIhJWzTayIPO97pJWK6+yyZsQ7yj455awPyBlRa4uP+fee87tZK54ZXBuVsY3lnymXj/n3ujPUdLyIfCwiLcrYxvLPBdZt1CUishEYr6qJVdj3GGAfv82M6vrofCLSUFWLqrBfjqq2OGJdEJ6+12PwjBexArhEVddXS7DG1/w7PBMjwPvA96r6SnXGV1mWf3WLj/kXos4IkSLyNJCqqo9Vd4yVjMnyD2uhcIWITMUzqMtMEblTRIaJyBIR+cV57uVsFyQiT4rIGqca/yuAqv6iqtuPco6TRWSWs/yA85fkIhFJEJHbytknR0SeEpFVIrJARNo567uLyBzxTODzg4j0dta/JSJPi8hC4HERuVpEXnTe6+ocI955jnTWR4nITyKyQkQeLif8OjfLXl1SDfk3Wx3AcjxDAh95Dss/U6ZqyL/DxYQATSljjg3LP5e4OapWID+A7UCYsxwCNHSWRwOfOMu3AJ+Uei+0vGOUcfyTgVnO8gPAEqAxEIZnaNZGZeyjwGXO8n3Ai87yAiDGWR4OfOssvwXMAoKc11eX2udL4Cpn+Vrgc2d5JnCls3wrkFNGHBcA00q9vuLwce3hV/nXCM/kRCdY/tmjNvMPeBPPiMYLgWaWf/7xCKjJwfxYK+BtEYnBk9SHr0mPBqaq05Smqpk+nOMrVc0H8kUkFQjH05xWWgnwkbP8P+BT8VyfHAXM8PxBAHj+YR42Q1WLyzjfSOA8Z/ldYIqzfBxwfqn1j5exrz/M9BdIqpp/L+O53PGDF+ew/DPlqXT+qeo14rk08ALwZzwFRkUs/2qBFRT+4WFgoaqeKyLd8NwbAZ7Eqq5Eyi+1XIx3v3vFc1lsv6oOLmebXC/Pr+Usl8UfZvoLJJXOPxG5H2gH3OTlOSz/THmq9P2nqsUi8hFwN0cvKCz/aoHdQ+EfWgF7nOWrS62fB9wsIg0BRCS0huNogKe5DeBSYLF6rlcmisiFTgwiIoO8ONYSPLPjAVwGLHaWfzxifVlsRtTaVan8E5HrgbF4bhQrqcY4LP8Ck9f55/z+ezivBTgL2FhNcVj++cgKCv8wBXhURH4EgkqtnwbsBOJFJA5Pkh/ucrUbT+UaLyLTqimOXKCfiPwMnAo85Ky/DLjOiWEd3t0gdBtwjYjE47kGeLuz/nbgVhFZgeeL5A+cJs6JwFxgAzBdVddV7SMZL1Qq/4CpeJqMfxKR1SJyXzXFYfkXmCqTf4Ln8sgaPLOARvBbnvjK8s9H1m3U/ErK6MJkTG2x/DNusvzznbVQGGOMMcZn1kJhjDHGGJ9ZC4UxxhhjfGYFhTHGGGN8ZgWFMcYYY3xmBYUxxhhjfGYFhTHGGGN8ZgWFMcYYY3xmBYUxxhhjfGYFhTHGGGN8ZgWFMcYYY3wWUAXFuHHjFM/Usfawhy+PKrH8s0c1ParMctAe1fQoU0AVFOnp6W6HYAKY5Z9xm+WgqUkBVVAYY4wxpmZYQWGMMcaYX+XmF5GanVfp/aygMMYYYwwAP23LYOyz3/O3j+Ko7GzkDWsoJmOMMcbUEYcKinl8zkbeWrKdrm2bcfvoGESkUsewgsIYY4wJYD/vyOSuGfEkpudy1ciu3DO+N82CK18eWEFhjDHGBKC8wmKemb+Z135IIKJVU96/fjijeoRV+XhWUBhjjDEBJn73fiZNj2NLag6XDIvk3jP70KKxbyWBFRTGGGNMgCgoKuGFb7fw8qJttGvRmLevHcZJPdtVy7GtoDDGGGMCwPqkA0yaEceG5AOcP6Qz953Vl1ZNG1Xb8a2gMMYYY+qxwuISpi7axvPfbqFV02BeuzKWMX3Dq/081V5QiMg1qvpmdR/XGGOMMZWzOSWbSdPjWLMni7MGdeShs/vRpnlwjZyrJlooHgSsoDDGGGNcUlyivPZDAk/P20yLJg15+bIhnDEgokbPWaWCQkTiy3sLqP52FGOMMcZ4JSEth0kz4vhl537G9evAI+f2J6xF4xo/b1VbKMKBscC+I9YLsMSniIwxxhhTaSUlyptLtjNlzkaaNAriuYsHc/agjpUe8bKqqlpQzAJaqOrqI98QkUW+BGSMMcaYytmZcZC7Po5jeWImp/Zuz6PnDSA8pEmtxlClgkJVr6vgvUurHo4xxhhjvKWq/G/ZTh6dvYEgEaZcMJALh3autVaJ0vy226iIjAOeA4KAaar62BHvnwx8ASQ6qz5V1YdqM0ZjjDHGLXv2H+Kej+NZvDWdE2LCePz8gXRs3dS1ePyyoBCRIOAlYAywG1ghIjNVdf0Rm/6gqn+q9QCNMcYYl6gqM1bu5uFZ6ylW5d/n9ufSYZGutEqU5pcFBTAM2KqqCQAi8iEwATiyoDDGGGMCRsqBPCZ/Es/CTWmMiA7liQsG0SW0mdthAf5bUHQCdpV6vRsYXsZ2I0UkDkgC7lLVdbURnDHGGFObVJXPV+/h/i/WUVBcwgNn9eXKkd1o0MDdVonSqjoORTag5b2vqiFVjsg5RVmHPeL1KqCrquaIyBnA50DMHw4kciNwI0BkZKSPYRlTOZZ/xm2Wg3VfWnY+9362hnnrUxgS2ZqnLhpMVFhzt8P6g6r28mgJICIPAXuBd/EUAZcBLashrt1Al1KvO+NphSgdw4FSy7NF5GURCVPV9CO2exV4FSA2NrbcIsiYmmD5Z9xmOVi3fRWfzL8+X0NuQTH/GN+b60+IJsiPWiVK8/WSx1hVLX0p4hURWQZM8fG4K4AYEYkC9gAXA7/rjioiHYAUVVURGQY0ADJ8PK8xxhjjun25BfzfF2uZFZ/MoM6tePLCQcSEV8ff6zXH14KiWEQuAz7Ec0niEqDY16BUtUhEJgJz8XQbfUNV14nIzc77U4ELgFtEpAg4BFysqlZ9G2OMqdPmrdvLPz9bS9ahAu46vSc3n9SdhkEN3A7rqHwtKC7FM1bEc87rxRzRklBVqjobmH3Euqmlll8EXqyOcxljjDFuyzpYyIOz1vHpqj30iQjhnWuH0bejr7ck1h6fCgpV3Y6nO6cxxhhjqmjhplQmfxJPek4Bt53ag4mnxhDc0P9bJUrzqaAQkc7AC8BxeC55LAZuV9Xd1RCbMcYYU69l5xXy76828OGKXcS0b8FrV8YysHNrt8OqEl8vebwJvA9c6Ly+3Fk3xsfjGmOMMfXakq3p3P1xPMlZh7j5pO7cMTqGJo2C3A6rynwtKNqp6pulXr8lInf4eExjjDGm3srNL+LxORt556cdRIc1Z8bNoxjatY3bYfnM14IiXUQuBz5wXl+Cdd00xhhjyrQ8MZO7ZsSxa99Brj0uirvH9qJpcN1tlSjN14LiWjw9LZ7Bcw/FEmedMcYYYxx5hcU8MXcTb/yYSOc2TfnwhhEMj27rdljVytdeHjuBs6spFmOMMabe+WXnPibNiCMhLZcrRnRl8vjeNG/sr1NpVV1V5/L4u6pOEZEXKGNOD1W9zefIjDHGmDosv6iYZ7/Zwn+/20aHkCa8e90wTohp53ZYNaaqJdIG53lldQVijDHG1Bdr92QxaXocm1Ky+XNsF+79Ux9CmjRyO6waVdXJwb4UkSCgv6reXc0xGWOMMXVSYXEJL367lRcXbiWsRTBvXn0sp/Ru73ZYtaLKF3FUtVhEhlZnMMYYY0xdtSH5AJOmx7E++QDnHtOJB87qR6tm9btVojRf7wr5RURmAjOA3MMrVfVTH49rjDHG1AlFxSX89/sEnv1mM62aNuK/VwxlbL8ObodV63wtKELxjDtxaql1ClhBYYwxpt7bmprNpOlxxO3O4syBETw8oT+hzYPdDssVvnYbvaa6AjHGGGPqiuIS5Y3FiTwxbxPNg4N48dJj+NPAjm6H5SpfJwfrCbwChKtqfxEZCJytqo9US3TGGGOMn0lMz+XuGXGs3LGP0X3CefS8AbRr2djtsFzn69yorwH/AAoBVDUeuNjXoIwxxhh/U1KivPVjIuOf+57NKdk8fdEgXrtyqBUTDl/voWimqstFpPS6Ih+PaYwxxviVXZkH+fvH8fyUkMFJPdvx+PkD6dCqidth+ZXqmBysO85omSJyAZDsc1TGGGOMH1BVPli+i39/tR4R4fHzB3BRbBeO+EPa4HtBcSvwKtBbRPYAicBlPkdljDHGuCxp/yHu+SSeH7akM6p7W6ZcMJDObZq5HZbf8rWXRwIwWkSaAw1UNbt6wjLGGGPcoap8/PNuHvpyPUUlysMT+nHZ8K40aGCtEhXx6aZMEWkrIs8DPwCLROQ5EamW+VhFZJyIbBKRrSIyuYz3RUSed96PF5Eh1XFeY4wxgSv1QB7Xv72Suz+Op09ECHPuOIErRnazYsILvl7y+BD4HjjfeX0Z8BEw2peDOvOEvASMAXYDK0RkpqquL7XZeCDGeQzH0311uC/nNcYYE5hUlZlxSdw/cx2HCor515l9uPa4KCskKsHnkTJV9eFSrx8RkXN8PCbAMGCrc0kFEfkQmACULigmAO+oqgJLRaS1iESoqt0UauqUB79cx/qkA26HYfxM344h3H9WP7fDCAgZOfn86/O1fL12L4O7tObJCwfRo30Lt8Oqc3wtKBaKyMXAdOf1BcBXPh4ToBOwq9Tr3fyx9aGsbTpxRC8TEbkRuBEgMjKyGkIzxnuWf8ZtloMV+3pNMv/6fC3ZeUXcM643N54YTZC1SlSJrwXFTcDfgHed10FAroj8DVBVDaniccv6bWoVtkFVX8XTE4XY2Ng/vG9MTfIm/+yvUFOT7DuwbPsPFnDfF+uYGZdE/04hvH/hYHp1aOl2WHWar708auqnvxvoUup1ZyCpCtt4xZqczZGsudmY+mvBhhQmf7qGfbkF3Dm6J385pTuNgnwdONr42kJRU1YAMSISBezBM5z3pUdsMxOY6NxfMRzIsvsnjDHGlOdAXiEPfbmej3/eTe8OLXnz6mPp36mV22HVG35ZUKhqkYhMBObiuYzyhqquE5GbnfenArOBM4CtwEGgyjOf2l+ixhhTv32/OY17Pokn5UAet57SndtOi6FxwyC3w6pX/LKgAFDV2XiKhtLrppZaVjwjdRpjjDFlyskv4j+zN/D+sp30aN+Cz/5yHIO6tHY7rHrJ54LCGTMivPSxVHWnr8c1xhhjfLFkWzp//ziePfsPceOJ0fxtTE+aNLJWiZriU0EhIn8F7gdSgBJntQIDfYzLGGOMqZJDBcU8Pmcjby3ZTre2zZhx00hiu4W6HVa952sLxe1AL1XNqI5gjDHGGF/8vCOTu2bEk5iey9WjunHPuN40DbZWidrga0GxC8iqjkCMMcaYqsorLObp+Zt57YcEOrVuygc3jGBk92qZWsp4ydeCIgHPpGBfAfmHV6rq0z4e1xhjjPFK3K79TJoRx9bUHC4ZFsm9Z/ahRWO/7XNQb/n6E9/pPIKdhzHGGFMr8ouKeX7BFqZ+l0D7lo1559phnNizndthBSxfR8p8sLoCMcYYY7y1LimLSdPj2Lg3mwuGdub//tSXVk0buR1WQKtSQSEiz6rqHSLyJWXPn3G2z5EZY4wxRygsLuHlhdt44dsttGkezOtXxXJan3C3wzJUvYXi8GRgT1ZXIMYYY0xFNu3NZtKM1azdc4AJgzvywFn9aNPcrrb7iyoVFKr6s/P8XfWGY4wxxvxecYny6vcJPDN/My2aNOSVy4YwfkCE22GZI9htsMYYY/zWtrQc7poRxy879zO+fwcePqc/YS0aux2WKYMVFMYYY/xOSYnyxo+JPDF3E00aBfHcxYM5e1BHRMTt0Ew5rKAwxhjjV3Zk5HL3jHiWb8/ktN7tefS8AbQPaeJ2WOYoqtrLoxkwEU8PjxeAi4HzgI3AQ6qaU20RGmOMCQglJcp7y3bwn9kbaRgkPHnhIM4f0slaJeqIqrZQvIVn2O2mwFfABjw9Ps4CXgGuqI7gjDHGBIbd+w5yzyfx/Lg1gxNiwphywUAiWjV1OyxTCVUtKHqq6kXiKRuTgdGqqiLyAxBXfeEZY4ypz1SV6St38fCsDZSo8u9z+3PpsEhrlaiDfB0pU0Vktqpqqdd/GOjKGGOMOdLerDwmfxrPok1pjIgO5YkLBtEltJnbYZkqqmpBsVJEWqhqjqpee3iliHQHsqsnNGOMMfWRqvL56j3c/8U6CopLeOCsvlw5shsNGlirRF1W1YGtri9n/TYROcG3kIwxxtRXadn5/POzNcxfn8LQrm148sJBRIU1dzssUw18uuQhIrcC76nqfud1G+AS4GUfjhkKfAR0A7YDF6nqvjK2246nNaQYKFLV2Kqe0xhjTM2bFZ/E/32+ltyCYu49ow/XHh9FkLVK1BsNfNz/hsPFBIDzH/8NPh5zMrBAVWOABc7r8pyiqoOtmDDGGP+VmVvAre+vYuL7vxAZ2ozZtx3PDSdGWzFRz/g6sFUDEZHDN2WKSBDg60wtE4CTneW3gUXAPT4e0xhjjAvmrdvLPz9bS9ahAu4e24ubToymYZCvf8saf+RrQTEXmC4iU/EMcnUzMMfHY4arajKAqiaLSPtytlNgntOr5L+q+mpZG4nIjcCNAJGRkT6GZkzlWP4Zt7mVg1kHC3nwy3V8+sse+kaE8O51w+gTEVJr5ze1T5zGhartLNIAuAk4DRBgHjBNVYuPst83QIcy3roXeFtVW5fadp+qtinjGB1VNckpOOYDf1XV7ys6b2xsrK5cufIon8qYo6pSO63ln6kmVb5OUFs5uHBTKpM/iScjp4BbT+nBxFN70MhaJeqTMnPQ13EoSvCMjPlKJfcbXd57IpIiIhFO60QEkFrOMZKc51QR+QwYBlRYUBhjjKk52XmFPDJrAx+t3EXP8BZMu/JYBnRu5XZYppb42ssjBngU6Av8OnOLqkb7cNiZwFXAY87zF2WctznQQFWzneXTgYd8OKcxxhgf/Lg1nb9/HE9y1iH+cnJ3bh8dQ+OGQW6HZWqRr/dQvAncDzwDnAJcgw/NcY7H8NyXcR2wE7gQPJc48FxOOQMIBz5zhmZtCLyvqr7eu2GMMaaScvOLeOzrjby7dAfR7ZrzyS2jOCbyD1epTQDwtaBoqqoLnJ4eO4AHnPk87q/qAVU1A889GUeuTwLOcJYTgEFVPYcxxhjfLUvI4O6P49m17yDXHx/FXWN70aSRtUoEKl8LijznxswtIjIR2AOU1yvDGGNMPZBXWMwTczfxxo+JdGnTjI9uHMmwqFC3wzIu87WguANoBtwGPIznssdVPh7TGGOMn1q1cx93TY8jIT2XK0Z0ZfL43jRv7Ot/JaY+qFIWiMi7qnoFMEpVVwA5eO6fMMYYUw/lFRbz7DdbePX7bUS0asp71w/nuB5hbodl/EhVy8qhItIVuFZE3uGIGzFVNdPnyIwxxviFNbuz+Nv01WxJzeHiY7tw75l9aNmkkdthGT9T1YJiKp4RMaOBn/l9QaHOemOMMXVYQVEJL367hZcWbSOsRTBvXnMsp/Sy2+RM2ao6ffnzwPMi8oqq3lLNMRljjHHZhuQDTJoex/rkA5x3TCfuP6sfrZpZq4Qpn68jZVoxYYwx9UhRcQlTv9vGcwu20KppMK9eMZTT+5U1U4Ixv2e35hpjjAFga2o2k6bHEbc7iz8NjOChCf0Jbe7rBNImUFhBYYwxAa64RHl9cQJPzttM8+AgXrp0CGcOjHA7LFPHWEFhjDEBLDE9l7tmxPHzjn2c3jecf587gHYtG7sdlqmDrKAwxpgA9t7SHWxJyebZPw9mwuCOOHMkGVNpVlAYY0wAm3R6L64/IZoOrZocfWNjKmAFhTHGBLCmwUE0DbYJvYzvGrgdgDHGGGPqPisojDHGGOMzUVW3Y6g1IpIG7CjjrTAgvZbD8Qf2uasmXVXHVXanCvLPDf78u7fYKlal/ANXc9Affm7esDi9U2YOBlRBUR4RWamqsW7HUdvscwcuf/4ZWGz1T135uVmcvrFLHsYYY4zxmRUUxhhjjPGZFRQer7odgEvscwcuf/4ZWGz1T135uVmcPrB7KIwxxhjjM2uhMMYYY4zPrKAwxhhjjM+soHCIyIUisk5ESkTE77rjVCcRGScim0Rkq4hMdjue2iIib4hIqoisdTuW2iYioSIyX0S2OM9tytluu4isEZHVIrKyhmOqMA/F43nn/XgRGVKT8VQytpNFJMv5Oa0WkftqK7a6wB/z7Yjz+m3uVTJO/8pDVbWH5z6SPkAvYBEQ63Y8Nfg5g4BtQDQQDMQBfd2Oq5Y++4nAEGCt27G48NmnAJOd5cnA4+Vstx0Iq4V4jpqHwBnA14AAI4BltfSz8ia2k4FZbv9e/fXhb/lWhd+vK7lXhTj9Kg+thcKhqhtUdZPbcdSCYcBWVU1Q1QLgQ2CCyzHVClX9Hsh0Ow6XTADedpbfBs5xLxTAuzycALyjHkuB1iIS4SexmYr5W76V5s+5V9k4/YoVFIGnE7Cr1OvdzjpTv4WrajKA89y+nO0UmCciP4vIjTUYjzd56FauenvekSISJyJfi0i/WoirLvG3fCvNn3OvKjH4TR4G1PTlIvIN0KGMt+5V1S9qOx6XSBnrrO9wPVBRflfiMMepapKItAfmi8hGp2WnunmTh27lqjfnXQV0VdUcETkD+ByIqenA/Ekdy7fS/Dn3KhuDX+VhQBUUqjra7Rj8wG6gS6nXnYEkl2Ix1aii/BaRFBGJUNVkp+k2tZxjJDnPqSLyGZ5m15r4gvcmD93K1aOeV1UPlFqeLSIvi0iYqtaFiaWqRR3Lt9L8OfcqFYO/5aFd8gg8K4AYEYkSkWDgYmCmyzGZmjcTuMpZvgr4Q4uciDQXkZaHl4HTgZrqEeNNHs4ErnTuuB8BZB1uRq9hR41NRDqIiDjLw/B8l2bUQmx1hb/lW2n+nHuVitPv8tDtu0L95QGci6cizAdSgLlux1SDn/UMYDOeO4jvdTueWvzcHwDJQKHzu77O7Zhq8bO3BRYAW5znUGd9R2C2sxyN507yOGBdTedGWXkI3Azc7CwL8JLz/hpqsfeVF7FNdH5GccBSYJTbv2N/evhjvtWV3KvLeWhDbxtjjDHGZ3bJwxhjjDE+s4LCGGOMMT6zgsIYY4wxPrOCwhhjjDE+s4LCGGOMMT6zgsIlInKbiGwQkfeqsO9EZ/Y5FZGwcraJFZHnfY+0UnGdXdaMeEfZJ6ec9QE5I2pt8TH/3nN+N2vFM4NrozK2sfwz5fIx/153hpqOF5GPRaRFGdtY/rnAuo26REQ2AuNVNbEK+x4D7OO3mVFdH51PRBqqalEV9stR1RZHrAvC0/d6DJ7xIlYAl6jq+moJ1viaf4dnYgR4H/heVV+pzvgqy/KvbvEx/0LUGSFSRJ4GUlX1seqOsZIxWf5hLRSuEJGpeAZ1mSkid4rIMBFZIiK/OM+9nO2CRORJEVnjVON/BVDVX1R1+1HOcbKIzHKWH3D+klwkIgkicls5++SIyFMiskpEFohIO2d9dxGZI54JfH4Qkd7O+rdE5GkRWQg8LiJXi8iLzntdnWPEO8+RzvooEflJRFaIyMPlhF/nZtmrS6oh/2arA1iOZ0jgI89h+WfKVA35d7iYEKApZcyxYfnnEjdH1QrkB7AdCHOWQ4CGzvJo4BNn+Rbgk1LvhZZ3jDKOfzIwy1l+AFgCNAbC8AzN2qiMfRS4zFm+D3jRWV4AxDjLw4FvneW3gFlAkPP66lL7fAlc5SxfC3zuLM8ErnSWbwVyyojjAmBaqddXHD6uPfwq/xrhmZzoBMs/e9Rm/gFv4hnReCHQzPLPPx4BNTmYH2sFvC0iMXiS+vA16dHAVHWa0lQ104dzfKWq+UC+iKQC4Xia00orAT5ylv8HfCqe65OjgBmePwgAzz/Mw2aoanEZ5xsJnOcsvwtMcZaPA84vtf7xMvb1h5n+AklV8+9lPJc7fvDiHJZ/pjyVzj9VvUY8lwZeAP6Mp8CoiOVfLbCCwj88DCxU1XNFpBueeyPAk1jVlUj5pZaL8e53r3gui+1X1cHlbJPr5fm1nOWy+MNMf4Gk0vknIvcD7YCbvDyH5Z8pT5W+/1S1WEQ+Au7m6AWF5V8tsHso/EMrYI+zfHWp9fOAm0WkIYCIhNZwHA3wNLcBXAosVs/1ykQRudCJQURkkBfHWoJndjyAy4DFzvKPR6wvi82IWrsqlX8icj0wFs+NYiXVGIflX2DyOv+c338P57UAZwEbqykOyz8fWUHhH6YAj4rIj0BQqfXTgJ1AvIjE4Unyw12uduOpXONFZFo1xZEL9BORn4FTgYec9ZcB1zkxrMO7G4RuA64RkXg81wBvd9bfDtwqIivwfJH8gdPEORGYC2wApqvquqp9JOOFSuUfMBVPk/FPIrJaRO6rpjgs/wJTZfJP8FweWYNnFtAIfssTX1n++ci6jZpfSRldmIypLZZ/xk2Wf76zFgpjjDHG+MxaKIwxxhjjM2uhMMYYY4zPrKAwxhhjjM+soDDGGGOMz6ygMMYYY4zPrKAwxhhjjM/+H9ku8SzNQGELAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAGoCAYAAAAemnx2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABqjklEQVR4nO3dd3hUZfbA8e8hEDqB0CEECL0jRIrYRUFdxYarotjRXV11rfzWXXXV3VXs3VXXXsGKyFIFEREEhIROIKEGEpJAGqSf3x9zcWNMwiQzkzvJnM/zzDP33rl37pnkMJy8977vK6qKMcYYY4wv6rkdgDHGGGNqPysojDHGGOMzKyiMMcYY4zMrKIwxxhjjMysojDHGGOOzkCooxo8fr4A97OHro1os/+zhp0e1WQ7aw0+PcoVUQZGWluZ2CCaEWf4Zt1kOmkAKqYLCGGOMMYFhBYUx5SgqLnE7BGOMqVWsoDCmlO0Hcvjbl+s58fFF5OYXuR2OMcbUGvXdDsAYt6kqS7el8Z+lSSzecoDwsHqcN6QTuQVFNG1o/0SMMcYb9m1pQlZ+UTFfrU3mzaVJbN6fTZtmDfnz2N5cMTKats0buh2eMcbUKlZQmJCTebiQ91fs5O1lOziQnU/fDs154pLBnD+0Ew3rh7kdnjHG1EpWUJiQsffQEf7zfRIfr9zF4YJiTurVhqcvHcKJPdsgIm6HZ4wxtZoVFKbO25qSzavfbWfm2mQAzh/SiRtPjqFfxxYuR2ZM+UpKPGMH1atnha6pPaygMHXW2t2HePHbbSzYlELjBmFcNborN5wUQ+eWjd0OzZhypWbnMWPVHj76aRcPnTeAsf3bux2SMV6zgsLUKarK8sQMXlyUwA/b0mnZpAG3n9GLa07oRqum4W6HZ8xvlJQoP2xP44Plu1iwKYWiEmV0TGuaNbKvZ1O7WMaaOkFVWZKQxgsLE1i18yBtmzfkL+f05YqRXWlmXT9NEMrILWDGqt18+NMudqYfplWTBlw7phuXj4gmpm0zt8Mzpsqq9U0rIteq6lu+nlxExgPPAWHAG6r6WJnXJwH3Oas5wB9UNc55bQeQDRQDRaoa62s8pvZRVRZvPcCzCxKI232IjhGNeHjCAC6N7UKjBtZjwwQXVWXN7kO8/+NOZq3bR0FRCcd3a8WdZ/Zm/MAO1svI1GrV/dPt74BPBYWIhAEvAWcCe4CVIjJTVTeW2i0JOEVVD4rI2cBrwMhSr5+mqjbbTQgqW0h0btmYf1w4kEuGR9mXsgk6eYXFzIxL5t0fd7B+bxbNGtbnsuO7MGlkV/p0aO52eMb4RYUFhYjEV/QS4I87hUYA21Q10Tnfx8AE4JeCQlWXldp/ORDlh/OaWuzoqJZPz9/Kml2eQuKxiwZx0bAowuvbSPImuOzOOMz7K3byycrdHDpcSO/2zXjkgoFceFxnuxRn6pzKMro9MA44WGa7AMt+u3uVdQZ2l1rfw69bH8q6HvhvqXUF5omIAv9W1dfKO0hEpgBTAKKjo30K2Ljrp6QMnpy3hZ+SMugU0Yh/XjiIS4YHdyFh+Rd6jt4Y/NYPSSzYlIKIcFb/9kwe3Y1RMZE1PuaJ5aCpKZUVFLOAZqq6tuwLIrLYD+cu71+VlrujyGl4CooTS20eo6rJItIOmC8im1V1yW/e0FNovAYQGxtb7vub4LZ+bybT5m5hydYDtG3ekL+fP4DLRnSpFZc2LP9CR15hMTPXJvPmD56h3Fs1acDNp/TgylFd6eRiV2XLQVNTKiwoVPX6Sl67wg/n3gN0KbUeBSSX3UlEBgNvAGeranqpGJKd51QR+QLPJZTfFBSm9ko8kMNT87byzbp9tGzSgP87uy+TR3ejcXjwFxImdKRm5/H+jzt5f8UuMnIL6NuhOY9fPIgJQzvbjcEmpLh5EW8l0EtEugN7gcuAXxUqIhINfA5cpapbS21vCtRT1Wxn+Szg4RqL3ARUSlYezy5IYPqq3TSsX4/bTu/JDSfH0KJRA7dDM+YXm/Zl8Z+lScxcm0xhSQln9G3HdSd2Z3RMaxvK3YQk1woKVS0SkVuBuXi6jb6pqhtE5Gbn9VeBB4DWwMvOP9Cj3UPbA1842+oDH6rqHBc+hvGjrLxC/v3ddv6zNIniEuWqUV259fSetGlmM3+a4HB0vJPXlySydFsaTcLDuHxEF64Z053ubZq6HZ4xrnL1NmNVnQ3MLrPt1VLLNwA3lHNcIjAk4AGaGlFQVMKHK3by/LfbyMgtYMLQTtx9Vh+6RDZxOzRjAE+OzoxL5vUliWxJyaZd84bcO74Pk0Z0JaKJtZwZAzZSpnGRqjJ3QwqPz9lMUlouo2Na85dz+jEoKsLt0IwBIDuvkI9+2sWbS3ewPyuPPu2b8+TEIZw/pFNQ9y4yxg2VjUORTQW9LgBU1aZqNNW2bk8mj3yzkZ+SMujZrhlvXhPLaX3a2bVnExRSs/N464cdvL98J9l5RYyOac2/Lh7Eqb3bWo4aU4HKenk0BxCRh4H9wHt4unpOAmxoN1MtKVl5TJuzhc9+3kPrpuE8esFALju+C/XD7K89475d6Yf595LtzFi9h8LiEs4e2IGbTu7BkC4t3Q7NmKDnzSWPcapaesCpV0RkBTAtQDGZOiivsJj/LE3ipUXbKCpWbjolhltO62k9N0xQ2LI/m5cXb+PruGTq16vHxcM7c+NJMTZJlzFV4E1BUexM0vUxnksgl+OZkMuYYzp6n8Q/Zm9kd8YRxg1oz1/O6UfX1nZHvHFf3O5DvLhoG/M3ptAkPIzrT+zODSfF0L5FI7dDM6bGZOQWsHl/Fpv3ZbNlfzabU7Lp2745j18yuErv401BcQWeGUGfc9aXUma8CGPKsy01m4dmbmTptjR6t2/GBzeMZEzPNm6HZQw/JWXwwrcJfJ+QRkTjBtx+Ri+uHdONlk3C3Q7NmIApKi4hKS2Xjfuy2LQvm037sti0L4vU7Pxf9olsGk6f9s3p3rbqf/Qds6BQ1R14Ju0yxivZeYU8vzCBt37YQZPwMP5+/gAmjYy2+ySMq1SVH7en89zCBFYkZdCmWThTz+7LpJHRNLdLb6aOyc0vYtO+LDbuy2Jjsud5y/5s8otKAGgQJvRs15wTe7ahX8cW9O3YnD4dmtO2WcNq33h8zIJCRKKAF4AxeC55LAVuV9U91TqjqbNUlZlxyfzjm00cyMnnsuO7cPdZfWhtA1MZFx2dofa5BQms2nmQ9i0a8rff9eeKEdE2jLupEzIPF7I+OZP1ezPZkJzF+uRMktJyUaefZssmDRjQqQWTR3elf6cW9OvYgh5tm9HAz3/keXPJ4y3gQ2Cis36ls+1Mv0ZiarVtqdn87csN/JiYzuCoCF6bHMtQuzPeuOhoIfHsggRW7zxIx4hGPDJhABNju9gcG6bWOlo8xO/xFBDxew+xO+PIL693btmY/p1aMGFIZ/p3asGATi3oGNGoRro7e1NQtFXVt0qtvy0idwQoHlPLHCko5sVFCby2JJHGDcJ49IKBXD4imrB61lffuENV+WFbOs8s2MrqnQfpFNGIRy8YyMTYqFoxQ60xRx0uKGL93izi9xwibk8m6/YcYkf64V9e7xLZmEGdI7h8RDSDOkcwoFMEkU3duw/Im4IiTUSuBD5y1i8H0ivZ34SIRVtSeeCr9ezOOMJFwzrzl3P62bwbxlXLE9N5et5WftqR4WmRuGAgl1ohYWqB4hJla0o2cbsPsdZ5bE3JpsS5bNEpohGDoiKYGNuFwVERDOwUQSsXi4fyeFNQXAe8CDyD5x6KZc42E6JSs/L4+6yNfBO/j57tmvHxlFGMimntdlgmhP286yBPzdvCD9vSade8IQ9PGMDvj+9ihYQJWgey81mz6yBrdh9iza6DxO/J5HCBZ0SGiMYNGNqlJWf1b8/gqJYM6dKSts2D/481b3p57ALOr4FYTJArKVE+WrmLx/67mfyiEu46szc3ndLD5jQwrtmQnMlT87by7eZUWjcN56/n9uPKUV3tHgkTVIqKS9i8P5ufdx1k9c6D/Lzr4C/3PdSvJ/Tv1IJLhkdxXHRLhnZpRbfWTWrlEO+VzeVxr6pOE5EXKGdOD1W9LaCRmaCyLTWH//s8npU7DjI6pjX/uHCgjSJoXJN4IIen5m/lm/h9tGhUn3vG9eGaE7rRtKHNd2jcl51XyJpdh1i18yCrd2awdtchcp3Wh3bNGzIsuhVXjerKsOhWDOwcUWcK4Mr+9W1ynlfVRCAmOBUWl/Dv77bz/MJtNA4PY9olg5k4PKpWVs+m9tuXeYTnFiQwY/UeGtavx59O78kNJ8UQ0djGkTDuSc3K46cdGazacZCfkjLYvD+LEoV6An07tODi4VEM79qK4V1b0bll4zr7/VnZ5GBfi0gYMFBV76nBmEyQWLcnk3s+jWPz/mzOHdyRh84bUCuu45m652BuAa98t523l+0Ahcmju3LLaT3tJmBT41SVPQePsDwxnZ+SMvhpRwY7nZ4XjRuEMaxrS249vRfHd2vFcdGtaBZCrWaVflJVLRaR4TUVjAkOeYXFPL8wgX8vSaR103D+fdVwxg3o4HZYJgQdKSjmzR+SeHXxdnILirhoWBR3jO1FVKsmbodmQoSqsjP9MMsT01mRlMHyxHT2ZeYBngGjju8WyVWjunJ8t0j6d2rh98GiahNvSqc1IjITmAHkHt2oqp8HLCrjmp93HeSeGXFsP5DL72O78Jdz+1lzsqlxRcUlzFi9h2fmbyU1O5+x/dpz7/g+9G7f3O3QTAjYnXGYZdvTWJ6YwY/b09mf5Skg2jRryMiYSEZ2j2Rk99b0ateMejbmzi+8KSgi8Yw7cXqpbQr4XFCIyHg8k46FAW+o6mNlXhfn9XOAw8A1qvqzN8eaqskrLOaZBVt5fUkiHVo04t3rRnBy77Zuh2VCjKqycFMqj83ZzLbUHIZFt+SlScM4vluk26GZOiw1K49l29NZtj2NZdvT2XPQ0wOjTbNwRsW0/uXRo23TOnv/gz9402302kCc2Lk/4yU8Q3jvAVaKyExV3Vhqt7OBXs5jJPAKMNLLY42X4nYf4q4ZcWxLzeHyEV34yzn9bLIkU+Pidh/in7M3sSIpg5g2TXn1yuGMG9DevsCN32XnFbIiMYOl29L4YVsaCak5gGf8h9ExrbnxpBhO6NGanu2aWf5VgTeTg/XG8x95e1UdKCKDgfNV9VEfzz0C2Kaqic55PsYzq2npomAC8K6qKrBcRFqKSEegmxfHmmMoKCrhhW8TeHnxdto1b2itEsYVew4eZtqcLcyMS6Z103AemTCAy0ZEh/S1aONfRcUlxO3J5PuEAyxNSGPN7kMUlyiNGtTj+G6RXDI8ijHOrJs2bUD1eXPJ43XgHuDfAKoaLyIfAr4WFJ2B3aXW9+BphTjWPp29PBYAEZkCTAGIjo72LeI6ZMv+bP78yVo27svi4mFRPHBef7tXIgAs/yqWlVfIy4u28+YPSQhwy2k9uPmUHtY65mehmoO7Mw6zJOEA329N44ftaWTnFSECgzpHcNPJMZzYqw3DolvVmTEggoE3BUUTVf2pTLNPkR/OXV4ZWHYArYr28eZYz0bV14DXAGJjY8vdJ5QUlyhvLk3iiblbaN6oPq9dNZyzrAdHwFj+/VZRcQkfr9zNM/O3kp5bwEXHdebucX3o1LKx26HVSaGSg3mFxSxPTOe7rQf4busBEg94+hB0imjEuYM6clKvtpzQo3XQzX9Rl3g7OVgPnP+wReQSYJ8fzr0H6FJqPQpI9nKfcC+ONWXsOXiYu6bHsSIpg7P6t+efFw2yfvymRi1NSOORWRvZkpLNiG6RvHVtPwZHtXQ7LFNL7UzPZfGWAyzaksqP29PJLyqhYf16jIppzaSRXTmldxt6tLX7IGqKNwXFLXiq274ishdIAib54dwrgV4i0h3YC1wGXFFmn5nArc49EiOBTFXdJyIHvDjWOFSVr9Ym87cv11OiaqNdmhqXlJbLP77ZyIJNqXSJbMwrk4YxfmAHy0FTJQVFJazckcG3m1NZtDmVxDRPK0RMm6ZcPiKaU/u0ZVRMa7uM4RJvenkkAmNFpClQT1Wz/XFiVS0SkVuBuXi6fr6pqhtE5Gbn9VeB2Xi6jG7D02302sqO9UdcdU3mkUL+9uV6ZsYlM7xrK565dCjRrW1QIFMzsvIKefHbbbz1QxLhYfW4b3xfrh3Tzb7wjdfSc/JZtOUA325OYcnWNHLyiwgPq8fImEiuGt2V0/q0o1ubpm6HafCul0dr4EHgREBFZCnwsKqm+3pyVZ2Np2gove3VUsuKp4XEq2PNr63ckcEdH69lf1Yed57Zmz+e2oP6due8qQElJcqnq/cwbe5m0nMLmDg8irvH9aFd80Zuh2aCnKqy/UAuCzalsGBjCj/vOkiJeibVOm9IR07r044xPdvYRHBByJvfyMfAEuBiZ30S8AkwNlBBGd8UFZfwwrfbeOHbBKJaNeHTm0dzXHQrt8MyIWLNroM8NHMDcXsyGRbdkjevOd7ukzCVKi5Rft51kPkbU5i/MYUk51LGgE4t+NPpvRjbrz0DO7ewS2RBzquRMlX1kVLrj4rIBQGKx/ho76Ej3P7RGlbtPMhFwzrz8ISBITU5jXHPgex8Hp+zmU9X76Fd84Y88/shXDC0s/0nYMqVV1jMsu1pzF2fwoJNKaTnFtAgTBgV05rrxnTjjH7tredPLePN/zSLROQyYLqzfgnwTeBCMtU1Z/0+7v00nhKF5y4byoShnd0OyYSAouIS3v1xJ8/M30peUTE3nRLDn07vZYWs+Y2c/CIWb0llzvr9LNqcSm5BMc0a1ufUPm0ZN6ADp/RpSwsbh6TW8uZf/E3AncB7znoYkCsid+K5zaFFoIIz3skrLOYf32ziveU7GRwVwQuXH0fX1naTkgm8n5IyeOCr9Wzen81Jvdrw0PkD6NG2mdthmSCSeaSQBRtT+O/6/SxJOEBBUQltmoVz/tBOnDWgAyf0aE3D+naTbl3gTS8Pm94viCWl5XLLBz+zcV8WN57UnXvG9SW8vt14aQLrQHY+/5q9ic/X7KVzy8Y274b5lUOHC5i3MYXZ6/bxw7Y0CouVjhGNmDQymvEDOhDbLdKGuK6DrE2yFvtq7V7+8vk6wuvX481rYjm9b3u3QzJ1XHGJ8sGKnTwxdwt5hcXccloPbj2tF43D7S/MUJd5uJC5G/fzTbyniCgqUaJaNebaMd0ZP7ADQ6Na2lTfdZwVFLVQXmExD8/ayIcrdhHbtRUvXHEcHSPs5iUTWPF7DnH/F+tZtzeTMT1b8/CEgXZ5I8Tl5Bcxf+N+vo7bx/cJBygs9hQR15/UnXMHdWRQ5whrtQohVlDUMjvScvmjc4nj5lN6cPdZvW1sCRNQWXmFPDFnC++v2EmbZg15/vLjOG9wR/uPIkTlFRazaHMqM+OS+XZzKvlFJXSKaMQ1J3Tjd4M7MTjKiohQ5VVBISJhQPvS+6vqrkAFZco3Z/1+7pkRR716Ypc4TMCpKrPi9/HwrI2k5+Rz9ehu3HlWb7sLPwQVFZewbHs6X67dy7wNKeTkF9GmWTiXHd+F84d24rgurexyhvFqpMw/4RkpMwUocTYrMDiAcZlSCotLmDZnM69/n8SQqAhemjSMqFY2fLYJnN0Zh/nrl+v5busBBnWO4M2rj2dQVITbYZkapKrE78nkizV7mRWfTFpOAc0b1efsgR04f2gnRse0ttZR8yvetFDcDvTxx1DbpupSs/K49cM1/LQjg8mju3L/uf2si5UJmMLiEt74PonnFm4lTIQHz+vP5NHd7I78ELI74zBfrNnLl2v2kpiWS3j9epzRtx0Thnbm1D5tbR4WUyFvCordQGagAzG/tXJHBn/84Gdy8opsoCoTcGt3H2LqZ/Fs3p/NWf3b8/cJA+xm3xCRlVfI7Ph9fP7zXn7akQHAyO6R3HRKDOMHdiSisV3mMsfmTUGRCCwWkW+A/KMbVfXpgEUV4lSVd5bt4NFvNhHVqjHvXT+Cvh1s/DATGLn5RTw5bwtvL9tBu+YNefXK4Ywf2MHtsEwNefW77Twzfyv5RSXEtG3KPeP6MGFoJ7usaqrMm4Jil/MIdx4mgI4UFPOXL9bxxZq9jO3Xnqd/P8RugjMBs3hLKvd/sZ7kzCNcObIr94zvY/kWYrq3acrvj+/CxcOirIeG8Yk3I2X+vSYCMZ5rlze9t5pN+7O468ze3HJaT7tz2gRERm4Bj8zayBdr9tKzXTNm3DSa2G6RbodlXDBuQAfGDbAWKeO7CgsKEXlWVe8Qka/x9Or4FVU9P6CRhZgftqVxy4c/U1KivHn18ZzWt53bIZk66GhX0IdmbiArr5DbzujFLaf1sBt9jTE+q6yF4uhkYE/WRCChSlX5z9Ik/jl7Ez3bNeO1q2Lp1sYm9jL+l5KVx1+/XM/8jSkM6dKSaRcPpk8Hm6rHGOMfFRYUqrraef7O3ycVkUjgE6AbsAO4VFUPltmnC/Au0AHP+BevqepzzmsPATcCB5zd/6Kqs/0dZ6DlFXrul/j8572MG9Cepy4dalM+G79TVWas2sMj32ykoKiE+8/px3UndreuoMYYv3Lrf6+pwEJVfUxEpjrr95XZpwi4S1V/FpHmwGoRma+qG53Xn1HVWtt6kpKVx5T3VhO3+xB/HtubP51u90sY/0s+dISpn69jydYDjOgeyeMXD6a7tYAZYwLArYJiAnCqs/wOsJgyBYWq7gP2OcvZIrIJ6AxspJaL232IKe+tIjuvyLromYBQVT5ZuZtHv9lEiSp/P38AV43qakWrMSZg3Coo2jsFA6q6T0QqvQNRRLoBxwErSm2+VUQmA6vwtGQcLO/YYPPV2r3c+2k8bZs35PM/nmDjSxi/Sz50hPs+i+f7hDRGx7Rm2iWD6RJpYwoYYwKrWgWFiLymqlOOsc8CPPc/lHV/Fc/VDPgMuENVs5zNrwCP4Ol98gjwFHBdBcdPAaYAREdHV+XUflVSojyzYCsvfLuNEd0jeWXSMFo3a+haPKZm1GT+/XKvxKyNFKvyyIQBTBpprRKhLli+A03dJ6q/6RHqecFz42S5LwFxqhpV7ZOKbAFOdVonOgKLVbVPOfs1AGYBcysamdNpvZilqgOPdd7Y2FhdtWpVdcOutsMFRdw1PY7/rt/PZcd34eEJAwmvb5Pq1GLV+h86kPmXkpXH1M/iWbTlACO7R/LkxCHWKlF3VbtCdOs70NQ55eZgZS0UB4CdZQ5UZ93XQRJmAlcDjznPX5XdQTzDtf0H2FS2mBCRjkcvmQAXAut9jCdg9mfmccO7K9mQnMVfz+3H9Sd2t5HojN+oKjPjknngqw3kFxXz4Hn9uXp0N2uVMMbUuMoKikTgDFXdVfYFEdnt43kfA6aLyPV4hvWe6LxvJ+ANVT0HGANcBawTkbXOcUe7h04TkaF4CpwdwE0+xhMQ6/dmcv07K8nJK+I/V8dyet/2bodk6pCM3AL++uU6Zq/bz3HRLXlq4hBi2jZzOyxjTIiqrKB4FmiF5z/8sqb5clJnKvQzytmeDJzjLC+lgmYVVb3Kl/PXhPkbU7jtozW0atKAT/9wAv062s2Xxn8Wbkrhvs/WkXmkgHvH9+Gmk3vYuBLGGFdVNrDVS5W89kJgwqn9VJU3f9jBo99sZHDnCF6/OpZ2zRu5HZapI3Lyi3h01kY+Xrmbvh2a8971I6xYNcYEhWP28hCRW4APVPWQs94KuFxVXw5wbLVOUXEJD8/ayLs/7mT8gA488/uhNA63ORKMf6zemcGfP4lj98HD3HxKD/58Zi+bg8MYEzS86TZ6Y+nWClU9KCI3AlZQlJKbX8SfPlrDt5tTmXJyDFPH97Ub44xfFBaX8NyCBF5evI3OrRoz/abRHG8zgxpjgow3BUU9ERF1+peKSBgQHtiwapfUrDyue2clG5OzePSCgVw5qqvbIZk6YvuBHO74eC3r9mYycXgUD5zXn+aNGrgdljHG/IY3BcVcPD0yXsXTq+JmYE5Ao6pFElKyueatlRw8XMAb1pPD+Imq8sGKXTz6zUYaNwjj1SuHMX5gR7fDMsaYCnlTUNyHp1vmH/D0upgHvBHIoGqLFYnp3PjuKsLrh/HJlNEMiopwOyRTB6Tn5HPfZ/Es2JTKSb3a8OTEIbRvYTf2GmOC2zELClUtwTPU9SuBD6f2mBWfzJ2fxNElsjFvXzvCRiU0frFk6wHumhFH5uFC/va7/lx7gg1SZYypHbzp5dEL+BfQH/jlzyRVjQlgXEHtP0uTeGTWRo7v1orXJ8fSsondUmJ8k19UzBNztvDG0iR6t2/Gu9dZd1BjTO3izSWPt4AHgWeA04Br8WEs+dqspER5bM5mXluSyPgBHXj2sqE0amDd9oxvtqXmcNtHa9i4L4vJo7vyl3P6WV4ZY2odbwqKxqq60OnpsRN4SES+x1NkhIyCohLu/TSOL9cmM3l0Vx48b4CNTGh8VlBUwlX/WUFeYTFvTI5lbH+7qdcYUzt5U1DkiUg9IEFEbgX24vvkYLVKbn4RN7+/mu8T0rhnXB/+eGoPm+DL+EV4/Xo88/uhdG/T1G68NMbUat4UFHcATYDbgEfwXPa4OoAxBZX0nHyue3sl65OzmHbxYC49vovbIZk6ZlRMa7dDMMYYn1VYUIjIe84kXCeo6kogB8/9EyFjz8HDTH7zJ/YePMK/rxxuzdHGGGNMBSproRguIl2B60TkXcrciKmqGQGNzGVbU7KZ/J+fyC0o4v0bRtpQx8YYY0wlKisoXsUzImYMsJpfFxTqbK+T1uw6yLVvryQ8rB7Tbxpt3feMMcaYY6hs+vLngedF5BVV/UMNxuSqpQlpTHlvFW2bN+S960YS3doGrDLGGGOOxZuRMkOmmJizfh+3fbSWmLZNeff6EbRrbnfdG2OMMd7wppdHSJixajf3fRbP0C4teeuaEUQ0sRkdjTHGGG/Vc+OkIhIpIvNFJMF5blXBfjtEZJ2IrBWRVVU93ltvLk3ink/jGdOzDe/fMNKKCWOMMaaKXCkogKnAQlXtBSx01itymqoOVdXYah5fqdU7M3h41kbGD+jAG1fH0iTcGm2MMcaYqnKroJgAvOMsvwNcUMPH/2J410hemTSMF684job1bf4EY4wxpjrcKijaq+o+AOe5oqG8FZgnIqtFZEo1jkdEpojIKhFZdeDAgXL3OXtQR+qHufWjMHWZN/lnTCBZDpqaErD/RUVkgYisL+cxoQpvM0ZVhwFnA7eIyMlVjUNVX1PVWFWNbdu2bVUPN8Ynln/GbZaDpqYE7IYBVR1b0WsikiIiHVV1n4h0BFIreI9k5zlVRL4ARgBLAK+ON8YYY0zNEFWt+ZOKPAGkq+pjIjIViFTVe8vs0xSop6rZzvJ84GFVnePN8RWc9wCws5yX2gBpvn6uWsg+d/Wkqer4qh5USf65IZh/9xZb5aqVf+BqDgbDz80bFqd3ys1BtwqK1sB0IBrYBUxU1QwR6QS8oarniEgM8IVzSH3gQ1X9R2XH+xDPqjK9SEKCfe7QFcw/A4ut7qktPzeL0zeu9JFU1XTgjHK2JwPnOMuJwJCqHG+MMcYYd1jXBmOMMcb4zAoKj9fcDsAl9rlDVzD/DCy2uqe2/NwsTh+4cg+FMcYYY+oWa6EwxhhjjM+soDDGGGOMz6ygcIjIRBHZICIlIhJ03XH8SUTGi8gWEdnmjOMREkTkTRFJFZH1bsdS03yd4TdAMVWah+LxvPN6vIgMC2Q8VYztVBHJdH5Oa0XkgZqKrTYIxnwrc96gzb0qxhlceaiq9vDcR9IP6AMsBmLdjieAnzMM2A7EAOFAHNDf7bhq6LOfDAwD1rsdiwuffRow1VmeCjxewX47gDY1EM8x8xBPF/L/AgKMAlbU0M/Km9hOBWa5/XsN1kew5Vs1fr+u5F414gyqPLQWCoeqblLVLW7HUQNGANtUNVFVC4CP8czeWuep6hKg2gOg1XJ+m6HXT7zJwwnAu+qxHGjpDLUfDLGZygVbvpUWzLlX1TiDihUUoaczsLvU+h5nm6nbfJ3h19+8yUO3ctXb844WkTgR+a+IDKiBuGqTYMu30oI596oTQ9DkoSsjZbpFRBYAHcp56X5V/aqm43GJlLPN+g7XAZXldxXeZoyqJotIO2C+iGx2Wnb8zZs8dCtXvTnvz0BXVc0RkXOAL4FegQ4smNSyfCstmHOvqjEEVR6GVEGhlcyAGkL2AF1KrUcByS7FYvyosvz2wwy//uZNHrqVq8c8r6pmlVqeLSIvi0gbVa0NE0v5RS3Lt9KCOfeqFEOw5aFd8gg9K4FeItJdRMKBy4CZLsdkAm8mcLWzfDXwmxY5EWkqIs2PLgNnAYHqEeNNHs4EJjt33I8CMo82owfYMWMTkQ4iIs7yCDzfpek1EFttEWz5Vlow516V4gy6PHT7rtBgeQAX4qkI84EUYK7bMQXws54DbMVzB/H9bsdTg5/7I2AfUOj8rq93O6Ya/OytgYVAgvMc6WzvBMx2lmPw3EkeB2wIdG6Ul4fAzcDNzrIALzmvr6MGe195Edutzs8oDlgOnOD27ziYHsGYb7Ul92pzHtrQ28YYY4zxmV3yMMYYY4zPrKAwxhhjjM+soDDGGGOMz6ygMMYYY4zPrKAwxhhjjM+soHCJiNwmIptE5INqHHurM/ucikibCvaJFZHnfY+0SnGdX96MeMc4JqeC7SE5I2pN8TH/PnB+N+vFM4Nrg3L2sfwzFfIx//7jDDUdLyKfikizcvax/HOBdRt1iYhsBs5W1aRqHHsccJD/zYzq+uh8IlJfVYuqcVyOqjYrsy0MT9/rM/GMF7ESuFxVN/olWONr/h2diRHgQ2CJqr7iz/iqyvKvdvEx/1qoM0KkiDwNpKrqY/6OsYoxWf5hLRSuEJFX8QzqMlNE/iwiI0RkmYiscZ77OPuFiciTIrLOqcb/BKCqa1R1xzHOcaqIzHKWH3L+klwsIokiclsFx+SIyFMi8rOILBSRts72HiIyRzwT+HwvIn2d7W+LyNMisgh4XESuEZEXnde6Ou8R7zxHO9u7i8iPIrJSRB6pIPxaN8tebeKH/JutDuAnPEMClz2H5Z8plx/y72gxIUBjypljw/LPJW6OqhXKD2AH0MZZbgHUd5bHAp85y38APiv1WmRF71HO+58KzHKWHwKWAQ2BNniGZm1QzjEKTHKWHwBedJYXAr2c5ZHAt87y28AsIMxZv6bUMV8DVzvL1wFfOsszgcnO8i1ATjlxXAK8UWr9qqPva4+gyr8GeCYnOsnyzx41mX/AW3hGNF4ENLH8C45HSE0OFsQigHdEpBeepD56TXos8Ko6TWmqmuHDOb5R1XwgX0RSgfZ4mtNKKwE+cZbfBz4Xz/XJE4AZnj8IAM8/zKNmqGpxOecbDVzkLL8HTHOWxwAXl9r+eDnHBsNMf6Gkuvn3Mp7LHd97cQ7LP1ORKuefql4rnksDLwC/x1NgVMbyrwZYQREcHgEWqeqFItINz70R4EksfyVSfqnlYrz73Suey2KHVHVoBfvkenl+rWC5PMEw018oqXL+iciDQFvgJi/PYflnKlKt7z9VLRaRT4B7OHZBYflXA+weiuAQAex1lq8ptX0ecLOI1AcQkcgAx1EPT3MbwBXAUvVcr0wSkYlODCIiQ7x4r2V4ZscDmAQsdZZ/KLO9PDYjas2qUv6JyA3AODw3ipX4MQ7Lv9Dkdf45v/+ezroA5wGb/RSH5Z+PrKAIDtOAf4nID0BYqe1vALuAeBGJw5PkR7tc7cFTucaLyBt+iiMXGCAiq4HTgYed7ZOA650YNuDdDUK3AdeKSDyea4C3O9tvB24RkZV4vkh+w2nivBWYC2wCpqvqhup9JOOFKuUf8CqeJuMfRWStiDzgpzgs/0JTVfJP8FweWYdnFtCO/C9PfGX55yPrNmp+IeV0YTKmplj+GTdZ/vnOWiiMMcYY4zNroTDGGGOMz6yFwhhjjDE+s4LCGGOMMT6zgsIYY4wxPrOCwhhjjDE+s4LCGGOMMT6zgsIYY4wxPrOCwhhjjDE+s4LCGGOMMT6zgsIYY4wxPgupgmL8+PGKZ+pYe9jDl0e1WP7Zw0+ParMctIefHuUKqYIiLS3N7RBMCLP8M26zHDSBFFIFhTHGGGMCwwoKY8rYc/AwT8/fik2cZ4wx3qvvdgDGBAtV5ZOVu3n0m02oKhcM7URM22Zuh2WMMbWCFRTGAPsyjzD1s3V8t/UAo2NaM+2SwXSJbOJ2WMYYU2tYQWFCmqry+c97eejrDRQVK38/fwBXjepKvXridmjGGFOrWEFhQlZqdh73f7Ge+RtTiO3aiicnDqFbm6Zuh2WMMbWSFRQmJH0dl8zfvlrP4YJi7j+nH9ed2J0wa5Uwxphqs4LChJT0nHwe+GoD36zbx5AuLXlq4hB6trMbL40xxldWUJiQMWf9fv765ToyjxRyz7g+3HRyDPXDrOe0Mcb4gyvfpiISKSLzRSTBeW5Vzj5dRGSRiGwSkQ0icnup1x4Skb0istZ5nFOzn8DUJpmHC7nj4zXc/P5q2rdoxNd/OpFbTutpxYQxxvhRtb5RReRaH887FVioqr2Ahc56WUXAXaraDxgF3CIi/Uu9/oyqDnUes32Mx9RRizancuYz3zErfh+3n9GLL28ZQ98OLdwOy5hK7T10hMLiErfDMKZKqvsn2t99PO8E4B1n+R3ggrI7qOo+Vf3ZWc4GNgGdfTyvCRFZeYXc+2kc1769klZNwvnyljH8+czeNLBWCRPE0nPyefjrjZz2xGKmr9rtdjjGVEmF91CISHxFLwHtfTxve1XdB57CQUTaVbaziHQDjgNWlNp8q4hMBlbhack4WMGxU4ApANHR0T6GbWqDpQlp3PtpHPuz8vjjqT24fWwvGtYPcyUWyz/jjZz8It74PpHXlyRypLCYS2O7cFqfSr8WvWY5aGqKVDRfgYikAOOAsv9RC7BMVTtV+sYiC4AO5bx0P/COqrYste9BVf3NfRTOa82A74B/qOrnzrb2QBqeaVQfATqq6nWVxQMQGxurq1atOtZuppbKzS/iX//dxPvLdxHTtilPTRzCcdHlppWvqtW/1PLPlJVfVMwHy3fx4qJtZOQWcPbADtx1Vp9j9Tyqdv9my0HjJ+XmYGW9PGYBzVR17W/eSWTxsc6mqmMrjEQkRUQ6Oq0THYHUCvZrAHwGfHC0mHDeO6XUPq87sZoQtjwxnXs+jWPPwSPccGJ37h7Xh0YN3GmVMOZYikuUL9bs5Zn5W9l76Ahjerbm3nF9GdKlpduhGVNtFRYUqnp9Ja9d4eN5ZwJXA485z1+V3UFEBPgPsElVny7zWsejl0yAC4H1PsZjaqkjBcVMm7uZt37YQdfWTZh+02iO7xbpdljGlEtVmb8xhSfnbWFrSg6DOkfw2MWDOKlXW7dDM8Znbo1D8RgwXUSuB3YBEwFEpBPwhqqeA4wBrgLWicha57i/OD06ponIUDyXPHYAN9Vo9CYorN55kHtmxJGYlsvVo7ty39l9aRJuQ6uY4LQ8MZ1pczbz865DxLRpysuThnH2wA54/nYypvZz5dtXVdOBM8rZngyc4ywvpYLrNKp6VUADNEEtr7CYZxZs5fUliXSMaMwHN4xkTM82bodlTLk2JGcybc4Wvtt6gA4tGvHYRYO4ZHiUjYNi6hz7c87UKvF7DnHX9DgSUnO4fEQX/nJOP5o3auB2WMb8xo60XJ6ev5WZcclENG7A/53dl6tP6Gb39pg6ywoKUysUFJXwwrcJvLx4O22bNeTta4/nVD91qzPGn1Kz8nj+2wQ+/mk39cOEP57ag5tO6UFEYyt8Td1W2TgU2XjuUSiXqtpwg6ZGbEzO4q4ZcWzal8VFwzrz4HkD7MvZBJ3MI4W8tmQ7by7dQWFxCZeN6MJtp/eiXYtGbodmTI2orJdHcwAReRjYD7yH556GSUDzGonOhLTC4hJeWbyd5xcm0LJJOK9PjuXM/r6OqWaMf+UVFvPOsh288t12Dh0u5PwhnbjzzN50a9PU7dCMqVHeXPIYp6ojS62/IiIrgGkBiskYtqZkc9f0ONbtzeS8IZ14+PwBtGoa7nZYxvyiqLiEGav38NyCBPZn5XFqn7bcfVYfBnaOcDs0Y1zhTUFRLCKTgI/xXAK5HCgOaFQmZBWXKG98n8hT87fSrGF9XrpiGOcO7uh2WMb8QlWZvW4/T83bQmJaLsOiW/LsZUMZFdPa7dCMcZU3BcUVwHPOA2Cps80Yv0o8kMPdM+L4edchxg1oz6MXDKJt84Zuh2XML5YmpPH4nM2s25tJ7/bNeH1yLGP7tbOxJIzBi4JCVXfgmR3UmIAoKVHeXraDaXM307B+GM/+figThnayL2kTNOJ2H2La3M38sC2dzi0b8+TEIVx4XGfC6lmOGnPUMQsKEYkCXsAzcqXiaaG4XVX3BDg2EwJ2pR/mnk/jWJGUwel92/GviwbR3u6KN0Fi+4Ecnpy7hf+u309k03Ae+F1/Jo2Kdm32WmOCmTeXPN4CPsQZHhu40tl2ZqCCMnWfqvLBil38c/Ym6okw7ZLBTBweZa0SJijsyzzCcwsSmLF6D43q1+OOsb244aQYmjW0oXuMqYg3/zraqupbpdbfFpE7AhSPCQHJh45w32fxfJ+Qxok92/D4JYPp3LKx22EZw8HcAl75bjtvL9sBCpNHd+WW03rSppndy2PMsXhTUKSJyJXAR8765UB64EIydZWqMmP1Hh75eiPFqjx6wUAmjYy2Vgnjutz8It76IYl/f5dITkERFx7XmT+P7U2XyCZuh2ZMreFNQXEd8CLwDJ57KJY524zxWkpWHv/3+Tq+3ZzKyO6RPHHJEKJb25e1cVdBUQkfr9zF8wu3kZaTz1n923P3uD70bm9j95nQc6SgmJ93HWR5YjqRTcO5dkz3Kh3vTS+PXcD51Q3QhDZV5au1yTw4cwP5RcU88Lv+XHNCN+rZ3fHGRSUlytfxyTw1byu7Mg4zonsk/75qOMO7tnI7NGNqzOGCIn7eeYjliemsSEpn7e5DFBYrYfWE86ox/k9lc3ncq6rTROQFypnTQ1Vvq/LZTEhJy8nn/i/WMXdDCsOiW/LkxCHEtG3mdlgmhKkqi7cc4PE5m9m8P5v+HVvw1rXHc2rvtnbpzdR5hwuKWL3T0wKxIjGDuD3/KyAGdY7guhO7MyqmNbFdW1VrFufKWig2Oc+rqhW5CWmz1+3jr1+uJye/iP87uy83nBRjffaNq1btyGDanC38tCOD6MgmPHfZUM4b3Mlay0ydVbqAWJ6YQdzuQxSV/K+AuP7EGEbGRHJ8t0i/9GCqbHKwr0UkDBioqvf4fCYTEg7mFvDAzA18HZfM4KgInpo4hF52Pdq4aMv+bJ6Yu4UFm1Jo27whj1wwkN/HdiG8fj23QzPGr3LzSxcQ6cTvyaSoRKlfTxgUFcENJ8UwukdrhndtFZAu0JW+o6oWi8hwf59URCKBT4BuwA7gUlU9WM5+O4BsPHOHFKlqbFWONzVr/sYU/u/zdRw6XMBdZ/bmD6f2oH6YfWkbd+zOOMwzC7byxZq9NGtYn3vG9eHaMd1oEm5jSZi6ISe/iFU7MliRlMHyxHTWlSogBkdFMOXkGEY6lzCa1sAYKt6cYY2IzARmALlHN6rq5z6cdyqwUFUfE5Gpzvp9Fex7mqqm+XC8CbDMI4X8/esNfP7zXvp1bMG7142gf6cWbodlQlRaTj4vfruND1bspJ4IU06K4Q+n9qBlE5ut1tRuRwuI5YlOAbE3k2KngBjSpSVTTv5fC4QbhbM3Z4zEM+7E6aW2KeBLQTEBONVZfgdYTNUKAl+PN36yeEsqUz9bx4GcfG47vSe3nt7LmpKNK7LzCnn9+yTe+D6R/KISLo2N4rYzetExwgZNM7VTdl4hq3YcZHmS5x6I9U4B0SBMGBLVkj+c0oORMZGuFRBledNt9NoAnLe9qu5z3n+fiLSr6PTAPBFR4N+q+loVj0dEpgBTAKKjo/32AUJddl4h/5y9iY9+2k2vds14bfJwBke1dDusoGP5F3h5hcW8v3wnLy3axsHDhZw7uCN3ntmbHtajCLAcrE1+KSCceyDW7c2kRKFBmDC0i6eAGN2jNcOiW9E4PPjmk/FmcrDewCt4/hMfKCKDgfNV9dFjHLcA6FDOS/dXIb4xqprsFAzzRWSzqi6pwvE4RchrALGxsb/p/mqqbtm2NO75NJ59mUe46ZQY/jy2N40aBF9yBwPLv8ApLlE+/3kPzy5IYO+hI5zYsw33ju9jhW0ZloPBKyuv8FeXMNaXKiCO69KKW0/ryciY4C0gyvKmjeR14B7g3wCqGi