|
| 1 | +```java |
| 2 | +import java.util.*; |
| 3 | +class UserSolution { |
| 4 | + static class state implements Comparable<state>{ |
| 5 | + int to,w; |
| 6 | + state(int to, int w){ |
| 7 | + this.to = to; |
| 8 | + this.w = w; |
| 9 | + } |
| 10 | + |
| 11 | + @Override |
| 12 | + public int compareTo(state other){ |
| 13 | + return Integer.compare(other.w,this.w); |
| 14 | + } |
| 15 | + } |
| 16 | + static List<state>[] adjLists; |
| 17 | + |
| 18 | + public int[] dijkstra(int start){ |
| 19 | + PriorityQueue<state> pq = new PriorityQueue<>(); |
| 20 | + int[] dist = new int[1000]; |
| 21 | + for (int i = 0; i < dist.length; i++) { |
| 22 | + dist[i] = -1; |
| 23 | + } |
| 24 | + for (state cur : adjLists[start]) { |
| 25 | + pq.offer(new state(cur.to,cur.w)); |
| 26 | + dist[cur.to] = cur.w; |
| 27 | + } |
| 28 | + |
| 29 | + while(!pq.isEmpty()){ |
| 30 | + state cur = pq.poll(); |
| 31 | + |
| 32 | + if(dist[cur.to] > cur.w) continue; |
| 33 | + |
| 34 | + for (state next : adjLists[cur.to]) { |
| 35 | + int newDist = Math.min(cur.w,next.w); |
| 36 | + if(newDist > dist[next.to]){ |
| 37 | + dist[next.to] = newDist; |
| 38 | + pq.offer(new state(next.to,newDist)); |
| 39 | + } |
| 40 | + } |
| 41 | + } |
| 42 | + return dist; |
| 43 | + } |
| 44 | + |
| 45 | + public void init(int N, int K, int sCity[], int eCity[], int mLimit[]) { |
| 46 | + adjLists = new ArrayList[N]; |
| 47 | + for (int i = 0; i < N; i++) { |
| 48 | + adjLists[i] = new ArrayList<>(); |
| 49 | + } |
| 50 | + for (int i = 0; i < K; i++) { |
| 51 | + adjLists[sCity[i]].add(new state(eCity[i],mLimit[i])); |
| 52 | + adjLists[eCity[i]].add(new state(sCity[i],mLimit[i])); |
| 53 | + } |
| 54 | + return; |
| 55 | + } |
| 56 | + |
| 57 | + public void add(int sCity, int eCity, int mLimit) { |
| 58 | + adjLists[sCity].add(new state(eCity,mLimit)); |
| 59 | + adjLists[eCity].add(new state(sCity,mLimit)); |
| 60 | + return; |
| 61 | + } |
| 62 | + |
| 63 | + public int calculate(int sCity, int eCity, int M, int mStopover[]) { |
| 64 | + int[] fromStart = dijkstra(sCity); |
| 65 | + int ans = fromStart[eCity]; |
| 66 | + for (int i = 0; i < M; i++) { |
| 67 | + if(fromStart[mStopover[i]] == -1){ |
| 68 | + return -1; |
| 69 | + } |
| 70 | + ans = Math.min(ans, fromStart[mStopover[i]]); |
| 71 | + } |
| 72 | + return ans; |
| 73 | + } |
| 74 | +} |
| 75 | +``` |
0 commit comments