-
Notifications
You must be signed in to change notification settings - Fork 238
Description
Here is the full code of my projects (big thanks to KonstantinosAng for mapper functions and guanming001 for the basic_2d examples)
from asyncore import read
from pykinect2.PyKinectV2 import *
from pykinect2 import PyKinectV2
from pykinect2 import PyKinectRuntime
import numpy as np
import cv2
import mapper
import time
net = cv2.dnn.readNet("yolov3-tiny_training_last.weights", "yolov3-tiny_testing (1).cfg")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_OPENCL)
classes = []
with open("obj.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i-1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3)) #Generate Random Color
font = cv2.FONT_HERSHEY_SIMPLEX
timeframe = time.time()
frame_id = 0
maskx=0
masky=0
no_maskx=0
no_masky=0
kinect = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Color |
PyKinectV2.FrameSourceTypes_Depth)
depth_width, depth_height = kinect.depth_frame_desc.Width, kinect.depth_frame_desc.Height # Default: 512, 424
color_width, color_height = kinect.color_frame_desc.Width, kinect.color_frame_desc.Height # Default: 1920, 1080
while True:
##############################
### Get images from kinect ###
##############################
if kinect.has_new_color_frame() and \
kinect.has_new_depth_frame() :
depth_frame = kinect.get_last_depth_frame()
color_frame = kinect.get_last_color_frame()
depth_img = depth_frame.reshape(((depth_height, depth_width))).astype(np.uint16)
color_img = color_frame.reshape(((color_height, color_width, 4))).astype(np.uint8)
color_img_resize = cv2.resize(color_img, (0,0), fx=0.5, fy=0.5) # Resize (1080, 1920, 4) into half (540, 960, 4)
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_img, alpha=255/1500), cv2.COLORMAP_JET) # Scale to display from 0 mm to 1500 mm
frame = color_img_resize
depth = depth_colormap
frame_id += 1
color_height, color_width, channels = frame.shape
#Detecting Object
blob = cv2.dnn.blobFromImage(frame, 1/255, (320, 320), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0: #Confidence Level -> Accuracy
# Object detected
center_x = int(detection[0] * color_width)
center_y = int(detection[1] * color_height)
w = int(detection[2] * color_width)
h = int(detection[3] * color_height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.2, 0.4)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
# color = colors[i]
color = (255,255,255)
if label == "mask" :
no_maskx = 0
no_masky = 0
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label, (x, y+30), font, 1, color, 2)
cv2.putText(frame, label + " " + str(round(confidence, 2)), (x, y+30), font, 1, color, 2)
center = ((x+w/2)-(color_width/2), (y+h/2)-(color_height/2))
maskx = (x+w/2)
masky = (y+h/2)
print (maskx,masky)
if label == "no_mask":
maskx = 0
masky = 0
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label, (x, y+30), font, 1, color, 2)
cv2.putText(frame, label + " " + str(round(confidence, 2)), (x, y+30), font, 1, color, 2)
center = ((x+w/2)-(color_width/2), (y+h/2)-(color_height/2))
no_maskx = (x+w/2)
no_masky = (y+h/2)
#print (no_maskx,no_masky)
mapped_no_maskx = no_maskx/0.4
mapped_no_masky = no_masky/0.4
depth_x, depth_y = mapper.color_point_2_depth_point(kinect, _DepthSpacePoint, kinect._depth_frame_data, [mapped_no_maskx, mapped_no_masky]) # pixel
elapsed_time = time.time() - timeframe
fps = frame_id / elapsed_time
cv2.putText(frame, str(round(fps,2)), (10, 50), font, 2, (255, 255, 255), 2) #FPS Value
cv2.putText(frame, "FPS", (220, 50), font, 2, (255, 255, 255), 2) #FPS Label
cv2.imshow("Image", frame)
cv2.circle(color_img_resize, (960,540), radius=10, color=(0, 0, 0), thickness=2)
cv2.circle(depth_colormap, (960,540), radius=10, color=(0, 0, 0), thickness=2)
cv2.putText(depth, str(round(fps,2)), (10, 50), font, 2, (255, 255, 255), 2) #FPS Value
cv2.putText(depth, "FPS", (220, 50), font, 2, (255, 255, 255), 2) #FPS Label
cv2.imshow("dotted Object", depth)
cv2.imshow('color', frame)
cv2.imshow('depth', depth)
depth_x, depth_y = mapper.color_point_2_depth_point(kinect, _DepthSpacePoint, kinect._depth_frame_data, [960,540]) # pixel
if (int(depth_y ) * 512 + int(depth_x)) < 512 * 424:
depth_z = float(depth_frame[int(depth_y ) * 512 + int(depth_y )]) # mm
else:
# If it exceeds return the last value to catch overflow
depth_z = float(depth_frame[int((512 * 424) - 1)]) # mm
print (depth_z)
key = cv2.waitKey(1)
if key == 27:
break
kinect.close()
cv2.destroyAllWindows
here's the error for the code, i have done YOLOv3 with a webcam before and the data types seems to be the same as the variable color_img_resize, kinda confused here bcs apparently color_img_resize doesnt have the same input channels as the one with the webcam as an input
[ERROR:0@2.014] global D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\net_impl.cpp (1171) cv::dnn::dnn4_v20220524::Net::Impl::getLayerShapesRecursively OPENCV/DNN: [Convolution]:(conv_0): getMemoryShapes() throws exception. inputs=1 outputs=0/1 blobs=1
[ERROR:0@2.032] global D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\net_impl.cpp (1174) cv::dnn::dnn4_v20220524::Net::Impl::getLayerShapesRecursively input[0] = [ 1 4 320 320 ]
[ERROR:0@2.054] global D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\net_impl.cpp (1182) cv::dnn::dnn4_v20220524::Net::Impl::getLayerShapesRecursively blobs[0] = CV_32FC1 [ 16 3 3 3 ]
[ERROR:0@2.069] global D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\net_impl.cpp (1184) cv::dnn::dnn4_v20220524::Net::Impl::getLayerShapesRecursively Exception message: OpenCV(4.6.0) D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\layers\convolution_layer.cpp:405: error: (-2:Unspecified error) Number of input Traceback (most recent call last):
File "cv2--kinect.py", line 62, in
outs = net.forward(output_layers)
cv2.error: OpenCV(4.6.0) D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\layers\convolution_layer.cpp:405: error: (-2:Unspecified error) Number of input channels should be multiple of 3 but got 4 in function 'cv::dnn::ConvolutionLayerImpl::getMemoryShapes'