8iHwKVFhSqOrai10QkRUQ6Oq0LHYHUCt4j2XlOFZEvgBHAEsCr441/HS4o4rH/bubdH3fSvU1TZtx8gg0EZGqcqjJvYwpPzt1CQmoOQ6IimHbJYMb0bON2aMZUKvNI4a9uojxaQISH1WNol5bcelpPRsW05rhaUkCU5U1B0URVfyoz6EuRj+edCVwNPOY8f1V2BxFpCtRT1Wxn+SzgYW+PN/61ckcGd8+IY2f6Ya4d0417x/WtlQlvarfliek8Pmcza3YdIqZtU16ZNIzxAzvYoFQmKGUeKWSlUzwsT0pnY3LWLwXEcdEt+dPpvRgZE8mw6FZ1opXX28nBeuCMlikilwD7fDzvY8B0Ebke2IUzNbqIdALeUNVzgPbAF84XRX3gQ1WdU9nxxv/yCot5cu4W/vNDElGtGvPxlFGMimntdlgmxKzfm8kTc7fw3dYDdGjRiMcuGsQlw6OsW7IJKpmHC/lpRwYrnAJiQ3IWqhBe39MC8afTezktEC3rRAFRljcFxS14rr/1FZG9QBIwyZeTqmo6cEY525OBc5zlRGBIVY43/rVm10HumhFH4oFcrhwVzf+d3a9G+jIbc9SOtFyemr+Vr+OSadmkAfef04+rRnetk1/GpvY5dLiAn5L+dwlj477/FRDDolty+xm9GNm97hYQZXnTyyMRGFv6EkTgwzJuyi8q5tkFCfz7u+10aNGI968fyYm97Pq0qTkpWXk8vzCBT1bupkFYPW49rSc3nhxDROOqzy9gjL8cOlzAiqQMVjg3UW7a7ykgGtavx7DoVtxxRm9GxkQytEtoFBBledPLozXwIHAioCKyFHjYaSUwdcz6vZncNT2OLSnZXBobxV9/158W1ZgkxpjqyDxcyKtLtvPWD0kUFSuXj4jmT2f0pF3zRm6HZkLQ0QLi6FwYm0sVEMO7egqI0T1aM6RLBA3rh14BUZY37dcf4+lZcbGzPgnPsNcV9uIwtU9hcQkvfruNlxZtI7JpOG9eE8vpfdu7HZYJEUcKinl72Q5eWbyN7PwiJgzpxJ/P7E3X1k3dDs2EkIO5TgtE0q8LiEYNPC0Qfx7bm1ExVkBUxKuRMlX1kVLrj4rIBQGKx7hg8/4s7poex4bkLC48rjMPntffhik2NaKwuIQZq/bw3MKtpGTlc3rfdtx9Vh8but3UiIzcAn5yiofliels3u+5ot+oQT1iu0Zy59jejOrRmsFRVkB4w5uCYpGIXAZMd9YvAb4JXEimphQVl/DvJYk8u2ArLRo14NUrhzN+YHljkRnjXyUlyuz1+3hq3laS0nIZ3rUVz192HCOtB5EJoPScfH4qdQljS4qngGjcIIzhXVtx91kdGRXTmsFRLW0KgWrwpqC4CbgTeM9ZDwNyReROQFXV/pSohbal5nD3jDjW7j7EuYM68vCEAbRu1tDtsEwdp6p8n5DGtLmbWb83iz7tm/PG5FjO6NfOxpIwfldZARHbrRXnDenI6B6tGdTZCgh/8KaXR/OaCMTUjOIS5c2lSTwxbwtNwsN44fLjOG9IJ7fDMiFg7e5DPP7fzfyYmE7nlo15+tIhTBjambB6VkgY/0jLyf+lB8aKpHS2puQA0CTc0wJx/tBOjIqJtAIiQGxQgRCyIy2Xu2fEsWrnQc7s355/XDjQ7p43AbctNZsn525lzob9tG4azgO/68+kUdF2Tdr4rHQBsTwxnYTU/xUQsd0imTC0s9MCEUEDGwQt4KygCAElJcr7K3byr9mbqR8mPH3pEC48rrM1MZuASj50hGcXbOXT1XtoEl6fO8b24oaTYmhmg6OZajqQne/0wPBcwtjmFBBNw8MY3i2Si4ZFMTIm0goIl9i/7Dpud8Zh7vssnmXb0zmld1sev3gwHSKsVcIETkZuAS8v2sa7y3eCwrVjuvPHU3vYPTqmylKz8lie5AxlnZjO9gO5ADRrWJ/Ybq24eFgUo3u0ZmCnFjYMexDwqqAQkTA8c2v8sr+q7gpUUMZ3qsrHK3fz6KyNiAiPXTSI3x/fxVolTMDk5hfx5tIkXluSSG5BERcPi+KOM3vTuWVjt0MztcTRAuLoJYzEMgXEpbFdGBljBUSw8makzD/hGSkzBShxNiswOIBxGR/syzzC1M/W8d3WA5zQozXTLhlMVKsmbodl6qiCohI++mkXL3ybQFpOAWf1b8894/rQq73dz20ql5KV98vlixVJvy4gRnSP5PexXRgV05oBVkDUCt60UNwO9LGhtoOfqvLZz3v5+9cbKCpWHp4wgCtHdqWe3UVvAqCkRJkZl8xT87ewO+MIo2IieW1yX4ZFt3I7NBOk9mfm/XIPxIrEDBLTPAVEc6eAuOz4LozsbgVEbeVNQbEbyAx0IMY3qVl5/OWLdSzYlMrx3VrxxCVD6NbGhi02/qeqLNqSyrQ5W9i8P5sBnVrw9rUDOaV3W7ukZn5lf2beL5cvViRlkHS0gGhUn5HdI7l8RDSje7SmX8cW1n24DvCmoEgEFovIN0D+0Y2q+nTAojJeU/X8lfjgzA0cKSjmr+f249ox3e0fpwmIVTsyeHzOZlbuOEi31k144fLjOHdQR2sFM4Dncmvpbpw70g8D/ysgJo2MZmT31vTvZAVEXeRNQbHLeYQ7DxMk0nPy+dtX65m9bj9DurTkqYlD6NmumdthmTpo074snpy7hYWbU2nbvCGPXjCQ3x/fxbrmhbjkQ0d+1QKx0ykgWjSqz4jurblyVFdGxVgLRKjwZqTMv9dEIKZq5qzfz1+/XEfWkSLuHd+HKSfF2DVH43e70g/zzIKtfLl2L80a1ufe8X245oRuNAm3HuehaO+hI7904VyemMGuDE8BEdG4ASO6RzJ5dDdGdo+0AiJEVfitICLPquodIvI1nl4dv6Kq51f3pCISiWcK9G7ADuBSVT1YZp8+zj5HxQAPqOqzIvIQcCNwwHntL6o6u7rx1CaHDhfw0MwNfLk2mYGdW/DBDUPp08Hupjf+dSA7nxe/TeDDn3ZRT4QpJ8Xwh1N72Cy0IWbvoSMs3+4UEEnp7M44AvyvgLjmhG6MimlN3w7N7bKXqbSF4uhkYE8G4LxTgYWq+piITHXW7yu9g6puAYbCL+Ng7AW+KLXLM6oaiNiC1rebU5j62Toycgv489je/PG0HtbkbPwqO6+Q15ck8sbSJPKLSrg0tgu3n9HLBkMLEbszDrMi6X9zYRwtIFo2acDI7pFce0J3RsZE0q9DCysgzG9UWFCo6mrn+bsAnHcCcKqz/A6wmDIFRRlnANtVdWcAYgl6WXmFPPL1Rmas3kOf9s1585rjGdg5wu2wTB2SV1jM+8t38tKibRw8XMjvBnfkzjN7E9PW7smp675POMBXa5NZnpjOnoOeAqJVE08LxPVjujOqR2t6t7MWCHNsbl0Iba+q+wBUdZ+ItDvG/pcBH5XZdquITAZWAXeVvWRylIhMAaYAREdH+xa1C5ZsPcB9n8WTkpXHH0/twe1je9mkSrVIsOdfUXEJn/+8l2cXbCU5M4+TerXh3nF9GRRlBWtdcawcXLvrEN9uTmVk90huPCmGkTGRVkCYahHV39we4Z83FlkAdCjnpfuBd1S1Zal9D6pquaPhiEg4kAwMUNUUZ1t7IA3PvR2PAB1V9bpjxRQbG6urVq2q6kdxRW5+Ef+cvYkPVuyiR9umPHXpUIZ2ael2WMajWt+0wZR/qsrcDSk8OW8L21JzGBIVwX3j+3JCzzZuh2aOrdr/05eXg3mFxYSH1bMCwlRFuckSsBYKVR1bYSQiKSLS0Wmd6AikVvJWZwM/Hy0mnPf+ZVlEXgdm+SPmYPHj9nTu+TSOvYeOcONJ3bnrrD40amCtEsY/lm1PY9qcLazdfYgebZvy6pXDGDeggw1KFaLsu8X4S2W9PMKAG4AoYI6q/lDqtb+q6qM+nHcmcDXwmPP8VSX7Xk6Zyx1HixFn9UJgvQ+xBI0jBcU8Pmczby/bQbfWTZhx02hiu0W6HZapI9btyWTa3M18n5BGx4hGTLt4MBcN62zdjY0xflFZC8W/gSbAT8DzIvKdqt7pvHYR4EtB8RgwXUSuxzNo1kQAEekEvKGq5zjrTYAzgZvKHD9NRIbiueSxo5zXa53VOzO4e0Y8SWm5XHNCN+4d38f6+hu/SErL5cl5W/gmfh8tmzTg/nP6cdXorvaXqTHGryr7H2uEqg4GEJEXgZdF5HM8LQY+tY06E42dUc72ZOCcUuuHgdbl7HeVL+cPJnmFxTw9fyuvf59Ip4jGfHjjSE7oYdexje/2Z+bx3MIEpq/aTcP69bjt9J7ccHIMLRo1cDs0Y0wdVFlB8csINqpaBEwRkQeAbwHrS+YHcbsPcdeMOLal5nD5iC7cf25/mjW0Vgnjm8zDhbzy3XbeXpZEcYly1aiu3HJaT9o2b+h2aMaYOqyy/71Wich4VZ1zdIOqPiwiycArgQ+t7iooKuH5hQm88t122jZryDvXjeCU3m3dDsvUckcKinlrWRKvLt5Odn4RE4Z04s4z+xDduonboRljQkBlA1tdWcH2N4A3AhZRHbchOZO7psexeX82Fw+L4oHz+hPR2JqgTfUVFpcwfdVunluQQGp2Pqf3bcc94/rQr2MLt0MzxoSQY7avi8gtwAeqeshZbwVcrqovBzi2OqWwuIRXFm/n+YUJtGoazhuTYxnbv73bYZlarKRE+WbdPp6at4Ud6YeJ7dqKlyYN43jrGWSMcYE3F+xvVNWXjq6o6kERuRGwgsJLW1OyuWt6HOv2ZjJhaCceOm8ArZraJEumelSVJQlpTJuzmQ3JWfRp35w3JsdyRr92NpaEMcY13hQU9URE1BlS0xmfwv439EJxifLakkSemb+V5o3q88qkYZw9qKPbYZla7OddB5k2ZzPLEzOIatWYpy8dwoShnW2qaGOM67wpKObiGTPiVTzjPtwMzKn8EJN4IIe7Z8Tx865DnD2wA49cMJA2zewue1M9CSnZPDF3C/M2ptCmWTh/P38Al4+IJry+DUpljAkO3hQU9+EZOOoPeMafmIfdlFmhkhLlrWU7mDZnM40ahPHcZUM5f0gna4o21bL30BGenb+Vz37eQ5Pw+tx1Zm+uO7E7Ta17sTEmyBzzW0lVS/B0E7WuosewK/0wd38ax09JGZzRtx3/umgQ7Vo0cjssUwtl5Bbw0qJtvPfjThC4bkx3/nhaTyLt3htjTJDyppdHL+BfQH/gl/8dVTUmgHHVKiUlygcrdvKv/24mTIQnLhnMJcOjrFXCVFlufhFvfJ/E698ncrigiEuGR3H72N50btnY7dCMMaZS3rSbvgU8CDwDnAZci49Db9clew4eZupn61i6LY2TerXh8YsH08m+/E0V5RcV89GKXby4aBtpOQWMH9CBu8f1pme75m6HZowxXvGmoGisqgudnh47gYdE5Hs8RUbIUlU+WbmbR7/ZRIkq/7hwIFeMiLZWCVMlJSXKl2v38vT8rew5eIRRMZG8Prkvx0W3cjs0Y4ypEm8KijwRqQckiMitwF6gXWDDCm77M/OY+nk8i7ccYFRMJE9cMoQukTa8sak6BV5bkkhE4wb888JBnNSrjRWlxphayZuC4g4805jfBjyC57LH1QGMKWipev6afPCrDRQUl/Dgef25enQ36tkYAKaawuoJ7143gjbNGloeGWNqtQoLChF5z5km/ARVXQnk4Ll/IiQdyM7n/i/WMW9jCsO7tuLJiUPo3qap22GZOsB6Ahlj6oLKWiiGi0hX4DoReZcyN2KqakZAIwsis+KT+duX68ktKOYv5/Tl+hNjbGRCY4wxppTKCopX8YyIGQOs5tcFhTrb67SM3AL+9tV6vonfx5CoCJ66dIjddW+MMcaUo8Jxe1X1eVXtB7ypqjGq2r3Uw6diQkQmisgGESkRkdhK9hsvIltEZJuITC21PVJE5otIgvPs91vi523Yz1nPfMe8Dfu5Z1wfPvvDCVZMGGOMMRU45kQAqvqHAJx3PXARsKSiHZxJyF4CzsYzqNblItLfeXkqsFBVewELnXW/yDxcyJ2frGXKe6tp27wRM289kVtO60n9MJszwRhjjKmIKxMCqOom4Fjd40YA21Q10dn3Y2ACsNF5PtXZ7x1gMZ45R3yyaEsqUz+LJy2ngNvO6MWtp/W0yZeMMcYYLwTzDEOdgd2l1vcAI53l9qq6D0BV94lIheNiiMgUYApAdHR0uftk5xXy6KxNfLJqN73bN+ONycczKCrCH5/BhDhv8s+YQLIcNDUlYAWFiCwAOpTz0v2q+pU3b1HONq1qHKr6GvAaQGxs7G+O37I/m+veXsm+zCPcfEoP/nxmLxrWD6vqaYwp17Hyz5hAsxw0NSVgBYWqjvXxLfYAXUqtRwHJznKKiHR0Wic6AqnVPUnnVo2JaduUF644jmE23LExxhhTLcF8g8BKoJeIdBeRcOAyYKbz2kz+N1rn1YA3LR7latawPu9dP9KKCWOMMcYHrhQUInKhiOwBRgPfiMhcZ3snEZkNoKpFwK3AXGATMF1VNzhv8RhwpogkAGc668YYY4xxiVu9PL4AvihnezJwTqn12cDscvZLB84IZIzGGGOM8Z6ohs49OiJyANhZzkttgLQaDicY2OeunjRVHV/VgyrJPzcE8+/eYqtctfIPXM3BYPi5ecPi9E65ORhSBUVFRGSVqlY4YmddZZ87dAXzz8Biq3tqy8/N4vRNMN+UaYwxxphawgoKY4wxxvjMCgqP19wOwCX2uUNXMP8MLLa6p7b83CxOH9g9FMYYY4zxmbVQGGOMMcZnVlAYY4wxxmdWUDhEZKKIbBCREhEJuu44/iQi40Vki4hsE5GpbsdTU0TkTRFJFZH1bsdS00QkUkTmi0iC81zuWPMiskNE1onIWhFZFeCYKs1D8XjeeT1eRIYFMp4qxnaqiGQ6P6e1IvJATcVWGwRjvpU5b9DmXhXjDK48VFV7eO4j6Qf0ARYDsW7HE8DPGQZsB2KAcCAO6O92XDX02U8GhgHr3Y7Fhc8+DZjqLE8FHq9gvx1AmxqI55h5iGfU3P/imXl4FLCihn5W3sR2KjDL7d9rsD6CLd+q8ft1JfeqEWdQ5aG1UDhUdZOqbnE7jhowAtimqomqWgB8DExwOaYaoapLgAy343DJBOAdZ/kd4AL3QgG8y8MJwLvqsRxo6cwuHAyxmcoFW76VFsy5V9U4g4oVFKGnM7C71PoeZ5up29qr6j4A57ldBfspME9EVovIlADG400eupWr3p53tIjEich/RWRADcRVmwRbvpUWzLlXnRiCJg9dmRzMLSKyAOhQzkv3q2q1p0CvZaScbdZ3uA6oLL+r8DZjVDVZRNoB80Vks9Oy42/e5KFbuerNeX8GuqpqjoicA3wJ9Ap0YMGkluVbacGce1WNIajyMKQKClUd63YMQWAP0KXUehSQ7FIsxo8qy28RSRGRjqq6z2m6Ta3gPZKd51QR+QJPs2sgvuC9yUO3cvWY51XVrFLLs0XkZRFpo6q1YWIpv6hl+VZaMOdelWIItjy0Sx6hZyXQS0S6i0g4cBkw0+WYTODNBK52lq8GftMiJyJNRaT50WXgLCBQPWK8ycOZwGTnjvtRQObRZvQAO2ZsItJBRMRZHoHnuzS9BmKrLYIt30oL5tyrUpxBl4du3xUaLA/gQjwVYT6QAsx1O6YAftZzgK147iC+3+14avBzfwTsAwqd3/X1bsdUg5+9NbAQSHCeI53tnYDZznIMnjvJ44ANgc6N8vIQuBm42VkW4CXn9XXUYO8rL2K71fkZxQHLgRPc/h0H0yMY86225F5tzkMbetsYY4wxPrNLHsYYY4zxmRUUxhhjjPGZFRTGGGOM8ZkVFMYYY4zxmRUUxhhjjPGZFRQuEZHbRGSTiHxQjWNvdWafUxFpU8E+sSLyvO+RVimu88ubEe8Yx+RUsD0kZ0StKT7m3wfO72a9eGZwbVDOPpZ/pkI+5t9/nKGm40XkUxFpVs4+ln8usG6jLhGRzcDZqppUjWOPAw7yv5lRXR+dT0Tqq2pRNY7LUdVmZbaF4el7fSae8SJWAper6ka/BGt8zb+jMzECfAgsUdVX/BlfVVn+1S4+5l8LdUaIFJGngVRVfczfMVYxJss/rIXCFSLyKp5BXWaKyJ9FZISILBORNc5zH2e/MBF5UkTWOdX4nwBUdY2q7jjGOU4VkVnO8kPOX5KLRSRRRG6r4JgcEXlKRH4WkYUi0tbZ3kNE5ohnAp/vRaSvs/1tEXlaRBYBj4vINSLyovNaV+c94p3naGd7dxH5UURWisgjFYRf62bZq038kH+z1QH8hGdI4LLnsPwz5fJD/h0tJgRoTDlzbFj+ucTNUbVC+QHsANo4yy2A+s7yWOAzZ/kPwGelXous6D3Kef9TgVnO8kPAMqAh0AbP0KwNyjlGgUnO8gPAi87yQqCXszwS+NZZfhuYBYQ569eUOuZr4Gpn+TrgS2d5JjDZWb4FyCknjkuAN0qtX3X0fe0RVPnXAM/kRCdZ/tmjJvMPeAvPiMaLgCaWf8HxCKnJwYJYBPCOiPTCk9RHr0mPBV5VpylNVTN8OMc3qpoP5ItIKtAeT3NaaSXAJ87y+8Dn4rk+eQIww/MHAeD5h3nUDFUtLud8o4GLnOX3gGnO8hjg4lLbHy/n2GCY6S+UVDf/XsZzueN7L85h+WcqUuX8U9VrxXNp4AXg93gKjMpY/tUAKyiCwyPAIlW9UES64bk3AjyJ5a9Eyi+1XIx3v3vFc1nskKoOrWCfXC/PrxUslycYZvoLJVXOPxF5EGgL3OTlOSz/TEWq9f2nqsUi8glwD8cuKCz/aoDdQxEcIoC9zvI1pbbPA24WkfoAIhIZ4Djq4WluA7gCWKqe65VJIjLRiUFEZIgX77UMz+x4AJOApc7yD2W2l8dmRK1ZVco/EbkBGIfnRrESP8Zh+ReavM4/5/ff01kX4Dxgs5/isPzzkRUUwWEa8C8R+QEIK7X9DWAXEC8icXiS/GiXqz14Ktd4EXnDT3HkAgNEZDVwOvCws30ScL0Twwa8u0HoNuBaEYnHcw3wdmf77cAtIrISzxfJbzhNnLcCc4FNwHRV3VC9j2S8UKX8A17F02T8o4isFZEH/BSH5V9oqkr+CZ7LI+vwzALakf/lia8s/3xk3UbNL6ScLkzG1BTLP+Mmyz/fWQuFMcYYY3xmLRTGGGOM8Zm1UBhjjDHGZ1ZQGGOMMcZnVlAYY4wxxmdWUBhjjDHGZ1ZQGGOMMcZnVlAYY4wxxmdWUBhjjDHGZ1ZQGGOMMcZnVlAYY4wxxmchVVCMHz9e8Uwdaw97+PKoFss/e/jpUW2Wg/bw06NcIVVQpKWluR2CCWGWf8ZtloMmkEKqoDDGGGNMYFhBYYwxxphf5OYXkZqdV+XjrKAwxhhjDAA/bk9n3LNLuPOTOKo6G3n9AMVkjDHGmFriSEExj8/ZzNvLdtC1dRNuH9sLEanSe1hBYYwxxoSw1TszuHtGPElpuVw9uiv3nd2XJuFVLw+soDDGGGNCUF5hMc/M38rr3yfSMaIxH94wkhN6tqn2+1lBYYwxxoSY+D2HuGt6HAmpOVw+Ipr7z+1Hs4a+lQRWUBhjjDEhoqCohBe+TeDlxdtp26wh71w3glN6t/XLe1tBYYwxxoSAjclZ3DUjjk37srh4WBQPnNefiMYN/Pb+VlAYY4wxdVhhcQmvLt7O898mENE4nNcnx3Jm//Z+P4/fCwoRuVZV3/L3+xpjjDGmaramZHPX9DjW7c3kvCGdePj8AbRqGh6QcwWiheLvgBUUxhhjjEuKS5TXv0/k6XlbadaoPi9PGsY5gzoG9JzVKihEJL6ilwD/t6MYY4wxxiuJB3K4a0Yca3YdYvyADjx64UDaNGsY8PNWt4WiPTAOOFhmuwDLfIrIGGOMMVVWUqK8tWwH0+ZsplGDMJ67bCjnD+lU5REvq6u6BcUsoJmqri37gogs9iUgY4wxxlTNrvTD3P1pHD8lZXB633b866JBtG/RqEZjqFZBoarXV/LaFdUPxxhjjDHeUlXeX7GLf83eRJgI0y4ZzMThUTXWKlFa0HYbFZHxwHNAGPCGqj5W5vVTga+AJGfT56r6cE3GaIwxxrhl76Ej3PdpPEu3pXFSrzY8fvFgOrVs7Fo8QVlQiEgY8BJwJrAHWCkiM1V1Y5ldv1fV39V4gMYYY4xLVJUZq/bwyKyNFKvyjwsHcsWIaFdaJUoLyoICGAFsU9VEABH5GJgAlC0ojDHGmJCRkpXH1M/iWbTlAKNiInnikiF0iWzidlhA8BYUnYHdpdb3ACPL2W+0iMQBycDdqrqhJoIzxhhjapKq8uXavTz41QYKikt46Lz+TB7djXr13G2VKK2641BkA1rR66raotoROaco723LrP8MdFXVHBE5B/gS6PWbNxKZAkwBiI6O9jEsY6rG8s+4zXKw9juQnc/9X6xj3sYUhkW35KlLh9K9TVO3w/qN6vbyaA4gIg8D+4H38BQBk4DmfohrD9Cl1HoUnlaI0jFklVqeLSIvi0gbVU0rs99rwGsAsbGxFRZBxgSC5Z9xm+Vg7fZN/D7++uU6cguK+b+z+3LDSTGEBVGrRGm+XvIYp6qlL0W8IiIrgGk+vu9KoJeIdAf2ApcBv+qOKiIdgBRVVREZAdQD0n08rzHGGOO6g7kF/O2r9cyK38eQqAienDiEXu398fd64PhaUBSLyCTgYzyXJC4Hin0NSlWLRORWYC6ebqNvquoGEbnZef1V4BLgDyJSBBwBLlNVq76NMcbUavM27OcvX6wn80gBd5/Vm5tP6UH9sHpuh3VMvhYUV+AZK+I5Z30pZVoSqktVZwOzy2x7tdTyi8CL/jiXMcYY47bMw4X8fdYGPv95L/06tuDd60bQv5OvtyTWHJ8KClXdgac7pzHGGGOqadGWVKZ+Fk9aTgG3nd6TW0/vRXj94G+VKM2ngkJEooAXgDF4LnksBW5X1T1+iM0YY4yp07LzCvnHN5v4eOVuerVrxuuTYxkc1dLtsKrF10sebwEfAhOd9SudbWf6+L7GGGNMnbZsWxr3fBrPvswj3HxKD+4Y24tGDcLcDqvafC0o2qrqW6XW3xaRO3x8T2OMMabOys0v4vE5m3n3x53EtGnKjJtPYHjXVm6H5TNfC4o0EbkS+MhZvxzrummMMcaU66ekDO6eEcfug4e5bkx37hnXh8bhtbdVojRfC4rr8PS0eAbPPRTLnG3GGGOMceQVFvPE3C28+UMSUa0a8/GNoxgZ09rtsPzK114eu4Dz/RSLMcYYU+es2XWQu2bEkXggl6tGdWXq2X1p2jBYp9KqvurO5XGvqk4TkRcoZ04PVb3N58iMMcaYWiy/qJhnFyTw7++206FFI967fgQn9WrrdlgBU90SaZPzvMpfgRhjjDF1xfq9mdw1PY4tKdn8PrYL9/+uHy0aNXA7rICq7uRgX4tIGDBQVe/xc0zGGGNMrVRYXMKL327jxUXbaNMsnLeuOZ7T+rZzO6waUe2LOKpaLCLD/RmMMcYYU1tt2pfFXdPj2LgviwuP68xD5w0gokndbpUozde7QtaIyExgBpB7dKOqfu7j+xpjjDG1QlFxCf9eksizC7YS0bgB/75qOOMGdHA7rBrna0ERiWfcidNLbVPACgpjjDF13rbUbO6aHkfcnkzOHdyRRyYMJLJpuNthucLXbqPX+isQY4wxprYoLlHeXJrEE/O20DQ8jBevOI7fDe7kdliu8nVysN7AK0B7VR0oIoOB81X1Ub9EZ4wxxgSZpLRc7pkRx6qdBxnbrz3/umgQbZs3dDss1/k6N+rrwP8BhQCqGg9c5mtQxhhjTLApKVHe/iGJs59bwtaUbJ6+dAivTx5uxYTD13somqjqTyJSeluRj+9pjDHGBJXdGYe599N4fkxM55TebXn84sF0iGjkdlhBxR+Tg/XAGS1TRC4B9vkclTHGGBMEVJWPftrNP77ZiIjw+MWDuDS2C2X+kDb4XlDcArwG9BWRvUASMMnnqIwxxhiXJR86wn2fxfN9Qhon9GjNtEsGE9WqidthBS1fe3kkAmNFpClQT1Wz/ROWMcYY4w5V5dPVe3j4640UlSiPTBjApJFdqVfPWiUq49NNmSLSWkSeB74HFovIcyLil/lYRWS8iGwRkW0iMrWc10VEnndejxeRYf44rzHGmNCVmpXHDe+s4p5P4+nXsQVz7jiJq0Z3s2LCC75e8vgYWAJc7KxPAj4Bxvryps48IS8BZwJ7gJUiMlNVN5ba7Wygl/MYiaf76khfzmuMMSY0qSoz45J5cOYGjhQU89dz+3HdmO5WSFSBzyNlquojpdYfFZELfHxPgBHANueSCiLyMTABKF1QTADeVVUFlotISxHpqKpVvin0719vYGNylh/CNnVF/04tePC8ATVyLss/U56azMFQl56Tz1+/XM9/1+9naJeWPDlxCD3bNXM7rFrH14JikYhcBkx31i8BvvHxPQE6A7tLre/ht60P5e3TmTK9TERkCjAFIDo62g+hGeM9yz/jNsvByv133T7++uV6svOKuG98X6acHEOYtUpUi68FxU3AncB7znoYkCsidwKqqi2q+b7l/Ta1Gvugqq/h6YlCbGzsb14H7K8AEzCWf8Zt3uRgKDp0uIAHvtrAzLhkBnZuwYcTh9KnQ3O3w6rVfO3lEaif/h6gS6n1KCC5GvsYY4wxv7JwUwpTP1/HwdwC/jy2N388rQcNwnwdONr42kIRKCuBXiLSHdiLZzjvK8rsMxO41bm/YiSQWZ37J4wxxoSGrLxCHv56I5+u3kPfDs1565rjGdg5wu2w6oygLChUtUhEbgXm4rmM8qaqbhCRm53XXwVmA+cA24DDgM18aowxplxLth7gvs/iScnK45bTenDbGb1oWD/M7bDqlKAsKABUdTaeoqH0tldLLSuekTqNMcaYcuXkF/HP2Zv4cMUuerZrxhd/HMOQLi3dDqtO8rmgcMaMaF/6vVR1l6/va4wxxvhi2fY07v00nr2HjjDl5BjuPLM3jRpYq0Sg+FRQiMifgAeBFKDE2azAYB/jMsYYY6rlSEExj8/ZzNvLdtCtdRNm3DSa2G6RbodV5/naQnE70EdV0/0RjDHGGOOL1TszuHtGPElpuVxzQjfuG9+XxuHWKlETfC0odgOZ/gjEGGOMqa68wmKenr+V179PpHPLxnx04yhG9/DL1FLGS74WFIl4JgX7Bsg/ulFVn/bxfY0xxhivxO0+xF0z4tiWmsPlI6K5/9x+NGsYtH0O6ixff+K7nEe48zDGGGNqRH5RMc8vTODV7xJp17wh7143gpN7t3U7rJDl60iZf/dXIMYYY4y3NiRnctf0ODbvz+aS4VH87Xf9iWjcwO2wQlq1CgoReVZV7xCRryl//ozzfY7MGGOMKaOwuISXF23nhW8TaNU0nP9cHcsZ/dq7HZah+i0URycDe9JfgRhjjDGV2bI/m7tmrGX93iwmDO3EQ+cNoFVTu9oeLKpVUKjqauf5O/+GY4wxxvxacYny2pJEnpm/lWaN6vPKpGGcPaij22GZMuw2WGOMMUFr+4Ec7p4Rx5pdhzh7YAceuWAgbZo1dDssUw4rKIwxxgSdkhLlzR+SeGLuFho1COO5y4Zy/pBOiIjboZkKWEFhjDEmqOxMz+WeGfH8tCODM/q2418XDaJdi0Zuh2WOobq9PJoAt+Lp4fECcBlwEbAZeFhVc/wWoTHGmJBQUqJ8sGIn/5y9mfphwpMTh3DxsM7WKlFLVLeF4m08w243Br4BNuHp8XEe8ApwlT+CM8YYExr2HDzMfZ/F88O2dE7q1YZplwymY0Rjt8MyVVDdgqK3ql4qnrJxHzBWVVVEvgfi/BeeMcaYukxVmb5qN4/M2kSJKv+4cCBXjIi2VolayNeRMlVEZquqllr/zUBXxhhjTFn7M/OY+nk8i7ccYFRMJE9cMoQukU3cDstUU3ULilUi0kxVc1T1uqMbRaQHkO2f0IwxxtRFqsqXa/fy4FcbKCgu4aHz+jN5dDfq1bNWidqsugNb3VDB9u0icpJvIRljjKmrDmTn85cv1jF/YwrDu7biyYlD6N6mqdthGT/w6ZKHiNwCfKCqh5z1VsDlwMs+vGck8AnQDdgBXKqqB8vZbwee1pBioEhVY6t7TmOMMYE3Kz6Zv325ntyCYu4/px/XndidMGuVqDPq+Xj8jUeLCQDnP/4bfXzPqcBCVe0FLHTWK3Kaqg61YsIYY4JXRm4Bt3z4M7d+uIboyCbMvu1Ebjw5xoqJOsbXga3qiYgcvSlTRMIAX2dqmQCc6iy/AywG7vPxPY0xxrhg3ob9/OWL9WQeKeCecX246eQY6of5+resCUa+FhRzgeki8iqeQa5uBub4+J7tVXUfgKruE5F2FeynwDynV8m/VfW18nYSkSnAFIDo6GgfQzOmaiz/jNvcysHMw4X8/esNfL5mL/07tuC960fQr2OLGju/qXniNC5U72CResBNwBmAAPOAN1S1+BjHLQA6lPPS/cA7qtqy1L4HVbVVOe/RSVWTnYJjPvAnVV1S2XljY2N11apVx/hUxhxTtdppLf+Mn1T7OkFN5eCiLalM/Sye9JwCbjmtJ7ee3pMG1ipRl5Sbg76OQ1GCZ2TMV6p43NiKXhORFBHp6LROdARSK3iPZOc5VUS+AEYAlRYUxhhjAic7r5BHZ23ik1W76d2+GW9MPp5BURFuh2VqiK+9PHoB/wL6A7/M3KKqMT687UzgauAx5/mrcs7bFKinqtnO8lnAwz6c0xhjjA9+2JbGvZ/Gsy/zCH88tQe3j+1Fw/phbodlapCv91C8BTwIPAOcBlyLD81xjsfw3JdxPbALmAieSxx4LqecA7QHvnCGZq0PfKiqvt67YYwxpopy84t47L+beW/5TmLaNuWzP5zAcdG/uUptQoCvBUVjVV3o9PTYCTzkzOfxYHXfUFXT8dyTUXZ7MnCOs5wIDKnuOYwxxvhuRWI693waz+6Dh7nhxO7cPa4PjRpYq0So8rWgyHNuzEwQkVuBvUBFvTKMMcbUAXmFxTwxdwtv/pBEl1ZN+GTKaEZ0j3Q7LOMyXwuKO4AmwG3AI3gue1zt43saY4wJUj/vOsjd0+NITMvlqlFdmXp2X5o29PW/ElMXVCsLROQ9Vb0KOEFVVwI5eO6fMMYYUwflFRbz7IIEXluynY4RjfnghpGM6dnG7bBMEKluWTlcRLoC14nIu5S5EVNVM3yOzBhjTFBYtyeTO6evJSE1h8uO78L95/ajeaMGbodlgkx1C4pX8YyIGQOs5tcFhTrbjTHG1GIFRSW8+G0CLy3eTptm4bx17fGc1sdukzPlq+705c8Dz4vIK6r6Bz/HZIwxxmWb9mVx1/Q4Nu7L4qLjOvPgeQOIaGKtEqZivo6UacWEMcbUIUXFJbz63XaeW5hARONwXrtqOGcNKG+mBGN+zW7NNcYYA8C21Gzumh5H3J5Mfje4Iw9PGEhkU18nkDahwgoKY4wJccUlyn+WJvLkvK00DQ/jpSuGce7gjm6HZWoZKyiMMSaEJaXlcveMOFbvPMhZ/dvzjwsH0bZ5Q7fDMrWQFRTGGBPCPli+k4SUbJ79/VAmDO2EM0eSMVVmBYUxxoSwu87qww0nxdAhotGxdzamElZQGGNMCGscHkbjcJvQy/iuntsBGGOMMab2s4LCGGOMMT4TVXU7hhojIgeAneW81AZIq+FwgoF97upJU9XxVT2okvxzQzD/7i22ylUr/8DVHAyGn5s3LE7vlJuDIVVQVEREVqlqrNtx1DT73KErmH8GFlvdU1t+bhanb+yShzHGGGN8ZgWFMcYYY3xmBYXHa24H4BL73KErmH8GFlvdU1t+bhanD+weCmOMMcb4zFoojDHGGOMzKyiMMcYY4zMrKBwiMlFENohIiYgEXXccfxKR8SKyRUS2ichUt+OpKSLypoikish6t2OpaSISKSLzRSTBeW5VwX47RGSdiKwVkVUBjqnSPBSP553X40VkWCDjqWJsp4pIpvNzWisiD9RUbLVBMOZbmfMGbe5VMc7gykNVtYfnPpJ+QB9gMRDrdjwB/JxhwHYgBggH4oD+bsdVQ5/9ZGAYsN7tWFz47NOAqc7yVODxCvbbAbSpgXiOmYfAOcB/AQFGAStq6GflTWynArPc/r0G6yPY8q0av19Xcq8acQZVHloLhUNVN6nqFrfjqAEjgG2qmqiqBcDHwASXY6oRqroEyHA7DpdMAN5xlt8BLnAvFMC7PJwAvKsey4GWItIxSGIzlQu2fCstmHOvqnEGFSsoQk9nYHep9T3ONlO3tVfVfQDOc7sK9lNgnoisFpEpAYzHmzx0K1e9Pe9oEYkTkf+KyIAaiKs2CbZ8Ky2Yc686MQRNHobU9OUisgDoUM5L96vqVzUdj0uknG3Wd7gOqCy/q/A2Y1Q1WUTaAfNFZLPTsuNv3uShW7nqzXl/Brqqao6InAN8CfQKdGDBpJblW2nBnHtVjSGo8jCkCgpVHet2DEFgD9Cl1HoUkOxSLMaPKstvEUkRkY6qus9puk2t4D2SnedUEfkCT7NrIL7gvclDt3L1mOdV1axSy7NF5GURaaOqtWFiKb+oZflWWjDnXpViCLY8tEseoWcl0EtEuotIOHAZMNPlmEzgzQSudpavBn7TIiciTUWk+dFl4CwgUD1ivMnDmcBk5477UUDm0Wb0ADtmbCLSQUTEWR6B57s0vQZiqy2CLd9KC+bcq1KcQZeHbt8VGiwP4EI8FWE+kALMdTumAH7Wc4CteO4gvt/teGrwc38E7AMKnd/19W7HVIOfvTWwEEhwniOd7Z2A2c5yDJ47yeOADYHOjfLyELgZuNlZFuAl5/V11GDvKy9iu9X5GcUBy4ET3P4dB9MjGPOttuRebc5DG3rbGGOMMT6zSx7GGGOM8ZkVFMYYY4zxmRUUxhhjjPGZFRTGGGOM8ZkVFMYYY4zxmRUULhGR20Rkk4h8UI1jb3Vmn1MRaVPBPrEi8rzvkVYprvPLmxHvGMfkVLA9JGdErSk+5t8Hzu9mvXhmcG1Qzj6Wf6ZCPubff5yhpuNF5FMRaVbOPpZ/LrBuoy4Rkc3A2aqaVI1jjwMO8r+ZUV0fnU9E6qtqUTWOy1HVZmW2heHpe30mnvEiVgKXq+pGvwRrfM2/ozMxAnwILFHVV/wZX1VZ/tUuPuZfC3VGiBSRp4FUVX3M3zFWMSbLP6yFwhUi8iqeQV1misifRWSEiCwTkTXOcx9nvzAReVJE1jnV+J8AVHWNqu44xjlOFZFZzvJDzl+Si0UkUURuq+CYHBF5SkR+FpGFItLW2d5DROaIZwKf70Wkr7P9bRF5WkQWAY+LyDUi8qLzWlfnPeKd52hne3cR+VFEVorIIxWEX+tm2atN/JB/s9UB/IRnSOCy57D8M+XyQ/4dLSYEaEw5c2xY/rnEzVG1QvkB7ADaOMstgPrO8ljgM2f5D8BnpV6LrOg9ynn/U4FZzvJDwDKgIdAGz9CsDco5RoFJzvIDwIvO8kKgl7M8EvjWWX4bmAWEOevXlDrma+BqZ/k64EtneSYw2Vm+BcgpJ45LgDdKrV919H3tEVT51wDP5EQnWf7ZoybzD3gLz4jGi4Amln/B8QipycGCWATwjoj0wpPUR69JjwVeVacpTVUzfDjHN6qaD+SLSCrQHk9zWmklwCfO8vvA5+K5PnkCMMPzBwHg+Yd51AxVLS7nfKOBi5zl94BpzvIY4OJS2x8v59hgmOkvlFQ3/17Gc7njey/OYflnKlLl/FPVa8VzaeAF4Pd4CozKWP7VACsogsMjwCJVvVBEuuG5NwI8ieWvRMovtVyMd797xXNZ7JCqDq1gn1wvz68VLJcnGGb6CyVVzj8ReRBoC9zk5Tks/0xFqvX9p6rFIvIJcA/HLigs/2qA3UMRHCKAvc7yNaW2zwNuFpH6ACISGeA46uFpbgO4AliqnuuVSSIy0YlBRGSIF++1DM/seACTgKXO8g9ltpfHZkStWVXKPxG5ARiH50axEj/GYfkXmrzOP+f339NZF+A8YLOf4rD885EVFMFhGvAvEfkBCCu1/Q1gFxAvInF4kvxol6s9eCrXeBF5w09x5AIDRGQ1cDrwsLN9EnC9E8MGvLtB6DbgWhGJx3MN8HZn++3ALSKyEs8XyW84TZy3AnOBTcB0Vd1QvY9kvFCl/ANexdNk/KOIrBWRB/wUh+VfaKpK/gmeyyPr8MwC2pH/5YmvLP98ZN1GzS+knC5MxtQUyz/jJss/31kLhTHGGGN8Zi0UxhhjjPGZtVAYY4wxxmdWUBhjjDHGZ1ZQGGOMMcZnVlAYY4wxxmdWUBhjjDHGZ/8PUD71Dj5ltikAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
diff --git a/docs/source/how_to_guides/index.rst b/docs/source/how_to_guides/index.rst
index eadfd05f..c4c3464a 100644
--- a/docs/source/how_to_guides/index.rst
+++ b/docs/source/how_to_guides/index.rst
@@ -7,6 +7,7 @@ How-To Guides
model_specs
utilities
+ how_to_decompose_variance.ipynb
how_to_visualize_transition_equations.ipynb
how_to_simulate_dataset.ipynb
how_to_visualize_pairwise_factor_distribution.ipynb
diff --git a/docs/source/how_to_guides/model_specs.rst b/docs/source/how_to_guides/model_specs.rst
index 655083e1..881b962c 100644
--- a/docs/source/how_to_guides/model_specs.rst
+++ b/docs/source/how_to_guides/model_specs.rst
@@ -69,6 +69,7 @@ general latent factor model:
#. If development stages are used: Which periods belong to which stage?
#. If anchoring is used: Which factors are anchored and what is the anchoring
outcome?
+ #. Are there any observed factors?
Translating the model to a dictionary
*************************************
@@ -160,6 +161,20 @@ to development stages. See :ref:`stages_vs_periods` for the meaning of developme
stages.
+``"observed_factors"``
+----------------------
+
+A list with variable names. Those variable names must be present in the dataset and
+contain information about observed factors. An example of an observed factor could
+be income, a treatment assignment or age.
+
+
+Observed factors do not have transition equations, do not require multiple measurements
+per period and are not part of the covariance matrix of the latent factors. As such,
+adding an observed factor is computationally much less demanding than adding an
+unobserved factor.
+
+
``"estimation_options"``
------------------------
diff --git a/docs/source/index.rst b/docs/source/index.rst
index 974f5537..7ee1104f 100644
--- a/docs/source/index.rst
+++ b/docs/source/index.rst
@@ -20,7 +20,7 @@ Structure of the Documentation
Getting Started
- New users of estimagic should read this first
+ New users of skillmodels should read this first
diff --git a/skillmodels/check_model.py b/skillmodels/check_model.py
index a96fd2f2..d6009a5d 100644
--- a/skillmodels/check_model.py
+++ b/skillmodels/check_model.py
@@ -30,8 +30,8 @@ def check_model(model_dict, labels, dimensions, anchoring):
labels["stagemap"], labels["stages"], dimensions["n_periods"]
)
report += _check_anchoring(anchoring)
- report += _check_measurements(model_dict, labels["factors"])
- report += _check_normalizations(model_dict, labels["factors"])
+ report += _check_measurements(model_dict, labels["latent_factors"])
+ report += _check_normalizations(model_dict, labels["latent_factors"])
report = "\n".join(report)
if report != "":
diff --git a/skillmodels/constraints.py b/skillmodels/constraints.py
index 316780e8..085a24bd 100644
--- a/skillmodels/constraints.py
+++ b/skillmodels/constraints.py
@@ -34,7 +34,7 @@ def get_constraints(dimensions, labels, anchoring_info, update_info, normalizati
constr += _get_stage_constraints(labels["stagemap"], labels["stages"])
constr += _get_constant_factors_constraints(labels)
constr += _get_initial_states_constraints(
- dimensions["n_mixtures"], labels["factors"]
+ dimensions["n_mixtures"], labels["latent_factors"]
)
constr += _get_transition_constraints(labels)
constr += _get_anchoring_constraints(
@@ -156,7 +156,7 @@ def _get_not_measured_constraints(update_info, labels):
"a measurement to 0."
)
- factors = labels["factors"]
+ factors = labels["latent_factors"]
all_loading_indices = get_loadings_index_tuples(factors, update_info)
to_fix = ~update_info[factors].to_numpy().flatten().astype(bool)
locs = [tup for i, tup in enumerate(all_loading_indices) if to_fix[i]]
@@ -239,7 +239,7 @@ def _get_constant_factors_constraints(labels):
"""
constraints = []
- for f, factor in enumerate(labels["factors"]):
+ for f, factor in enumerate(labels["latent_factors"]):
if labels["transition_names"][f] == "constant":
msg = f"This constraint was generated because {factor} is constant."
for period in labels["periods"][:-1]:
@@ -297,14 +297,14 @@ def _get_transition_constraints(labels):
"""
constraints = []
- for f, factor in enumerate(labels["factors"]):
+ for f, factor in enumerate(labels["latent_factors"]):
tname = labels["transition_names"][f]
msg = f"This constraint is inherent to the {tname} production function."
for period in labels["periods"][:-1]:
funcname = f"constraints_{tname}"
if hasattr(tf, funcname):
func = getattr(tf, funcname)
- constr = func(factor, labels["factors"], period)
+ constr = func(factor, labels["all_factors"], period)
if "description" not in constr:
constr["description"] = msg
constraints.append(constr)
diff --git a/skillmodels/kalman_filters.py b/skillmodels/kalman_filters.py
index 7ccfe08b..a9385df1 100644
--- a/skillmodels/kalman_filters.py
+++ b/skillmodels/kalman_filters.py
@@ -1,8 +1,5 @@
import jax
import jax.numpy as jnp
-from jax.ops import index
-from jax.ops import index_add
-from jax.ops import index_update
array_qr_jax = jax.vmap(jax.vmap(jnp.linalg.qr))
@@ -58,29 +55,31 @@ def kalman_update(
not_missing = jnp.isfinite(measurements)
- _expected_measurements = jnp.dot(states, loadings) + jnp.dot(
- controls, control_params
- ).reshape(n_obs, 1)
-
- # replace missing measurements by average expected measurements to avoid NaNs in the
- # gradient calculation. Note that all values that are influenced by that are
- # replaced by other values later (using jnp.where). Choosing the average expected
- # expected measurements as fill value just ensures that all numbers are well
- # defined because the fill values have a reasonable order of magnitude.
+ # replace missing measurements and controls by reasonable fill values to avoid NaNs
+ # in the gradient calculation. All values that are influenced by this, are
+ # replaced by other values later. Choosing the average expected
+ # expected measurements without controls as fill value ensures that all numbers
+ # are well defined because the fill values have a reasonable order of magnitude.
# See https://github.com/tensorflow/probability/blob/main/discussion/where-nan.pdf
# and https://jax.readthedocs.io/en/latest/faq.html
# for more details on the issue of NaNs in gradient calculations.
+ _safe_controls = jnp.where(not_missing.reshape(n_obs, 1), controls, 0)
+
+ _safe_expected_measurements = jnp.dot(states, loadings) + jnp.dot(
+ _safe_controls, control_params
+ ).reshape(n_obs, 1)
+
_safe_measurements = jnp.where(
- not_missing, measurements, _expected_measurements.mean(axis=1)
+ not_missing, measurements, _safe_expected_measurements.mean(axis=1)
)
- _residuals = _safe_measurements.reshape(n_obs, 1) - _expected_measurements
+ _residuals = _safe_measurements.reshape(n_obs, 1) - _safe_expected_measurements
_f_stars = jnp.dot(upper_chols, loadings.reshape(n_states, 1))
_m = jnp.zeros((n_obs, n_mixtures, n_states + 1, n_states + 1))
- _m = index_update(_m, index[..., 0, 0], meas_sd)
- _m = index_update(_m, index[..., 1:, :1], _f_stars)
- _m = index_update(_m, index[..., 1:, 1:], upper_chols)
+ _m = _m.at[..., 0, 0].set(meas_sd)
+ _m = _m.at[..., 1:, :1].set(_f_stars)
+ _m = _m.at[..., 1:, 1:].set(upper_chols)
_r = array_qr_jax(_m)[1]
@@ -156,7 +155,7 @@ def calculate_sigma_scaling_factor_and_weights(n_states, kappa=2):
scaling_factor = jnp.sqrt(kappa + n_states)
n_sigma = 2 * n_states + 1
weights = 0.5 * jnp.ones(n_sigma) / (n_states + kappa)
- weights = index_update(weights, index[0], kappa / (n_states + kappa))
+ weights = weights.at[0].set(kappa / (n_states + kappa))
return scaling_factor, weights
@@ -170,6 +169,7 @@ def kalman_predict(
shock_sds,
anchoring_scaling_factors,
anchoring_constants,
+ observed_factors,
):
"""Make a unscented Kalman predict.
@@ -195,13 +195,17 @@ def kalman_predict(
anchoring_constants (jax.numpy.array): Array of shape (2, n_states) with the
constants for anchoring. The first row corresponds to the input
period, the second to the output period (i.e. input period + 1).
+ observed_factors (jax.numpy.array): Array of shape (n_obs, n_observed_factors)
+ with data on the observed factors in period t.
Returns:
jax.numpy.array: Predicted states, same shape as states.
jax.numpy.array: Predicted upper_chols, same shape as upper_chols.
"""
- sigma_points = _calculate_sigma_points(states, upper_chols, sigma_scaling_factor)
+ sigma_points = _calculate_sigma_points(
+ states, upper_chols, sigma_scaling_factor, observed_factors
+ )
transformed = _transform_sigma_points(
sigma_points,
transition_functions,
@@ -210,7 +214,8 @@ def kalman_predict(
anchoring_constants,
)
- n_obs, n_mixtures, n_sigma, n_fac = sigma_points.shape
+ # do not use sigma_points.shape because sigma_points contain observed factors
+ n_obs, n_mixtures, n_sigma, n_fac = transformed.shape
predicted_states = jnp.dot(sigma_weights, transformed)
@@ -218,14 +223,14 @@ def kalman_predict(
qr_weights = jnp.sqrt(sigma_weights).reshape(n_sigma, 1)
qr_points = jnp.zeros((n_obs, n_mixtures, n_sigma + n_fac, n_fac))
- qr_points = index_update(qr_points, index[:, :, 0:n_sigma], devs * qr_weights)
- qr_points = index_update(qr_points, index[:, :, n_sigma:], jnp.diag(shock_sds))
+ qr_points = qr_points.at[:, :, 0:n_sigma].set(devs * qr_weights)
+ qr_points = qr_points.at[:, :, n_sigma:].set(jnp.diag(shock_sds))
predicted_covs = array_qr_jax(qr_points)[1][:, :, :n_fac]
return predicted_states, predicted_covs
-def _calculate_sigma_points(states, upper_chols, scaling_factor):
+def _calculate_sigma_points(states, upper_chols, scaling_factor, observed_factors):
"""Calculate the array of sigma_points for the unscented transform.
Args:
@@ -237,6 +242,8 @@ def _calculate_sigma_points(states, upper_chols, scaling_factor):
scaling_factor (float): A scaling factor that controls the spread of the
sigma points. Bigger means that sigma points are further apart. Depends on
the sigma_point algorithm chosen.
+ observed_factors (jax.numpy.array): Array of shape (n_obs, n_observed_factors)
+ with data on the observed factors in period t.
Returns:
jax.numpy.array: Array of shape n_obs, n_mixtures, n_sigma, n_fac (where n_sigma
@@ -245,17 +252,20 @@ def _calculate_sigma_points(states, upper_chols, scaling_factor):
"""
n_obs, n_mixtures, n_fac = states.shape
n_sigma = 2 * n_fac + 1
+ n_observed = observed_factors.shape[1]
scaled_upper_chols = upper_chols * scaling_factor
sigma_points = jnp.repeat(states, n_sigma, axis=1).reshape(
n_obs, n_mixtures, n_sigma, n_fac
)
- sigma_points = index_add(
- sigma_points, index[:, :, 1 : n_fac + 1], scaled_upper_chols
- )
- sigma_points = index_add(
- sigma_points, index[:, :, n_fac + 1 :], -scaled_upper_chols
+ sigma_points = sigma_points.at[:, :, 1 : n_fac + 1].add(scaled_upper_chols)
+ sigma_points = sigma_points.at[:, :, n_fac + 1 :].add(-scaled_upper_chols)
+
+ observed_part = observed_factors.repeat(n_sigma, axis=0).reshape(
+ n_obs, n_mixtures, n_sigma, n_observed
)
+
+ sigma_points = jnp.concatenate([sigma_points, observed_part], axis=-1)
return sigma_points
@@ -287,19 +297,19 @@ def _transform_sigma_points(
equals 2 * n_fac + 1) with transformed sigma points.
"""
- n_obs, n_mixtures, n_sigma, n_states = sigma_points.shape
anchored = sigma_points * anchoring_scaling_factors[0] + anchoring_constants[0]
+ n_observed_factors = len(transition_functions)
transformed_anchored = anchored
for i, ((name, func), coeffs) in enumerate(zip(transition_functions, trans_coeffs)):
if name != "constant":
output = func(anchored, coeffs)
- transformed_anchored = index_update(
- transformed_anchored, index[..., i], output
- )
+ transformed_anchored = transformed_anchored.at[..., i].set(output)
transformed_unanchored = (
transformed_anchored - anchoring_constants[1]
) / anchoring_scaling_factors[1]
- return transformed_unanchored
+ out = transformed_unanchored[..., :n_observed_factors]
+
+ return out
diff --git a/skillmodels/likelihood_function.py b/skillmodels/likelihood_function.py
index 0c5e9e25..1ef72e3b 100644
--- a/skillmodels/likelihood_function.py
+++ b/skillmodels/likelihood_function.py
@@ -15,7 +15,8 @@
from skillmodels.params_index import get_params_index
from skillmodels.parse_params import create_parsing_info
from skillmodels.parse_params import parse_params
-from skillmodels.process_data import process_data_for_estimation
+from skillmodels.process_data import process_data
+from skillmodels.process_data import process_df
from skillmodels.process_debug_data import process_debug_data
from skillmodels.process_model import process_model
@@ -56,12 +57,15 @@ def get_maximization_inputs(model_dict, data):
parsing_info = create_parsing_info(
p_index, model["update_info"], model["labels"], model["anchoring"]
)
- measurements, controls, = process_data_for_estimation(
+ df_processed = process_df(
data, model["labels"], model["update_info"], model["anchoring"]
)
+ measurements, controls, observed_factors = process_data(
+ df_processed, model["labels"], model["update_info"]
+ )
sigma_scaling_factor, sigma_weights = calculate_sigma_scaling_factor_and_weights(
- model["dimensions"]["n_states"],
+ model["dimensions"]["n_latent_factors"],
model["estimation_options"]["sigma_points_scale"],
)
@@ -70,12 +74,11 @@ def get_maximization_inputs(model_dict, data):
_periods = pd.Series(update_info.index.get_level_values("period").to_numpy())
is_predict_iteration = ((_periods - _periods.shift(-1)) == -1).to_numpy()
last_period = model["labels"]["periods"][-1]
- # The last period is replaced by zero. Periods are only used for things that are
- # related to the predict step. Since there is no predict step in the last period,
- # it does not matter which entry is there. However, leaving it at the last period
- # would cause an index error in the dummy predict function (that does nothing)
- # during the jax tracing.
- iteration_to_period = _periods.replace(last_period, 0).to_numpy()
+ # iteration_to_period is used as an indexer to loop over arrays of different lengths
+ # in a lax.scan. It needs to work for arrays of length n_periods and not raise
+ # IndexErrors on tracer arrays of length n_periods - 1 (i.e. n_transitions).
+ # To achieve that, we replace the last period by -1.
+ iteration_to_period = _periods.replace(last_period, -1).to_numpy()
_base_loglike = functools.partial(
_log_likelihood_jax,
@@ -91,6 +94,7 @@ def get_maximization_inputs(model_dict, data):
is_measurement_iteration=is_measurement_iteration,
is_predict_iteration=is_predict_iteration,
iteration_to_period=iteration_to_period,
+ observed_factors=observed_factors,
)
partialed_process_debug_data = functools.partial(process_debug_data, model=model)
@@ -150,6 +154,7 @@ def loglike_and_gradient(params):
)
out = {
+ "df": df_processed,
"loglike": loglike,
"debug_loglike": debug_loglike,
"gradient": gradient,
@@ -176,6 +181,7 @@ def _log_likelihood_jax(
is_predict_iteration,
iteration_to_period,
debug,
+ observed_factors,
):
"""Log likelihood of a skill formation model.
@@ -211,6 +217,8 @@ def _log_likelihood_jax(
labels (dict): Dict of lists with labels for the model quantities like
factors, periods, controls, stagemap and stages. See :ref:`labels`
debug (bool): Boolean flag. If True, more intermediate results are returned
+ observed_factors (jax.numpy.array): Array of shape (n_periods, n_obs,
+ n_observed_factors) with data on the observed factors.
Returns:
jnp.array: 1d array of length 1, the aggregated log likelihood.
@@ -247,6 +255,7 @@ def _log_likelihood_jax(
sigma_scaling_factor=sigma_scaling_factor,
sigma_weights=sigma_weights,
transition_functions=transition_functions,
+ observed_factors=observed_factors,
debug=debug,
)
@@ -293,6 +302,7 @@ def _scan_body(
sigma_scaling_factor,
sigma_weights,
transition_functions,
+ observed_factors,
debug,
):
t = loop_args["period"]
@@ -329,6 +339,7 @@ def _scan_body(
jnp.array([t, t + 1])
],
"anchoring_constants": pardict["anchoring_constants"][jnp.array([t, t + 1])],
+ "observed_factors": observed_factors[t],
}
fixed_kwargs = {"transition_functions": transition_functions}
diff --git a/skillmodels/params_index.py b/skillmodels/params_index.py
index 2c5448ef..70eaad72 100644
--- a/skillmodels/params_index.py
+++ b/skillmodels/params_index.py
@@ -24,16 +24,21 @@ def get_params_index(update_info, labels, dimensions):
"""
ind_tups = get_control_params_index_tuples(labels["controls"], update_info)
- ind_tups += get_loadings_index_tuples(labels["factors"], update_info)
+ ind_tups += get_loadings_index_tuples(labels["latent_factors"], update_info)
ind_tups += get_meas_sds_index_tuples(update_info)
- ind_tups += get_shock_sds_index_tuples(labels["periods"], labels["factors"])
- ind_tups += initial_mean_index_tuples(dimensions["n_mixtures"], labels["factors"])
+ ind_tups += get_shock_sds_index_tuples(labels["periods"], labels["latent_factors"])
+ ind_tups += initial_mean_index_tuples(
+ dimensions["n_mixtures"], labels["latent_factors"]
+ )
ind_tups += get_mixture_weights_index_tuples(dimensions["n_mixtures"])
ind_tups += get_initial_cholcovs_index_tuples(
- dimensions["n_mixtures"], labels["factors"]
+ dimensions["n_mixtures"], labels["latent_factors"]
)
ind_tups += get_transition_index_tuples(
- labels["factors"], labels["periods"], labels["transition_names"]
+ labels["latent_factors"],
+ labels["all_factors"],
+ labels["periods"],
+ labels["transition_names"],
)
index = pd.MultiIndex.from_tuples(
@@ -173,23 +178,22 @@ def get_initial_cholcovs_index_tuples(n_mixtures, factors):
return ind_tups
-def get_transition_index_tuples(factors, periods, transition_names):
+def get_transition_index_tuples(latent_factors, all_factors, periods, transition_names):
"""Index tuples for transition equation coefficients.
Args:
- factors (list): The latent factors of the model
+ latent_factors (list): The latent factors of the model
+ all_factors (list): The latent and observed factors of the model.
periods (list): The periods of the model
transition_names (list): name of the transition equation of each factor
- included_factors (list): the factors that appear on the right hand side of
- the transition equations of the latent factors.
Returns:
ind_tups (list)
"""
ind_tups = []
- for f, factor in enumerate(factors):
+ for f, factor in enumerate(latent_factors):
for period in periods[:-1]:
func = getattr(tf, "index_tuples_{}".format(transition_names[f]))
- ind_tups += func(factor, factors, period)
+ ind_tups += func(factor, all_factors, period)
return ind_tups
diff --git a/skillmodels/parse_params.py b/skillmodels/parse_params.py
index 99fdcd50..1f45c87d 100644
--- a/skillmodels/parse_params.py
+++ b/skillmodels/parse_params.py
@@ -3,8 +3,6 @@
import jax.numpy as jnp
import numpy as np
import pandas as pd
-from jax.ops import index
-from jax.ops import index_update
def create_parsing_info(params_index, update_info, labels, anchoring):
@@ -42,7 +40,7 @@ def create_parsing_info(params_index, update_info, labels, anchoring):
# "trans_coeffs"
pos_dict = {}
- for factor in labels["factors"]:
+ for factor in labels["latent_factors"]:
helper = pd.DataFrame(index=params_index)
loc = helper.query(f"category == 'transition' & name1 == '{factor}'").index
pos_dict[factor] = _get_positional_selector_from_loc(range_sr, loc)
@@ -50,12 +48,14 @@ def create_parsing_info(params_index, update_info, labels, anchoring):
parsing_info["transition"] = pos_dict
# anchoring_scaling_factors
- is_free_loading = update_info[labels["factors"]].to_numpy()
+ is_free_loading = update_info[labels["latent_factors"]].to_numpy()
is_anchoring = (update_info["purpose"] == "anchoring").to_numpy().reshape(-1, 1)
is_anchoring_loading = jnp.array(is_free_loading & is_anchoring)
parsing_info["is_anchoring_loading"] = is_anchoring_loading
parsing_info["is_anchored_factor"] = jnp.array(
- update_info.query("purpose == 'anchoring'")[labels["factors"]].any(axis=0)
+ update_info.query("purpose == 'anchoring'")[labels["latent_factors"]].any(
+ axis=0
+ )
)
parsing_info["is_anchoring_update"] = is_anchoring.flatten()
parsing_info["ignore_constant_when_anchoring"] = anchoring[
@@ -117,7 +117,7 @@ def parse_params(params, parsing_info, dimensions, labels, n_obs):
"loadings": _get_loadings(params, parsing_info, dimensions),
"meas_sds": _get_meas_sds(params, parsing_info),
"shock_sds": _get_shock_sds(params, parsing_info, dimensions),
- "transition": _get_transition_params(params, parsing_info, dimensions, labels),
+ "transition": _get_transition_params(params, parsing_info, labels),
}
pardict["anchoring_scaling_factors"] = _get_anchoring_scaling_factors(
@@ -134,7 +134,7 @@ def parse_params(params, parsing_info, dimensions, labels, n_obs):
def _get_initial_states(params, info, dimensions, n_obs):
"""Create the array of initial states."""
state = params[info["initial_states"]].reshape(
- 1, dimensions["n_mixtures"], dimensions["n_states"]
+ 1, dimensions["n_mixtures"], dimensions["n_latent_factors"]
)
return jnp.repeat(state, n_obs, axis=0)
@@ -145,13 +145,13 @@ def _get_initial_upper_chols(params, info, dimensions, n_obs):
Note: The matrices contain the transpose of the lower triangular cholesky factors.
"""
- n_states, n_mixtures = dimensions["n_states"], dimensions["n_mixtures"]
+ n_states, n_mixtures = dimensions["n_latent_factors"], dimensions["n_mixtures"]
chol_params = params[info["initial_cholcovs"]].reshape(n_mixtures, -1)
upper_chols = jnp.zeros((n_obs, n_mixtures, n_states, n_states))
for i in range(n_mixtures):
filler = jnp.zeros((n_states, n_states))
- filler = index_update(filler, jnp.tril_indices(n_states), chol_params[i])
- upper_chols = index_update(upper_chols, index[:, i], filler.T)
+ filler = filler.at[jnp.tril_indices(n_states)].set(chol_params[i])
+ upper_chols = upper_chols.at[:, i].set(filler.T)
return upper_chols
@@ -168,7 +168,7 @@ def _get_control_params(params, info, dimensions):
def _get_loadings(params, info, dimensions):
"""Create the array of factor loadings."""
- return params[info["loadings"]].reshape(-1, dimensions["n_states"])
+ return params[info["loadings"]].reshape(-1, dimensions["n_latent_factors"])
def _get_meas_sds(params, info):
@@ -178,15 +178,15 @@ def _get_meas_sds(params, info):
def _get_shock_sds(params, info, dimensions):
"""Create the array of standard deviations of the shocks in transition functions."""
- return params[info["shock_sds"]].reshape(-1, dimensions["n_states"])
+ return params[info["shock_sds"]].reshape(-1, dimensions["n_latent_factors"])
-def _get_transition_params(params, info, dims, labels):
+def _get_transition_params(params, info, labels):
"""Create a list of arrays with transition equation parameters."""
trans_params = []
t_info = info["transition"]
n_periods = len(labels["periods"])
- for factor in labels["factors"]:
+ for factor in labels["latent_factors"]:
ilocs = t_info[factor]
trans_params.append(params[ilocs].reshape(n_periods - 1, -1))
return tuple(trans_params)
@@ -198,14 +198,22 @@ def _get_anchoring_scaling_factors(loadings, info, dimensions):
Note: Parameters are not taken from the parameter vector but from the loadings.
"""
- scaling_factors = jnp.ones((dimensions["n_periods"], dimensions["n_states"]))
+ scaling_factors = jnp.ones(
+ (dimensions["n_periods"], dimensions["n_latent_factors"])
+ )
free_anchoring_loadings = loadings[info["is_anchoring_loading"]].reshape(
dimensions["n_periods"], -1
)
- scaling_factors = index_update(
- scaling_factors, index[:, info["is_anchored_factor"]], free_anchoring_loadings
+ scaling_factors = scaling_factors.at[:, info["is_anchored_factor"]].set(
+ free_anchoring_loadings
)
+ scaling_for_observed = jnp.ones(
+ (dimensions["n_periods"], dimensions["n_observed_factors"])
+ )
+
+ scaling_factors = jnp.hstack([scaling_factors, scaling_for_observed])
+
return scaling_factors
@@ -215,12 +223,17 @@ def _get_anchoring_constants(controls, info, dimensions):
Note: Parameters are not taken from the parameter vector but from the controls.
"""
- constants = jnp.zeros((dimensions["n_periods"], dimensions["n_states"]))
+ constants = jnp.zeros((dimensions["n_periods"], dimensions["n_latent_factors"]))
if not info["ignore_constant_when_anchoring"]:
values = controls[:, 0][info["is_anchoring_update"]].reshape(
dimensions["n_periods"], -1
)
- constants = index_update(
- constants, index[:, info["is_anchored_factor"]], values
- )
+ constants = constants.at[:, info["is_anchored_factor"]].set(values)
+
+ constants_for_observed = jnp.zeros(
+ (dimensions["n_periods"], dimensions["n_observed_factors"])
+ )
+
+ constants = jnp.hstack([constants, constants_for_observed])
+
return constants
diff --git a/skillmodels/process_data.py b/skillmodels/process_data.py
index 90e558f1..d27aa842 100644
--- a/skillmodels/process_data.py
+++ b/skillmodels/process_data.py
@@ -7,11 +7,11 @@
from skillmodels.process_model import get_period_measurements
-def process_data_for_estimation(df, labels, update_info, anchoring_info):
- """Process the data for estimation.
+def process_df(df_in, labels, update_info, anchoring_info):
+ """Process the data for estimation in Pandas.
Args:
- df (DataFrame): panel dataset in long format. It has a MultiIndex
+ df_in (DataFrame): panel dataset in long format. It has a MultiIndex
where the first level indicates the period and the second
the individual.
labels (dict): Dict of lists with labels for the model quantities like
@@ -20,23 +20,46 @@ def process_data_for_estimation(df, labels, update_info, anchoring_info):
in the likelihood function. See :ref:`update_info`.
anchoring_info (dict): Information about anchoring. See :ref:`anchoring`
+ Returns:
+ df (DataFrame): balanced panel dataset in long format. Corresponds to
+ skillmodels-internal representation; index of *df_in* is kept in
+ columns "__old_id__", "__old_period__".
+
+ """
+ df = _pre_process_data(df_in, labels["periods"])
+ df["constant"] = 1
+ df = _add_copies_of_anchoring_outcome(df, anchoring_info)
+ _check_data(df, update_info, labels)
+ df = _handle_controls_with_missings(df, labels["controls"], update_info)
+ return df
+
+
+def process_data(df_processed, labels, update_info):
+ """Process the data for estimation.
+
+ Args:
+ df_processed (DataFrame): balanced panel dataset in long format, typically
+ output of :func:`process_df`
+ labels (dict): Dict of lists with labels for the model quantities like
+ factors, periods, controls, stagemap and stages. See :ref:`labels`
+ update_info (pandas.DataFrame): DataFrame with one row per Kalman update needed
+ in the likelihood function. See :ref:`update_info`.
+
Returns:
meas_data (jax.numpy.array): Array of shape (n_updates, n_obs) with data on
observed measurements. NaN if the measurement was not observed.
control_data (jax.numpy.array): Array of shape (n_periods, n_obs, n_controls)
with observed control variables for the measurement equations.
+ observed_factors (jax.numpy.array): Array of shape (n_periods, n_obs,
+ n_observed_factors) with data on the observed factors.
"""
- df = _pre_process_data(df, labels["periods"])
- df["constant"] = 1
- df = _add_copies_of_anchoring_outcome(df, anchoring_info)
- _check_data(df, labels["controls"], update_info, labels)
- n_obs = int(len(df) / len(labels["periods"]))
- df = _handle_controls_with_missings(df, labels["controls"], update_info)
- meas_data = _generate_measurements_array(df, update_info, n_obs)
- control_data = _generate_controls_array(df, labels, n_obs)
+ n_obs = len(df_processed) // len(labels["periods"])
+ meas_data = _generate_measurements_array(df_processed, update_info, n_obs)
+ control_data = _generate_controls_array(df_processed, labels, n_obs)
+ observed_data = _generate_observed_factor_array(df_processed, labels, n_obs)
- return meas_data, control_data
+ return meas_data, control_data, observed_data
def _pre_process_data(df, periods):
@@ -79,11 +102,11 @@ def _add_copies_of_anchoring_outcome(df, anchoring_info):
return df
-def _check_data(df, controls, update_info, labels):
+def _check_data(df, update_info, labels):
var_report = pd.DataFrame(index=update_info.index[:0], columns=["problem"])
for period in labels["periods"]:
period_data = df.query(f"period == {period}")
- for cont in controls:
+ for cont in labels["controls"]:
if cont not in period_data.columns or period_data[cont].isnull().all():
var_report.loc[(period, cont), "problem"] = "Variable is missing"
@@ -93,6 +116,12 @@ def _check_data(df, controls, update_info, labels):
elif len(period_data[meas].dropna().unique()) == 1:
var_report.loc[(period, meas), "problem"] = "Variable has no variance"
+ for factor in labels["observed_factors"]:
+ if factor not in period_data.columns:
+ var_report.loc[(period, factor), "problem"] = "Variable is missing"
+ elif period_data[factor].isnull().any():
+ var_report.loc[(period, factor), "problem"] = "Variable has missings"
+
var_report = var_report.to_string() if len(var_report) > 0 else ""
if var_report:
@@ -131,3 +160,12 @@ def _generate_controls_array(df, labels, n_obs):
for period in labels["periods"]:
arr[period] = df.query(f"period == {period}")[labels["controls"]].to_numpy()
return jnp.array(arr)
+
+
+def _generate_observed_factor_array(df, labels, n_obs):
+ arr = np.zeros((len(labels["periods"]), n_obs, len(labels["observed_factors"])))
+ for period in labels["periods"]:
+ arr[period] = df.query(f"period == {period}")[
+ labels["observed_factors"]
+ ].to_numpy()
+ return jnp.array(arr)
diff --git a/skillmodels/process_debug_data.py b/skillmodels/process_debug_data.py
index 3884ccac..3dbea2b3 100644
--- a/skillmodels/process_debug_data.py
+++ b/skillmodels/process_debug_data.py
@@ -52,7 +52,7 @@ def process_debug_data(debug_data, model):
"""
update_info = model["update_info"]
- factors = model["labels"]["factors"]
+ factors = model["labels"]["latent_factors"]
pre_update_states = _create_pre_update_states(
debug_data["initial_states"],
@@ -109,7 +109,13 @@ def _create_pre_update_states(initial_states, filtered_states, factors, update_i
if purpose == "measurement":
pos = k
else:
- pos = _get_position_of_last_measurement_in_period(update_info, period)
+ # Hack to allow for measures not being present in the beginning when
+ # estimating model factor by factor.
+ try:
+ pos = _get_position_of_last_measurement_in_period(update_info, period)
+ except IndexError:
+ to_concat.append(to_concat[-1].copy())
+ continue
df = _convert_state_array_to_df(filtered_states[pos], factors)
df["period"] = period
@@ -163,14 +169,18 @@ def _create_filtered_states(post_update_states, update_info):
periods = sorted(update_info.index.get_level_values("period").unique())
to_concat = []
for period in periods:
- last_measurement = update_info.query(
+ rows_with_measurements = update_info.query(
f"purpose == 'measurement' & period == {period}"
- ).index[-1][1]
- to_concat.append(
- post_update_states.query(
- f"period == {period} & measurement == '{last_measurement}'"
- )
)
+ if len(rows_with_measurements) > 0:
+ last_measurement = rows_with_measurements.index[-1][1]
+ to_concat.append(
+ post_update_states.query(
+ f"period == {period} & measurement == '{last_measurement}'"
+ )
+ )
+ else:
+ to_concat.append(post_update_states.query(f"period == {period}"))
filtered_states = pd.concat(to_concat)
filtered_states.drop(columns=["measurement"], inplace=True)
diff --git a/skillmodels/process_model.py b/skillmodels/process_model.py
index 9f49dc73..b14199d5 100644
--- a/skillmodels/process_model.py
+++ b/skillmodels/process_model.py
@@ -60,13 +60,16 @@ def get_dimensions(model_dict):
"""
all_n_periods = [len(d["measurements"]) for d in model_dict["factors"].values()]
+
dims = {
- "n_states": len(model_dict["factors"]),
+ "n_latent_factors": len(model_dict["factors"]),
+ "n_observed_factors": len(model_dict.get("observed_factors", [])),
"n_periods": max(all_n_periods),
# plus 1 for the constant
"n_controls": len(model_dict.get("controls", [])) + 1,
"n_mixtures": model_dict["estimation_options"].get("n_mixtures", 1),
}
+ dims["n_all_factors"] = dims["n_latent_factors"] + dims["n_observed_factors"]
return dims
@@ -86,15 +89,18 @@ def _get_labels(model_dict, dimensions):
stagemap = model_dict.get("stagemap", list(range(dimensions["n_periods"] - 1)))
labels = {
- "factors": sorted(model_dict["factors"]),
+ "latent_factors": sorted(model_dict["factors"]),
+ "observed_factors": sorted(model_dict.get("observed_factors", [])),
"controls": ["constant"] + sorted(model_dict.get("controls", [])),
"periods": list(range(dimensions["n_periods"])),
"stagemap": stagemap,
"stages": sorted(np.unique(stagemap)),
}
+ labels["all_factors"] = labels["latent_factors"] + labels["observed_factors"]
+
trans_names = []
- for factor in labels["factors"]:
+ for factor in labels["latent_factors"]:
trans_names.append(model_dict["factors"][factor]["transition_function"])
labels["transition_names"] = trans_names
@@ -187,16 +193,16 @@ def _get_update_info(model_dict, dimensions, labels, anchoring_info):
"""
index = pd.MultiIndex(levels=[[], []], codes=[[], []], names=["period", "variable"])
- uinfo = DataFrame(index=index, columns=labels["factors"] + ["purpose"])
+ uinfo = DataFrame(index=index, columns=labels["latent_factors"] + ["purpose"])
measurements = {}
- for factor in labels["factors"]:
+ for factor in labels["latent_factors"]:
measurements[factor] = fill_list(
model_dict["factors"][factor]["measurements"], [], dimensions["n_periods"]
)
for period in labels["periods"]:
- for factor in labels["factors"]:
+ for factor in labels["latent_factors"]:
for meas in measurements[factor][period]:
uinfo.loc[(period, meas), factor] = True
uinfo.loc[(period, meas), "purpose"] = "measurement"
@@ -226,7 +232,7 @@ def _process_normalizations(model_dict, dimensions, labels):
"""
normalizations = {}
- for factor in labels["factors"]:
+ for factor in labels["latent_factors"]:
normalizations[factor] = {}
norminfo = model_dict["factors"][factor].get("normalizations", {})
for norm_type in ["loadings", "intercepts"]:
diff --git a/skillmodels/tests/test_constraints.py b/skillmodels/tests/test_constraints.py
index bab64d23..02128ead 100644
--- a/skillmodels/tests/test_constraints.py
+++ b/skillmodels/tests/test_constraints.py
@@ -79,7 +79,7 @@ def test_not_measured_constraints():
uinfo = pd.DataFrame(
data, columns=columns, index=pd.MultiIndex.from_tuples(ind_tups)
)
- labels = {"factors": columns}
+ labels = {"latent_factors": columns}
expected = [
{
@@ -155,7 +155,7 @@ def test_stage_constraints():
def test_constant_factor_constraints():
labels = {
- "factors": ["fac1", "fac2"],
+ "latent_factors": ["fac1", "fac2"],
"periods": [0, 1, 2],
"transition_names": ["bla", "constant"],
}
@@ -200,10 +200,11 @@ def test_initial_mean_constraints():
def test_trans_coeff_constraints():
labels = {
- "factors": ["fac1", "fac2", "fac3"],
+ "latent_factors": ["fac1", "fac2", "fac3"],
"transition_names": ["log_ces", "bla", "blubb"],
"periods": [0, 1, 2],
}
+ labels["all_factors"] = labels["latent_factors"]
expected = [
{
diff --git a/skillmodels/tests/test_kalman_filters.py b/skillmodels/tests/test_kalman_filters.py
index fc3640a1..a109eecb 100644
--- a/skillmodels/tests/test_kalman_filters.py
+++ b/skillmodels/tests/test_kalman_filters.py
@@ -100,6 +100,10 @@ def test_kalman_update_with_missing():
measurements = jnp.array([13, jnp.nan, jnp.nan])
weights = jnp.log(jnp.ones((n_obs, n_mixtures)) * 0.5)
+ controls = np.ones((n_obs, 2)) * 0.5
+ controls[1:] = np.nan
+ controls = jnp.array(controls)
+
calc_states, calc_chols, calc_weights, calc_loglikes, _ = kalman_update(
states=states,
upper_chols=chols,
@@ -107,7 +111,7 @@ def test_kalman_update_with_missing():
control_params=jnp.ones(2),
meas_sd=1,
measurements=measurements,
- controls=jnp.ones((n_obs, 2)) * 0.5,
+ controls=controls,
log_mixture_weights=jnp.log(jnp.ones((n_obs, 2)) * 0.5),
debug=False,
)
@@ -131,10 +135,15 @@ def test_kalman_update_with_missing():
def test_sigma_points(seed):
np.random.seed(seed)
state, cov = _random_state_and_covariance()
+ observed_factors = np.arange(2).reshape(1, 2)
expected = JulierSigmaPoints(n=len(state), kappa=2).sigma_points(state, cov)
+ observed_part = np.tile(observed_factors, len(expected)).reshape(-1, 2)
+ expected = np.hstack([expected, observed_part])
sm_state, sm_chol = _convert_predict_inputs_from_filterpy_to_skillmodels(state, cov)
scaling_factor = np.sqrt(len(state) + 2)
- calculated = _calculate_sigma_points(sm_state, sm_chol, scaling_factor)
+ calculated = _calculate_sigma_points(
+ sm_state, sm_chol, scaling_factor, observed_factors
+ )
aaae(calculated.reshape(expected.shape), expected)
@@ -221,10 +230,11 @@ def linear(sigma_points, params):
sm_state, sm_chol = _convert_predict_inputs_from_filterpy_to_skillmodels(state, cov)
scaling_factor, weights = calculate_sigma_scaling_factor_and_weights(dim, 2)
- transition_functions = (("linear", linear) for i in range(dim))
+ transition_functions = tuple(("linear", linear) for i in range(dim))
trans_coeffs = (jnp.array(trans_mat[i]) for i in range(dim))
anch_scaling = jnp.ones((2, dim))
anch_constants = jnp.zeros((2, dim))
+ observed_factors = jnp.zeros((1, 0))
calc_states, calc_chols = kalman_predict(
sm_state,
@@ -236,6 +246,7 @@ def linear(sigma_points, params):
jnp.array(shock_sds),
anch_scaling,
anch_constants,
+ observed_factors,
)
aaae(calc_states.flatten(), expected_state.flatten())
diff --git a/skillmodels/tests/test_likelihood_regression.py b/skillmodels/tests/test_likelihood_regression.py
index f2bfb366..cbec0d0f 100644
--- a/skillmodels/tests/test_likelihood_regression.py
+++ b/skillmodels/tests/test_likelihood_regression.py
@@ -66,6 +66,8 @@ def test_likelihood_contributions_have_not_changed(model2, model2_data, model_na
new_loglikes = debug_loglike(params)["contributions"]
+ func_dict["loglike"](params)
+
with open(regvault / f"{model_name}_result.json") as j:
old_loglikes = np.array(json.load(j))
@@ -84,7 +86,7 @@ def test_likelihood_runs_with_empty_periods(model2, model2_data):
params["value"] = 0.1
debug_loglike = func_dict["debug_loglike"]
- debug_loglike(params)["contributions"]
+ debug_loglike(params)
def test_likelihood_runs_with_too_long_data(model2, model2_data):
@@ -95,4 +97,17 @@ def test_likelihood_runs_with_too_long_data(model2, model2_data):
params["value"] = 0.1
debug_loglike = func_dict["debug_loglike"]
- debug_loglike(params)["contributions"]
+ debug_loglike(params)
+
+
+def test_likelihood_runs_with_observed_factors(model2, model2_data):
+ model2["observed_factors"] = ["ob1", "ob2"]
+ model2_data["ob1"] = np.arange(len(model2_data))
+ model2_data["ob2"] = np.ones(len(model2_data))
+ func_dict = get_maximization_inputs(model2, model2_data)
+
+ params = func_dict["params_template"]
+ params["value"] = 0.1
+
+ debug_loglike = func_dict["debug_loglike"]
+ debug_loglike(params)
diff --git a/skillmodels/tests/test_params_index.py b/skillmodels/tests/test_params_index.py
index 61b37fd4..045a6f0b 100644
--- a/skillmodels/tests/test_params_index.py
+++ b/skillmodels/tests/test_params_index.py
@@ -161,7 +161,8 @@ def test_initial_cov_index_tuples():
def test_trans_coeffs_index_tuples():
- factors = ["fac1", "fac2", "fac3"]
+ latent_factors = ["fac1", "fac2", "fac3"]
+ all_factors = latent_factors
periods = [0, 1, 2]
transition_names = ["linear", "constant", "log_ces"]
@@ -184,6 +185,8 @@ def test_trans_coeffs_index_tuples():
("transition", 1, "fac3", "phi"),
]
- calculated = get_transition_index_tuples(factors, periods, transition_names)
+ calculated = get_transition_index_tuples(
+ latent_factors, all_factors, periods, transition_names
+ )
assert calculated == expected
diff --git a/skillmodels/tests/test_process_data.py b/skillmodels/tests/test_process_data.py
index 2cbb26a7..71118813 100644
--- a/skillmodels/tests/test_process_data.py
+++ b/skillmodels/tests/test_process_data.py
@@ -9,6 +9,7 @@
from skillmodels.process_data import _generate_controls_array
from skillmodels.process_data import _generate_measurements_array
+from skillmodels.process_data import _generate_observed_factor_array
from skillmodels.process_data import _handle_controls_with_missings
from skillmodels.process_data import _pre_process_data
@@ -86,6 +87,23 @@ def test_generate_controls_array():
aae(calculated, expected)
+def test_generate_observed_factor_array():
+ csv = """
+ id,period,v1,v2
+ 0, 0, 1, 2
+ 0, 1, 3, 4
+ 1, 0, 5, 8
+ 1, 1, 7, 8
+ """
+ data = _read_csv_string(csv, ["id", "period"])
+
+ labels = {"observed_factors": ["v1", "v2"], "periods": [0, 1]}
+
+ calculated = _generate_observed_factor_array(data, labels, 2)
+ expected = jnp.array([[[1, 2], [5, 8]], [[3, 4], [7, 8]]])
+ aae(calculated, expected)
+
+
def _read_csv_string(string, index_cols):
string = textwrap.dedent(string)
return pd.read_csv(io.StringIO(string), index_col=index_cols)
diff --git a/skillmodels/tests/test_process_model.py b/skillmodels/tests/test_process_model.py
index 2cb8b2f6..683bf759 100644
--- a/skillmodels/tests/test_process_model.py
+++ b/skillmodels/tests/test_process_model.py
@@ -24,7 +24,9 @@ def model2():
def test_dimensions(model2):
res = process_model(model2)["dimensions"]
- assert res["n_states"] == 3
+ assert res["n_latent_factors"] == 3
+ assert res["n_observed_factors"] == 0
+ assert res["n_all_factors"] == 3
assert res["n_periods"] == 8
assert res["n_controls"] == 2
assert res["n_mixtures"] == 1
@@ -32,7 +34,9 @@ def test_dimensions(model2):
def test_labels(model2):
res = process_model(model2)["labels"]
- assert res["factors"] == ["fac1", "fac2", "fac3"]
+ assert res["latent_factors"] == ["fac1", "fac2", "fac3"]
+ assert res["observed_factors"] == []
+ assert res["all_factors"] == ["fac1", "fac2", "fac3"]
assert res["controls"] == ["constant", "x1"]
assert res["periods"] == [0, 1, 2, 3, 4, 5, 6, 7]
assert res["stagemap"] == [0, 0, 0, 0, 0, 0, 0]
diff --git a/skillmodels/tests/test_simulate_data.py b/skillmodels/tests/test_simulate_data.py
index 2c3d613a..b9e7e566 100644
--- a/skillmodels/tests/test_simulate_data.py
+++ b/skillmodels/tests/test_simulate_data.py
@@ -30,6 +30,7 @@ def model2():
# =======================================================
+@pytest.mark.xfail(reason="Not yet updated to observed factors.")
def test_simulate_dataset(model2):
model_dict = model2
params = pd.read_csv(TEST_DIR / "regression_vault" / f"one_stage_anchoring.csv")
diff --git a/skillmodels/tests/test_variance_decomposition.py b/skillmodels/tests/test_variance_decomposition.py
new file mode 100644
index 00000000..e4e9c9dc
--- /dev/null
+++ b/skillmodels/tests/test_variance_decomposition.py
@@ -0,0 +1,78 @@
+import pandas as pd
+import pytest
+from jax import config
+from numpy.testing import assert_array_almost_equal as aaae
+
+from skillmodels.variance_decomposition import (
+ create_dataset_with_variance_decomposition,
+)
+
+config.update("jax_enable_x64", True)
+
+# ======================================================================================
+# Variance decomposition
+# ======================================================================================
+
+
+@pytest.fixture
+def setup_variance_decomposition():
+ data1 = {
+ "fac1": [0.1, 0.1, 0.1, 0.2],
+ "fac2": [0.1] * 4,
+ "fac3": [0.2, 0.2, 0.2, 0.4],
+ "mixture": [0] * 4,
+ "period": [0] * 4,
+ "id": [0] * 4,
+ }
+ setup_filtered_states = pd.DataFrame(data1)
+
+ value_loadings = [1, 0, 0] + [0, 0.1, 0] + [0, 0, 2]
+ value_meas_sds = [0.05, 1.1, 0.1]
+ iterables1 = [[0], ["y1", "y2", "y3"], ["fac1", "fac2", "fac3"]]
+ index1 = pd.MultiIndex.from_product(iterables1, names=["period", "name1", "name2"])
+ setup_loadings = pd.DataFrame(value_loadings, index=index1, columns=["value"])
+ iterables2 = [[0], ["y1", "y2", "y3"]]
+ index2 = pd.MultiIndex.from_product(iterables2, names=["period", "name1"])
+
+ setup_meas = pd.DataFrame(value_meas_sds, index=index2, columns=["value"])
+ setup_meas["name2"] = "-"
+ setup_meas = setup_meas.reset_index()
+ setup_meas = setup_meas.set_index(["period", "name1", "name2"])
+ setup_params = pd.concat(
+ [setup_loadings, setup_meas], keys=["loadings", "meas_sds"]
+ )
+
+ args = {"filtered_states": setup_filtered_states, "params": setup_params}
+ return args
+
+
+@pytest.fixture
+def expected_variance_decomposition():
+ value3 = [
+ [1, 0.0025, 0.05, 0.5, 0.5],
+ [0.1, 0, 1.1, 1, 0],
+ [2, 0.01, 0.1, 0.2, 0.8],
+ ]
+ iterables3 = [(0, "y1", "fac1"), (0, "y2", "fac2"), (0, "y3", "fac3")]
+ index3 = pd.MultiIndex.from_tuples(iterables3, names=("period", "name1", "name2"))
+ expected_result = pd.DataFrame(
+ value3,
+ index=index3,
+ columns=[
+ "loadings",
+ "variance of factor",
+ "meas_sds",
+ "fraction due to meas error",
+ "fraction due to factor var",
+ ],
+ )
+ return expected_result
+
+
+def test_variance_decomposition(
+ setup_variance_decomposition, expected_variance_decomposition
+):
+ aaae(
+ create_dataset_with_variance_decomposition(**setup_variance_decomposition),
+ expected_variance_decomposition,
+ )
diff --git a/skillmodels/tests/test_visualize_factor_distributions.py b/skillmodels/tests/test_visualize_factor_distributions.py
index 612697e2..e48f6894 100644
--- a/skillmodels/tests/test_visualize_factor_distributions.py
+++ b/skillmodels/tests/test_visualize_factor_distributions.py
@@ -1,6 +1,7 @@
from pathlib import Path
import pandas as pd
+import pytest
import yaml
from skillmodels.likelihood_function import get_maximization_inputs
@@ -32,6 +33,7 @@ def test_visualize_factor_distributions_runs_with_filtered_states():
)
+@pytest.mark.xfail(reason="Not yet updated to observed factors.")
def test_visualize_factor_distributions_runs_with_simulated_states():
with open(TEST_DIR / "model2.yaml") as y:
model_dict = yaml.load(y, Loader=yaml.FullLoader)
diff --git a/skillmodels/tests/test_visualize_transition_equations.py b/skillmodels/tests/test_visualize_transition_equations.py
new file mode 100644
index 00000000..225d3c11
--- /dev/null
+++ b/skillmodels/tests/test_visualize_transition_equations.py
@@ -0,0 +1,49 @@
+from pathlib import Path
+
+import pandas as pd
+import yaml
+
+from skillmodels.likelihood_function import get_maximization_inputs
+from skillmodels.visualize_transition_equations import visualize_transition_equations
+
+
+TEST_DIR = Path(__file__).parent.resolve()
+
+
+def test_visualize_transition_equations_runs():
+ with open(TEST_DIR / "model2.yaml") as y:
+ model_dict = yaml.load(y, Loader=yaml.FullLoader)
+
+ model_dict["observed_factors"] = ["ob1"]
+
+ params = pd.read_csv(TEST_DIR / "regression_vault" / "one_stage_anchoring.csv")
+ params = params.set_index(["category", "period", "name1", "name2"])
+
+ data = pd.read_stata(TEST_DIR / "model2_simulated_data.dta")
+ data.set_index(["caseid", "period"], inplace=True)
+ data["ob1"] = 0
+
+ max_inputs = get_maximization_inputs(model_dict, data)
+ full_index = max_inputs["params_template"].index
+ params = params.reindex(full_index)
+ params["value"] = params["value"].fillna(0)
+ debug_loglike = max_inputs["debug_loglike"]
+ debug_data = debug_loglike(params)
+ filtered_states = debug_data["filtered_states"]
+
+ visualize_transition_equations(
+ model_dict=model_dict,
+ params=params,
+ states=filtered_states,
+ period=0,
+ quantiles_of_other_factors=[0.1, 0.25, 0.5, 0.75, 0.9],
+ data=data,
+ )
+ visualize_transition_equations(
+ model_dict=model_dict,
+ params=params,
+ states=filtered_states,
+ period=0,
+ quantiles_of_other_factors=None,
+ data=data,
+ )
diff --git a/skillmodels/variance_decomposition.py b/skillmodels/variance_decomposition.py
new file mode 100644
index 00000000..988710d2
--- /dev/null
+++ b/skillmodels/variance_decomposition.py
@@ -0,0 +1,51 @@
+import pandas as pd
+
+
+def create_dataset_with_variance_decomposition(filtered_states, params):
+ """Calculate variance decomposition.
+ Variance is decomposed into the measurement error and the signal.
+ Below the function calculation is based on section 4.2.2.The Empirical Importance of
+ Measurement Error of CHS paper.(Cuhna, et al. 2010, 907).
+ Article location:
+ https://www.econometricsociety.org/publications/econometrica/2010/05/01/estimating-technology-cognitive-and-noncognitive-skill
+ Args:
+ params (pandas.DataFrame): DataFrame with model parameters.
+ filtered_states (pandas.DataFrame): Tidy DataFrame with filtered states.
+
+ Returns:
+ data_variance_decomposition (pd.DataFrame): Dataset with a decomposed variance.
+ """
+
+ periods = filtered_states.period.unique()
+ var = {}
+ for period in periods:
+ data_period = filtered_states.query(f"period == {period}")
+ data_cleaned = data_period.drop(columns=["period", "id", "mixture"])
+ var[period] = data_cleaned.var()
+ variance_df = pd.DataFrame.from_dict(var, orient="index")
+ variance_df = (
+ variance_df.stack()
+ .reset_index(drop=False)
+ .rename(
+ columns={"level_0": "period", "level_1": "name2", 0: "variance of factor"}
+ )
+ )
+ loadings_df = params.loc[("loadings")].reset_index()
+ loadings_df = loadings_df[loadings_df["value"] != 0]
+ merged_df = pd.merge(loadings_df, variance_df, on=["period", "name2"])
+ meas_sds_df = params.loc[("meas_sds")].reset_index()
+ meas_sds_df = meas_sds_df.drop(columns=["name2"])
+ merged_df = pd.merge(merged_df, meas_sds_df, on=["period", "name1"])
+ merged_df = merged_df.rename(columns={"value_x": "loadings", "value_y": "meas_sds"})
+ denominator = (
+ merged_df["meas_sds"] ** 2
+ + merged_df["loadings"] ** 2 * merged_df["variance of factor"]
+ )
+
+ merged_df["fraction due to meas error"] = merged_df["meas_sds"] ** 2 / denominator
+ merged_df["fraction due to factor var"] = (
+ merged_df["loadings"] ** 2 * merged_df["variance of factor"] / denominator
+ )
+ data_variance_decomposition = merged_df.set_index(["period", "name1", "name2"])
+
+ return data_variance_decomposition
diff --git a/skillmodels/visualize_factor_distributions.py b/skillmodels/visualize_factor_distributions.py
index 0474d803..70b4fa03 100644
--- a/skillmodels/visualize_factor_distributions.py
+++ b/skillmodels/visualize_factor_distributions.py
@@ -12,8 +12,8 @@
def plot_factor_distributions(
- states,
model_dict,
+ states,
period,
combine_plots_in_grid=True,
add_3d_plots=False,
@@ -25,20 +25,18 @@ def plot_factor_distributions(
"""Visualize pairwise_factor_distributions in certain period.
Args:
+ model_dict (dict): The model specification. See: :ref:'model_specs'
states (list, pandas.DataFrame): list of tidy DataFrames with filtered
or simulated states or only one DataFrame with filtered or
simulated states.They are used to estimate the state ranges in
each period (if state_ranges are not given explicitly) and to
estimate the distribution of the latent factors.
- model_dict (dict): The model specification. See: :ref:'model_specs'
period (int): The selected period of the filtered states that are plotted.
- combine_plots_in_grid (boolen): decide whether to retrun a one figure
- containing subplots for each factor pair or a dictionary of
- individual plots. Default True.
- add_3d_plots (boolen):decide whether to add 3D plots in grid of plots
- or in the dict of individual plots. Default False.
- n_points (int): Number of grid points per plot. For 3d plots this is per
- dimension. Default 50.
+ combine_plots_in_grid (boolen): Return a figure containing subplots for each
+ pair of factors or a dictionary of individual plots. Default True.
+ add_3d_plots (boolen): Draw and return 3D plots or not. Default False.
+ add_contour_plots (boolen): Draw and return contour plots or not. Default True.
+ n_points (int): Number of grid points per axis and plot. Default 50.
lower_kde_kws (dict): Keyword arguments for seaborn.kdeplot, used to generate
the plots in the lower triangle of the grid, i.e. the two dimensional
kdeplot for each factor pair.
@@ -61,7 +59,7 @@ def plot_factor_distributions(
surface_kws = {} if surface_kws is None else surface_kws
model = process_model(model_dict)
- factors = model["labels"]["factors"]
+ factors = model["labels"]["latent_factors"]
data, hue = _process_data(states, period, factors)
diff --git a/skillmodels/visualize_transition_equations.py b/skillmodels/visualize_transition_equations.py
index 272ca599..8956d28f 100644
--- a/skillmodels/visualize_transition_equations.py
+++ b/skillmodels/visualize_transition_equations.py
@@ -9,6 +9,8 @@
from skillmodels.params_index import get_params_index
from skillmodels.parse_params import create_parsing_info
from skillmodels.parse_params import parse_params
+from skillmodels.process_data import process_data
+from skillmodels.process_data import process_df
from skillmodels.process_debug_data import create_state_ranges
from skillmodels.process_model import process_model
@@ -23,6 +25,9 @@ def visualize_transition_equations(
plot_marginal_effects=False,
n_points=50,
n_draws=50,
+ sharex=False,
+ sharey="row",
+ data=None,
):
"""Visualize transition equations.
@@ -34,16 +39,26 @@ def visualize_transition_equations(
are not given explicitly) and to estimate the distribution of the factors
that are not visualized.
period (int): The start period of the transition equations that are plotted.
+ combine_plots_in_grid (boolen): Return a figure containing subplots for each
+ pair of factors or a dictionary of individual plots. Default True.
state_ranges (dict): The keys are the names of the latent factors.
The values are DataFrames with the columns "period", "minimum", "maximum".
The state_ranges are used to define the axis limits of the plots.
quantiles_of_other_factors (float, list or None): Quantiles at which the factors
that are not varied in a given plot are fixed. If None, those factors are
not fixed but integrated out.
- n_points (int): Number of grid points per plot. For 3d plots this is per
- dimension.
- n_draws (int): Number of randomly drawn values of the non visualized factors
- if those factors are not fixed at a quantile but averaged out.
+ n_points (int): Number of grid points per input. Default 50.
+ n_draws (int): Number of randomly drawn values of the factors that are averaged
+ out. Only relevant if quantiles_of_other_factors is *None*. Default 50.
+ sharex (bool or {'none', 'all', 'col'}): Whether to share the properties of
+ x-axis across subplots. See API docs of matplotlib.pyplot.subplots.
+ Default False.
+ sharey (bool or {'none', 'all', 'row'}): : Whether to share the properties of
+ y-axis across subplots. See API docs of matplotlib.pyplot.subplots.
+ Default 'row'.
+ data (pd.DataFrame): Empirical dataset that is used to estimate the model. Only
+ needed if the model has observed factors. Those factors are directly taken
+ from the data to calculate their quantiles or averages.
Returns:
matplotlib.Figure: The plot
@@ -54,12 +69,52 @@ def visualize_transition_equations(
elif isinstance(quantiles_of_other_factors, tuple):
quantiles_of_other_factors = list(quantiles_of_other_factors)
+ if plot_marginal_effects:
+ raise NotImplementedError()
+
model = process_model(model_dict)
if period >= model["labels"]["periods"][-1]:
raise ValueError(
- "Period mast be the penultimate period of the model or earlier."
+ "*period* must be the penultimate period of the model or earlier."
+ )
+
+ latent_factors = model["labels"]["latent_factors"]
+ observed_factors = model["labels"]["observed_factors"]
+ all_factors = model["labels"]["all_factors"]
+
+ if observed_factors and data is None:
+ raise ValueError(
+ "The model has observed factors. You must pass the empirical data to "
+ "'visualize_transition_equations' via the keyword *data*."
+ )
+
+ if observed_factors:
+ df_processed = process_df(
+ df_in=data,
+ labels=model["labels"],
+ update_info=model["update_info"],
+ anchoring_info=model["anchoring"],
+ )
+ _, _, _observed_arr = process_data(
+ df_processed=df_processed,
+ labels=model["labels"],
+ update_info=model["update_info"],
+ )
+ observed_data = pd.DataFrame(
+ data=np.array(_observed_arr[period]), columns=observed_factors
+ )
+ observed_data["id"] = observed_data.index
+ observed_data["period"] = period
+ states_data = pd.merge(
+ left=states,
+ right=observed_data,
+ left_on=["id", "period"],
+ right_on=["id", "period"],
+ how="left",
)
+ else:
+ states_data = states.copy()
params_index = get_params_index(
update_info=model["update_info"],
@@ -84,26 +139,28 @@ def visualize_transition_equations(
n_obs=1,
)
- factors = model["labels"]["factors"]
-
if state_ranges is None:
- state_ranges = create_state_ranges(states, model["labels"]["factors"])
+ state_ranges = create_state_ranges(states_data, all_factors)
- figsize = (2.5 * len(factors), 2 * len(factors))
+ figsize = (2.5 * len(all_factors), 2 * len(latent_factors))
fig, axes = plt.subplots(
- nrows=len(factors), ncols=len(factors), figsize=figsize, sharey="row"
+ nrows=len(latent_factors),
+ ncols=len(all_factors),
+ figsize=figsize,
+ sharex=sharex,
+ sharey=sharey,
)
for (output_factor, input_factor), ax in zip(
- itertools.product(factors, repeat=2), axes.flatten()
+ itertools.product(latent_factors, all_factors), axes.flatten()
):
- output_factor_position = factors.index(output_factor)
+ output_factor_position = latent_factors.index(output_factor)
transition_function = model["transition_functions"][output_factor_position]
- transition_params = pardict["transition"][period][output_factor_position]
+ transition_params = pardict["transition"][output_factor_position][period]
if quantiles_of_other_factors is not None:
plot_data = _prepare_data_for_one_plot_fixed_quantile_2d(
- states=states,
+ states_data=states_data,
state_ranges=state_ranges,
period=period,
input_factor=input_factor,
@@ -112,11 +169,11 @@ def visualize_transition_equations(
n_points=n_points,
transition_function=transition_function,
transition_params=transition_params,
- factors=factors,
+ all_factors=all_factors,
)
else:
plot_data = _prepare_data_for_one_plot_average_2d(
- states=states,
+ states_data=states_data,
state_ranges=state_ranges,
period=period,
input_factor=input_factor,
@@ -125,15 +182,16 @@ def visualize_transition_equations(
n_draws=n_draws,
transition_function=transition_function,
transition_params=transition_params,
- factors=factors,
+ all_factors=all_factors,
)
- hue = None
if (
isinstance(quantiles_of_other_factors, list)
and len(quantiles_of_other_factors) > 1
):
hue = "quantile"
+ else:
+ hue = None
sns.lineplot(
data=plot_data,
@@ -147,14 +205,21 @@ def visualize_transition_equations(
ax.get_legend().remove()
if hue is not None:
- fig.legend(handles, labels, loc="upper center", ncol=len(factors))
+ fig.legend(
+ handles=handles,
+ labels=labels,
+ bbox_to_anchor=(0.5, -0.05),
+ loc="lower center",
+ ncol=len(quantiles_of_other_factors),
+ )
+
fig.tight_layout()
sns.despine()
return fig
def _prepare_data_for_one_plot_fixed_quantile_2d(
- states,
+ states_data,
state_ranges,
period,
input_factor,
@@ -163,20 +228,20 @@ def _prepare_data_for_one_plot_fixed_quantile_2d(
n_points,
transition_function,
transition_params,
- factors,
+ all_factors,
):
- period_data = states.query(f"period == {period}")[factors]
+ period_data = states_data.query(f"period == {period}")[all_factors]
transition_name, transition_function = transition_function
input_min = state_ranges[input_factor].loc[period]["minimum"]
input_max = state_ranges[input_factor].loc[period]["maximum"]
to_concat = []
for quantile in quantiles_of_other_factors:
- fixed_quantiles = period_data.drop(columns=input_factor).quantile(quantile)
input_data = pd.DataFrame()
input_data[input_factor] = np.linspace(input_min, input_max, n_points)
+ fixed_quantiles = period_data.drop(columns=input_factor).quantile(quantile)
input_data[fixed_quantiles.index] = fixed_quantiles
- input_arr = jnp.array(input_data[factors].to_numpy())
+ input_arr = jnp.array(input_data[all_factors].to_numpy())
if transition_name != "constant":
output_arr = transition_function(input_arr, transition_params)
else:
@@ -188,12 +253,12 @@ def _prepare_data_for_one_plot_fixed_quantile_2d(
quantile_data["quantile"] = quantile
to_concat.append(quantile_data)
- out = pd.concat(to_concat)
+ out = pd.concat(to_concat).reset_index()
return out
def _prepare_data_for_one_plot_average_2d(
- states,
+ states_data,
state_ranges,
period,
input_factor,
@@ -202,12 +267,13 @@ def _prepare_data_for_one_plot_average_2d(
n_draws,
transition_function,
transition_params,
- factors,
+ all_factors,
):
transition_name, transition_function = transition_function
- period_data = states.query(f"period == {period}")[factors]
- sampled_factors = [factor for factor in factors if factor != input_factor]
+ period_data = states_data.query(f"period == {period}")[all_factors].reset_index()
+
+ sampled_factors = [factor for factor in all_factors if factor != input_factor]
draws = period_data[sampled_factors].sample(n=n_draws)
input_min = state_ranges[input_factor].loc[period]["minimum"]
input_max = state_ranges[input_factor].loc[period]["maximum"]
@@ -217,7 +283,7 @@ def _prepare_data_for_one_plot_average_2d(
input_data = pd.DataFrame()
input_data[input_factor] = np.linspace(input_min, input_max, n_points)
input_data[draw.index] = draw
- input_arr = jnp.array(input_data[factors].to_numpy())
+ input_arr = jnp.array(input_data[all_factors].to_numpy())
if transition_name != "constant":
output_arr = transition_function(input_arr, transition_params)
else: